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Abstract: In this paper, a general class of modified power-symmetric distributions is introduced.
By choosing as symmetric model the normal distribution, the modified power-normal distribution
is obtained. For the latter model, some of its more relevant statistical properties are examined.
Parameters estimation is carried out by using the method of moments and maximum likelihood
estimation. A simulation analysis is accomplished to study the performance of the maximum
likelihood estimators. Finally, we compare the efficiency of the modified power-normal distribution
with other existing distributions in the literature by using a real dataset.
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1. Introduction

Over the last few years, the search for flexible probabilistic families capable of modeling different
levels of bias and kurtosis has been an issue of great interest in the field of distributions theory. This was
mainly motivated by the seminal work of Azzalini [1]. In that paper, the probability density function
(pdf) of a skew-symmetric distribution was introduced. The expression of this density is given by

g(z; λ) = 2 f (z)G(λz), z, λ ∈ R, (1)

where f (·) is a symmetric pdf about zero; G(·) is an absolutely continuous distribution function,
which is also symmetric about zero; and λ is a parameter of asymmetry. For the case where f (·)
is the standard normal density (from now on, we reserve the symbol φ for this function), and G(·)
is the standard normal cumulative distribution function (henceforth, denoted by Φ), the so-called
skew-normal (SN ) distribution with density

φZ(z; λ) = 2φ(z)Φ(λz), z, λ ∈ R, (2)

is obtained. We use the notation Z ∼ SN (λ) to denote the random variable Z with pdf given by
Equation (2). A generalization of the SN distribution is introduced by Arellano-Valle et al. [2] and
Arellano-Valle et al. [3]; they study Fisher’s information matrix of this generalization. For further
details about the SN distribution, the reader is referred to Azzalini [4]. Martínez-Flórez et al. [5] used
generalizations of the SN distribution to extend the Birnbaum-Saunders model, and Contreras-Reyes
and Arellano-Valle [6] utilized the Kullback–Leibler divergence measure to compare the multivariate
normal distribution with the skew-multivariate normal.

One of the main limitations of working with the family given by Equation (1) is that the
information matrix could be singular for some of its particular models (see Azzalini [1]). This might
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lead to some difficulties in the estimation, due to the asymptotic convergence of the maximum
likelihood (ML) estimators. To overcome this issue, some authors (see Chiogna [7] or Arellano-Valle
and Azzalini [8]) have used a reparametrization of the SN model to obtain a nonsingular information
matrix. However, this methodology cannot be extended to all type of skew-symmetric models
which suffers of this convergence problem. On the other hand, the family of power-symmetric (PS)
distributions does not have this problem of singularity in the information matrix (see, Pewsey et al. [9]).
The pdf of this family of distribution is given by

ϕF(z; α) = α f (z){F(z)}α−1, z ∈ R, α ∈ R+. (3)

where F(·) is itself a cumulative distribution function (cdf) and α is the shape parameter. For the
particular case that F(·) = Φ(·), the power-normal (PN ) distribution is obtained, with density
given by

f (z; α) = αφ(z){Φ(z)}α−1, z ∈ R, α ∈ R+. (4)

For some references where this family is discussed, the reader is referred to Lehmann [10], Durrans [11],
Gupta and Gupta [12], and Pewsey et al. [9], among other papers. Other extensions of this
model are given in Martínez-Flórez et al. [13], where a multivariate version from the model is
introduced; also, Martínez-Flórez et al. [14] carried out applications by using regression models;
finally, Martínez-Flórez et al. [15] examined the exponential transformation of the model , and
Martínez-Flórez et al. [16] examined a version of the model doubly censored with inflation in a
regression context. Truncations of the PN distribution were considered by Castillo el al. [17].

In this paper, a modification in the pdf of the PS probabilistic family is implemented to increase
the degree of kurtosis. This methodology is later used to explain datasets that include atypical
observations. Usually, this methodology is accomplished by increasing the number of parameters in
the model.

The paper is organized as follows. In Section 2, first, we introduce the modified power symmetric
distribution. Then, the particular case of the modified power normal distribution is derived. Some
of the most relevant statistical properties of this model, including moments and kurtosis coefficient,
are presented. Next, in Section 3, some methods of estimation are discussed. Later, a simulation
study is provided to illustrate the behavior of the shape parameter. A numerical application where
the modified power normal distribution is compared to the SN and PN distributions is given in
Section 4. Finally, Section 5 concludes the paper.

2. Genesis and Properties of Modified Power-Normal Distribution

In this section, we introduce a new family of probability distributions. The idea is to make a
transformation to a given probability density, as the skew-symmetric or power-symmetric distributions
does. As there exists a certain resemblance between our formula (Equation (6)) and the formula
for the power-symmetric distributions (Equation (3)), we agree to name these new distributions as
modified power-symmetric (MPS) distributions. From the standard normal distribution, we obtain
the so-called Modified Power-Normal (MPN ) distribution. The main parameters and properties of
this particular distribution will be studied throughout this work.

2.1. Probability Density Function

Definition 1. Let Z be a continuous and symmetric random variable with cdf G(z; η) and pdf g(z; η), where η

denotes a vector of parameters. We say that, a random variable, X, follows aMPS distribution, denoted as
X ∼MPS(η, α), if its cdf is given by

F(x; η, α) =
[ 1 + G(x; η) ]α − 1

2α − 1
, (5)
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and its pdf is given by
f (x; η, α) =

α

2α − 1
g(x; η) [ 1 + G(x; η) ]α−1 . (6)

where x ∈ R and α > 0.

Remark 1. In the case α = 1, the transformation given by Equation (6) is the identity. That is, theMPS
distribution for α = 1 always provides the input probability density function.

Thereforeforth, we proceed to examine theMPN distribution, whose cdf is provided by

F(x; µ, σ, α) =

[
1 + Φ

(
x−µ

σ

) ]α
− 1

2α − 1
, (7)

and whose pdf is given by

f (x; µ, σ, α) =
α

(2α − 1)σ
φ

(
x− µ

σ

) [
1 + Φ

(
x− µ

σ

) ]α−1
, (8)

where x ∈ R, µ ∈ R is the location parameter, σ > 0 is the scale parameter, and α > 0 is the shape
parameter. Hereafter, this will be denoted as X ∼ MPN (µ, σ, α). Figure 1 depicts some different
shapes of the pdf of this model, for selected values of the parameter α with µ = −1, 1 and σ = 1. The
MPN class of distributions is applicable for the change point problem, due to its favorable properties
(see Maciak et al. [18]); moreover, theMPN model can be utilized in calibration (see Pešta [19]).

Remark 2. Here, µ ∈ R and σ > 0 are location and scale parameters of theMPN distribution, respectively.
For the particular case α = 1, these are not only location and scale parameters but also the mean and standard
deviation of the standard normal distribution.
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Figure 1. Plot of the pdf ofMPN distribution for selected values of the parameters.
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2.2. Statistical Properties

2.2.1. Shape of the Density

TheMPN distribution exhibits a bell-shaped form, which can be symmetric or positively or
negatively skewed depending on the value of the parameter α. Now, we derive some analytical
expressions that are useful to obtain approximations of modal values and inflection points of this
model. In the following, it will be assumed that µ = 0 and σ = 1.

Proposition 1. The pdf of X ∼ MPN (0, 1, α) has a local maximum at (x1, f (x1; α)) and two inflection
points at (x2, f (x2; α)) and (x3, f (x3; α)), respectively, where x1 is the root of the equation

x∗ =
(α− 1)φ(x∗)

1 + Φ(x∗)
, (9)

and x2 and x3 are two solutions of the equation

1 =

(
−x +

(α− 1)φ(x)
1 + Φ(x)

)2

− (α− 1)φ(x)
1 + Φ(x)

(
x +

φ(x)
1 + Φ(x)

)
. (10)

Proof. The proof consists of simple derivatives of the function f . From the equation (8), we calculate

∂

∂x
f (x; α) =

α

2α − 1
φ(x)[1 + Φ(x)]α−1

(
−x +

(α− 1)φ(x)
1 + Φ(x)

)
.

∂2

∂x2 f (x; α) =
α

2α − 1
φ(x)[1 + Φ(x)]α−1

{(
−x +

(α− 1)φ(x)
1 + Φ(x)

)2

−
[

1 +
(α− 1)φ(x)

1 + Φ(x)

×
(

x +
φ(x)

1 + Φ(x)

)]}
.

By setting Equations (9) and (10) to be equal to zero, the results are obtained after some algebra.
Figure 2 displays the graph of the first derivative of f (·), where it is observed that the maximum exists
and it is unique. Therefore, theMPN distribution is unimodal. �

−4 −2 0 2 4

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

x

De
riv

at
ive

 o
f t

he
 d

en
sit

y 
fu

nc
tio

n

α
1
0.1
2

Figure 2. Plot of the first derivative ofMPN distribution for selected values of the parameters.
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Remark 3. The solutions of Equations (9) and (10) can be numerically obtained by using the built-in function
“uniroot” in the software package R. Table 1 below illustrates some approximations of the roots x1, x2, and x3,
and the corresponding figures of the pdf evaluated at these values.

Table 1. Approximations of the roots of Equations (9) and (10) for some values of α, and the
corresponding figures of the pdf of theMPN evaluated at these roots.

α x1 x2 x3 f (x1; α) f (x2; α) f (x3; α)

0.5 −0.136 −1.135 0.886 0.397 0.239 0.241
1.0 0.000 −1.000 1.000 0.399 0.242 0.242
2.0 0.243 −0.691 1.173 0.412 0.261 0.251
3.0 0.435 −0.414 1.299 0.433 0.282 0.266
4.0 0.586 −0.203 1.396 0.457 0.298 0.284
5.0 0.706 −0.041 1.475 0.481 0.316 0.301

2.2.2. Moments

Proposition 2. The rth moments of X ∼MPN (0, 1, α) for r = 1, 2, 3, . . . , are given by

E(Xr) =
α

2α − 1
ar(α), (11)

where ar(α) is defined as

ar(α) =
∫ 1

0
[Φ−1(u)]r(1 + u)α−1 du. (12)

Here, Φ−1(·) is the quantile function of the standard normal distribution.

Proof. By using the change of variable u = Φ(x), it follows that

E(Xr) =
∫ ∞

−∞
xr α

2α − 1
φ(x)[1 + Φ(x)]α−1 dx

=
α

2α − 1

∫ 1

0
[Φ−1(u)]r(1 + u)α−1 du

=
α

2α − 1
ar(α). �

Corollary 1. The mean and variance of X are given by

E(X) =
α

2α − 1
a1(α) and

Var(X) =
α

2α − 1

(
a2(α)−

α

2α − 1
a2

1(α)

)
,

respectively.

Corollary 2. The skewness (β1) and kurtosis (β2) coefficients are, respectively, given by

β1 =
a3(α)− 3α

2α−1 a1(α)a2(α) +
2α2

(2α−1)2 a3
1(α)(

α
2α−1

)3/2
[a2(α)− α

2α−1 a2
1(α)]

3/2
and

β2 =
a4(α)− 4α

2α−1 a1(α)a3(α) +
6α2

(2α−1)2 a2
1(α)a2(α)− 3α3

(2α−1)3 a4
1(α)

α
2α−1 [a2(α)− α

2α−1 a2
1(α)]

2
.

Remark 4. Observe that the integral in Equation (12) can be numerically approximated by using the built-in
function integrate available in the software package R. Below, in Table 2, some approximations of the mean and
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variance for theMPN distribution for different values of α are displayed. Figure 3 illustrates the behavior of
the E(X) and Var(X) of theMPN distribution for different values of α. It is observable that when α grows,
the mean increases and the variance decreases.

Figure 4 displays the curves associated with the coefficients of skewness (left panel) and kurtosis (right)
of theMPN and PN distributions. It is shown that, depending on the values of α, theMPN distribution
exhibits equal, greater, or lesser values for these coefficients compared to the PN model. In general, theMPN
distribution has a smaller range of skewness than the PN distribution. On the other hand, when α < 13.05, the
MPN distribution has a greater kurtosis coefficient than the PN model.

Table 2. Approximations of E(X) and Var(X) of theMPN distribution for different values of α.

α E(X) Var(X)

0.5 −0.097 1.006
1.0 0.000 1.000
5.0 0.659 0.770

10.0 1.119 0.521
100.0 2.247 0.218
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Figure 3. Plot of the E(X) and Var(X) of theMPN distribution.
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2.2.3. Stochastic Ordering

Stochastic ordering is an important tool to compare continuous random variables. It is well-known
that random variable X1 is smaller than random variable X2 in stochastic ordering (X1 ≤st X2) if
FX1(x) ≥ FX2(x) for all x, and in likelihood ratio order (X1 ≤lr X2) if fX1(x)/ fX2(x) decreases with x.
Using Theorem 1.C.1 and Theorem 2.A.1 of Shaked and Shanthikumar [20], the above stochastic orders
hold according to the following implications,

X1 ≤lr X2 ⇒ X1 ≤st X2. (13)

The proposition shows that the members of the MPN family can be stochastically ordered
according to parameters values.

Proposition 3. Let X1 ∼ MPN (0, 1, α1) and X2 ∼ MPN (0, 1, α2). If α1 > α2, then X1 ≤lr X2 and,
therefore, X1 ≤st X2.

Proof. From the quotient of both densities, it follows that

fX2(x; α2)

fX1(x; α1)
=

α2

α1

(
2α1 − 1
2α2 − 1

)
[1 + Φ(x)]α2−α1 ,

is non-decreasing if and only if µ′(x) ≥ 0 for x ∈ (−∞, ∞), where

µ(x) = [1 + Φ(x)]α2−α1 .

After some calculations, it is shown that

µ′(x) = (α2 − α1)φ(x)[1 + Φ(x)]α2−α1−1.

It is straightforward that for α1 > α2, then µ′(x) < 0 for x ∈ (−∞, ∞). Therefore, fX2(x; α2)/ fX1(x; α1)

is decreasing in x, and consequently X1 ≤lr X2. The other implication follows immediately from (13).
�

3. Inference

In this section, parameters estimation for theMPN distribution is discussed by using the method
of moments and ML estimation. Additionally, a simulation analysis is carried out to illustrate the
behavior of the ML estimators.

3.1. Method of Moments

The following proposition illustrates the derivation of the moment estimates of the
MPN distribution.

Proposition 4. Let x1, . . . , xn be a random sample obtained from the random variable X ∼MPN (µ, σ, α),
then the moment estimates θ̂M = (µ̂M, σ̂M, α̂M) for θ = (µ, σ, α) are given by

σ̂M =
Sx√

α̂M

2α̂M − 1

(
a2(α̂M)− α̂M

2α̂M − 1
a2

1(α̂M)

) , µ̂M = x− σ̂M
α̂M

2α̂M − 1
a1(α̂M) (14)

and
a3(α̂M)− 3α̂M

2α̂M−1
a1(α̂M)a2(α̂M) +

2α̂2
M

(2α̂M−1)2 a3
1(α̂M)(

α̂M
2α̂M−1

)3/2
[a2(α̂M)− α̂M

2α̂M−1
a2

1(α̂M)]3/2
− Ax = 0, (15)
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where x, Sx and Ax denote the sample mean, sample standard deviation and sample Fisher’s skewness
coefficient respectively.

Proof. As µ and σ are location and scale parameters respectively, the skewness coefficient does not
depend on these parameters. Thus, the result in (15) is directly obtained from matching the sample
skewness coefficient with population counterpart given in Corollary 2. In addition, by considering
that X = σZ + µ, where Z ∼MPN (0, 1, α), and again by equating sample mean and sample variance
to the mean and variance respectively, it follows that

x = σ̂ME(X) + µ̂M,

= σ̂M
α̂M

2α̂M − 1
a1(α̂M) + µ̂M,

and
S2

x = σ̂2
MVar(X)

= σ̂2
M

α̂M

2α̂M − 1

(
a2(α̂M)− α̂M

2α̂M − 1
a2

1(α̂M)

)
,

where α̂M satisfies expression (15). Then, (14) is obtained by solving the latter equations for µ̂M and
σ̂M, respectively. �

3.2. Maximum Likelihood Estimation

For a random sample x1, . . . , xn derived from theMPN (µ, σ, α) distribution, the log-likelihood
function can be written as

`(µ, σ, α) = nc(σ, α)− 1
2σ2

n

∑
i=1

(xi − µ)2 + (α− 1)
n

∑
i=1

log
[

1 + Φ
(

xi − µ

σ

)]
, (16)

where c(σ, α) = log(α)− log(2α − 1)− log(σ)− 1
2 log(2π).

The score equations are given by

nµ + σ(α− 1)
n

∑
i=1

κ(xi) = nx, (17)

nσ2 + σ(α− 1)
n

∑
i=1

(xi − µ)κ(xi) =
n

∑
i=1

(xi − µ)2, (18)

n
α
+

n

∑
i=1

log
[

1 + Φ
(

xi − µ

σ

)]
=

2α log(2)n
2α − 1

, (19)

where κ(w) = κ(w; µ, σ) =
φ( w−µ

σ )
1+Φ( w−µ

σ )
.

Solutions for these Equations (17)–(19) can be obtained by using numerical procedures such as
Newton–Raphson algorithm. Alternatively, these estimates can be found by directly maximizing
the log-likelihood surface given by (16) and using the subroutine “optim” in the software package [21].

3.3. Simulation Study

To examine the behavior of the proposed approach, a simulation study is carried out to assess
the performance of the estimation procedure for the parameters µ, σ, and α in the MPN model.
The simulation analysis is conducted by considering 1000 generated samples of sizes n = 50, 100,
and 200 from theMPN distribution. The goal of this simulation is to study the behavior of the ML
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estimators of the parameters by using our proposed procedure. To generate X ∼MPN (µ, σ, α), the
following algorithm is used,

1. Step 1: Generate W ∼ Uni f orm(0, 1).

2. Step 2: Compute X = µ + σΦ−1
[
(2αW −W + 1)1/α − 1

]
.

where µ ∈ R, σ > 0, α > 0 and Φ−1(·) is the quantile function of the standard normal distribution.
For each generated sample of theMPN distribution, the ML estimates and corresponding standard
deviation (SD) were computed for each parameter. As it can be seen in Table 3, the performance of the
estimates improves when n and α increases.

Table 3. Maximum likelihood (ML) estimates and standard deviation (SD) for the parameters µ, σ and
α of theMPN model for different generated samples of sizes n = 50, 100, and 200.

n = 50

µ σ α µ̂ (SD) σ̂ (SD) α̂ (SD)

0 1 0.1 −0.352478 (0.149214) 0.994441 (0.091321) 0.190243 (0.175202)
0.5 −0.19534 (0.14501) 0.990622 (0.094550) 0.613052 (0.272096)
0.8 −0.083183 (0.144587) 0.990286 (0.098669) 0.854338 (0.164924)
1 −0.009586 (0.141691) 0.995312 (0.0997256) 1.007328 (0.122688)
5 0.004225 (0.100001) 0.997408 (0.088254) 5.030272 (0.229064)
10 0.001108 (0.066610) 0.999124 (0.068611) 10.060478 (0.475019)

100 0.002171 (0.017362) 1.001152 (0.029604) 100.437990 (2.668190)

n = 100

0 1 0.1 −0.351446 (0.104552) 0.998513 (0.070831) 0.180054 (0.111930)
0.5 −0.19268 (0.101786) 0.997622 (0.068806) 0.576957 (0.223378)
0.8 −0.08140 (0.099360) 0.997674 (0.069451) 0.830318 (0.152995)
1 0.002786 (0.097411) 0.996444 (0.069648) 1.002200 (0.088749)
5 0.002014 (0.099305) 0.996788 (0.085987) 5.023032 (0.221756)
10 0.002897 (0.046109) 1.000515 (0.050192) 10.032857 (0.339106)

100 0.000623 (0.012137) 1.000185 (0.019759) 100.168752 (1.866302)

n = 200

0 1 0.1 −0.348177 (0.072732) 0.999433 (0.047548) 0.170978 (0.076165)
0.5 −0.196617 (0.072015) 0.999142 (0.047896) 0.562935 (0.218890)
0.8 −0.076657 (0.069510) 0.997719 (0.050718) 0.824700 (0.127661)
1 0.001158 (0.06877) 0.998408 (0.050586) 1.003651 (0.058344)
5 −0.000165 (0.053006) 1.000623 (0.044182) 5.005130 (0.115719)
10 −0.000239 (0.033615) 1.000017 (0.035902) 10.014958 (0.246652)

100 0.000514 (0.008452) 1.000491 (0.014599) 100.104380 (1.295144)

Fisher’s Information Matrix

Let us now consider X ∼ MPN (µ, σ, α) and Z =
(

X−µ
σ

)
∼ MPN (0, 1, α). For a single

observation x of X, the log-likelihood function for θ = (µ, σ, α) is given by

`(θ) = log fX(θ, x) = c(σ, α)− 1
2σ2 (x− µ)2 + (α− 1) log

[
1 + Φ

(
x− µ

σ

)]
.

The corresponding first and second partial derivatives of the log-likelihood function are derived
in the Appendix A. It can be shown that the Fisher’s information matrix for theMPN distribution is
provided by

IF(θ)=

 Iµµ Iµσ Iµα

Iσσ Iσα

Iαα
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with the following entries,

Iµµ =
1
σ2 +

(
α− 1

σ2

)
(b11 + b02),

Iµσ =
2
σ2E(Z)−

(
α− 1

σ2

)
(b01 − b21 − b12),

Iµα =
1
σ

b01,

Iσσ = − 1
σ2 +

3
σ2E(Z2)−

(
α− 1

σ2

)
(2b11 − b31 − b22),

Iσα =
1
σ

b11,

Iαα =
1
α2 −

2α log2(2)
(2α − 1)2 ,

where bij = E
[
Ziκ j(Z; 0, 1)

]
must be numerically computed.

The Fisher’s (expected) information matrix can be obtained by computing the expected values of
the above expressions. By taking in this matrix, α = 1, we have that Z ∼ N(µ, σ) and

IF(µ, σ, α = 1) =

 1
σ2 0 1

σ d02

0 2
σ2

1
σ d12

1
σ d02

1
σ d12 1− 2 log2(2)

 ,

where dij =
∫ ∞
−∞

ziφj(z)
1+Φ(z)dz must be numerically obtained.

The determinant of IF(µ, σ, α = 1) is (2− 4 log2(2) − b2
12 − 2b2

02)/σ4 = 0.003357435/σ4 6= 0,
consequently, the Fisher’s information matrix is nonsingular at α = 1.

Therefore, for large samples, the ML estimators, θ̂, of θ are asymptotically normal, that is,

√
n
(

θ̂− θ
) L−→ N3(0, I(θ)−1),

resulting in the asymptotic variance of the ML estimators θ̂ being the inverse of Fisher’s information
matrix I(θ). As the parameters are unknown, the observed information matrix is usually considered,
where the unknown parameters are estimated by ML.

4. Application

In this section, a numerical illustration based on a real dataset is presented. The goal of this
application is to show empirical evidence that the MPN yields a better fit to data than the PN ,
SN , and t-student (T S) with α degrees of freedom distributions. For that reason, we consider
a set of 3848 observations of the variable “density” included in the dataset verb “POLLEN5.DA”
available at http://lib.stat.cmu.edu/datasets/pollen.data. This variable measures a geometric
characteristic of a specific type of pollen. This dataset was previously used by Pewsey et al. [9] to
compare the PN and SN distributions. A summary of some descriptive statistics are displayed in
Table 4 below.

http://lib.stat.cmu.edu/datasets/pollen.data
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Table 4. Summary of descriptive statistics for the pollen density dataset.

Mean Median Variance Skewness Kurtosis

0.000 −0.030 9.887 0.109 3.193

By using the results derived in Proposition 4, we have computed the moment estimates for the
parameters (µ, σ, α) of theMPN distribution, obtaining (−5.609, 4.576, 11.857). Then, by taking these
numbers as initial values, the ML estimates are derived. In Table 5, the ML estimates for the parameters
of the MPN , PN , SN , and T S distributions. The figures between brackets are the asymptotic
standard errors of the estimates obtained by inverting the Fisher’s information matrices for the three
models evaluated at their respective ML estimates. Additionally, for each model, the values of the
maximum of the log-likelihood function (`max) are reported. TheMPN distribution attains the largest
value, and consequently provides a better fit to data.

Table 5. Parameter estimates; standard errors (SE); and maximum of the log-likelihood function, `max,
for the T S , SN , PN , andMPN corresponding to the pollen density dataset.

Parameters T S(SE) SN (SE) PN (SE) MPN (SE)

µ −0.010 (0.05) −2.04 (0.24) −1.74 (0.68) −5.73 (0.43)
σ 3.037 (0.05) 3.75 (0.14) 3.69 (0.21) 4.62 (0.14)
α 29.995 (13.01) 0.93 (0.14) 1.77 (0.37) 12.13 (1.21)

`max −9864.99 −9863.42 −9863.37 −9861.98

To compare the fit achieved by each distribution, the values of several measures of model selection,
i.e., Akaike’s information criterion (AIC) (see Akaike [22]) and Bayesian information criterion (BIC)
(see Schwarz [23]) are reported in Table 6. A model with lower numbers in these measures of model
selection is preferable. It can be seen that theMPN is preferable in terms of these two measures of
model validation. In addition, the Kolmogorov–Smirnov test statistics and the corresponding p-values
has been included in this table for all the models considered. It can be observed that none of the
models is rejected at the usual significance levels. However, the MPN distribution has a higher
p-value and is rejected later than the other two models. Alternative methods of model selection to
the Kolmogorov–Smirnov test that can be applied here can be found in Jäntschi and Bolboacă [24]
and Jäntschi [25]. Furthermore, the histogram associated to the empirical distribution of the variable
“density” in the pollen dataset is illustrated in the left hand side of Figure 5. In addition, the densities
of T S , SN , PN , andMPN , by using the maximum likelihood estimates of their parameters, have
been superimposed. Similarly, on the right hand side of Figure 5, the fit in both tails is shown. It is
observable that, for this dataset, theMPN has thicker tails than the other three distributions. Finally,
the QQ-plots for each distribution considered have been illustrated in Figure 6. Here, note that the
MPN distribution exhibits an almost perfect alignment with the 45◦ line, and therefore it provides a
better fit for extreme quantiles. Finally, Figure 7 displays the profile log-likelihood of µ, σ, and α of the
MPN distribution. It is noticeable that the estimates are unique.

Table 6. Akaike’s information criterion (AIC), Bayesian information criterion (BIC), Kolmogorov–
Smirnov (KSS) test, and the corresponding p-values for all the models considered.

Criteria T S SN PN MPN
AIC 19,735.98 19,732.84 19,732.74 19,729.96
BIC 19,754.74 19,751.61 19,751.50 19,748.72

KSS (p-value) 0.014 (0.516) 0.013 (0.559) 0.012 (0.627) 0.010 (0.820)
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Figure 5. Left panel: Histogram of the empirical distribution and fitted densities by ML superimposed
for pollen dataset. Right panel: Plots of the tails for the four models.
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Figure 7. Profile log-likelihood of µ, σ and α for theMPN distribution.

5. Concluding Remarks

In this paper, a modification of the continuous symmetric-power distribution has been introduced.
The particular case of the normal distribution theMPN distribution has been examined in detail.
This distribution arises by modifying the distribution function of the symmetrical powers family. After
carrying out this modification, a more flexible family of probability distributions is obtained, allowing
for the kurtosis coefficient to take a certain range of values in the parameter space. For this model,
its basic properties, different method of estimation and Fisher’s information matrix were studied.
By using a real dataset, we showed that theMPN distribution provides a better fit than other existing
models in the literature such as the T S , SN , and PN distributions.
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Appendix A

The first derivatives of `(θ) are given by

∂`(θ)

∂µ
=

1
σ

[
x− µ

σ
− (α− 1)κ(x)

]
∂`(θ)

∂σ
= − 1

σ

[
1−

(
x− µ

σ

)2
+ (α− 1)

(
x− µ

σ

)
κ(x)

]
∂`(θ)

∂α
=

1
α
− 2α log(2)

2α − 1
+ log

[
1 + Φ

(
x− µ

σ

)]
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The second derivatives of l(θ) are

∂2`(θ)

∂µ2 = − 1
σ2 −

(
α− 1

σ2

) [(
x− µ

σ

)
κ(x) + κ2(x)

]
∂2`(θ)

∂µ∂σ
= − 2

σ2

(
x− µ

σ

)
+

(
α− 1

σ2

)
κ(x)

[
1−

(
x− µ

σ

)2
−
(

x− µ

σ

)
κ(x)

]
∂2`(θ)

∂µ∂α
= − k(x)

σ

∂2`(θ)

∂σ2 =
1
σ2 −

3
σ2

(
x− µ

σ

)2
+

(
α− 1

σ2

)(
x− µ

σ

)
κ(x)

[
2−

(
x− µ

σ

)2
−
(

x− µ

σ

)
κ(x)

]
∂2`(θ)

∂σ∂α
= −

(
x− µ

σ2

)
k(x)

∂2`(θ)

∂α2 = − 1
α2 +

2α log2(2)
(2α − 1)2
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