Lattice-Boltzmann and Eulerian Hybrid for Solid Burning Simulation
Abstract
:1. Introduction
- By separating combustion stages, we design governing equations for each stage.
- We introduce LBM for physical quantity exchanges in solid fuel, for example, microscopic heat exchange.
- We derive the Lattice-Boltzmann equation for physical quantity exchange in a porous material like wood.
- We apply the oxygen to control the combustion time and propagation.
- We propose an LBM and NSE hybrid simulator and a new method to exchange physical quantities.
2. Related Work
3. Burning Solid and Lattice-Boltzmann Method
3.1. Burning Process
3.2. Lattice Boltzmann Method
4. LBM Model for Porous Thermal Flow
5. NSE and LBM Interface Handling
5.1. Exchanging Quantity between Solid (LBM) and Air (NSE) Domains
5.2. Oxygen Considering
6. Experiments
6.1. LBM Solver vs. NS Solver
6.2. Porosity Comparison between LBM and NS Solver
6.3. Pyrolysis: Wood into Charcoal
6.4. Burning with Oxygen
6.5. Wood Burning with Permeability
7. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Reeves, W.T. Particle systems—A technique for modeling a class of fuzzy objects. ACM Trans. Graph. TOG 1983, 2, 91–108. [Google Scholar] [CrossRef]
- Stam, J.; Fiume, E. Depicting fire and other gaseous phenomena using diffusion processes. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 6–11 August 1995; ACM: New York, NY, USA, 1995; pp. 129–136. [Google Scholar]
- Nishita, T.; Dobashi, Y. Modeling and rendering of various natural phenomena consisting of particles. In Proceedings of the Computer Graphics International 2001, Hong Kong, China, 6 July 2001; pp. 149–156. [Google Scholar]
- Lamorlette, A.; Foster, N. Structural modeling of flames for a production environment. In Proceedings of the ACM Transactions on Graphics (TOG), San Antonio, TX, USA, 23–26 July 2002; ACM: New York, NY, USA, 2002; Volume 21, pp. 729–735. [Google Scholar]
- Stam, J. Stable fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 8–13 August 1999; ACM Press/Addison-Wesley Publishing Co.: New York, NY, USA, 1999; pp. 121–128. [Google Scholar]
- Zhu, B.; Lee, M.; Quigley, E.; Fedkiw, R. Codimensional non-Newtonian fluids. ACM Trans. Graph. TOG 2015, 34, 115. [Google Scholar] [CrossRef]
- Wang, X.; Ban, X.; He, R.; Wu, D.; Liu, X.; Xu, Y. Fluid-Solid Boundary Handling Using Pairwise Interaction Model for Non-Newtonian Fluid. Symmetry 2018, 10, 94. [Google Scholar] [CrossRef]
- Huang, L.; Hädrich, T.; Michels, D.L. On the Accurate Large-scale Simulation of Ferrofluids. ACM Trans. Graph. TOG 2019, 38, 93. [Google Scholar] [CrossRef]
- Foster, N.; Fedkiw, R. Practical animation of liquids. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17 August 2001; ACM: New York, NY, USA, 2001; pp. 23–30. [Google Scholar]
- Müller, M.; Charypar, D.; Gross, M. Particle-based fluid simulation for interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, CA, USA, 26–27 July 2003; Eurographics Association: Aire-la-Ville, Switzerland, 2003; pp. 154–159. [Google Scholar]
- Kim, D.; Song, O.y.; Ko, H.S. Stretching and wiggling liquids. ACM Trans. Graph. TOG 2009, 28, 120. [Google Scholar]
- Lenaerts, T.; Adams, B.; Dutré, P. Porous flow in particle-based fluid simulations. ACM Trans. Graph. TOG 2008, 27, 49. [Google Scholar]
- Pfaff, T.; Thuerey, N.; Gross, M. Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. TOG 2012, 31, 112. [Google Scholar] [CrossRef]
- Kim, D.; Lee, S.W.; Song, O.Y.; Ko, H.S. Baroclinic turbulence with varying density and temperature. IEEE Trans. Vis. Comput. Graph. 2011, 18, 1488–1495. [Google Scholar]
- Yngve, G.D.; O’Brien, J.F.; Hodgins, J.K. Animating explosions. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 23–28 July 2000; ACM Press/Addison-Wesley Publishing Co.: New York, NY, USA, 2000; pp. 29–36. [Google Scholar]
- Nguyen, D.Q.; Fedkiw, R.; Jensen, H.W. Physically based modeling and animation of fire. ACM Trans. Graph. TOG 2002, 21, 721–728. [Google Scholar]
- Selle, A.; Rasmussen, N.; Fedkiw, R. A vortex particle method for smoke, water and explosions. In Proceedings of the ACM Transactions on Graphics (TOG), Los Angeles, CA, USA, 31 July–4 August 2005; ACM: New York, NY, USA, 2005; Volume 24, pp. 910–914. [Google Scholar]
- Hong, J.M.; Shinar, T.; Fedkiw, R. Wrinkled flames and cellular patterns. In Proceedings of the ACM Transactions on Graphics (TOG), San Diego, CA, USA, 5–9 August 2007; ACM: New York, NY, USA, 2007; Volume 26, p. 47. [Google Scholar]
- Horvath, C.; Geiger, W. Directable, high-resolution simulation of fire on the GPU. In Proceedings of the ACM Transactions on Graphics (TOG), New Orleans, LA, USA, 3–9 August 2009; ACM: New York, NY, USA, 2009; Volume 28, p. 41. [Google Scholar]
- Son, M.; Kim, B.; Wilensky, G.; Lee, S. Still-Frame Simulation for Fire Effects of Images. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2013; Volume 32, pp. 295–304. [Google Scholar]
- Fedkiw, R.; Stam, J.; Jensen, H.W. Visual simulation of smoke. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 12–17 August 2001; ACM: New York, NY, USA, 2001; pp. 15–22. [Google Scholar]
- Melek, Z.; Keyser, J. Interactive simulation of fire. In Proceedings of the 10th Pacific Conference on Computer Graphics and Applications, Beijing, China, 9–11 October 2002; pp. 431–432. [Google Scholar]
- Melek, Z.; Keyser, J. Interactive Simulation of Fire; Technical Report 2002-7-1; Texas A&M Department of Computer Science: College Station, TX, USA, 2002. [Google Scholar]
- Yu, D.; Mei, R.; Luo, L.S.; Shyy, W. Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 2003, 39, 329–367. [Google Scholar] [CrossRef]
- Losasso, F.; Irving, G.; Guendelman, E.; Fedkiw, R. Melting and burning solids into liquids and gases. IEEE Trans. Vis. Comput. Graph. 2006, 12, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Melek, Z.; Keyser, J. Driving object deformations from internal physical processes. In Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling, Beijing, China, 4–6 June 2007; ACM: New York, NY, USA, 2007; pp. 51–59. [Google Scholar]
- Pirk, S.; Jarząbek, M.; Hädrich, T.; Michels, D.L.; Palubicki, W. Interactive wood combustion for botanical tree models. ACM Trans. Graph. TOG 2017, 36, 197. [Google Scholar] [CrossRef]
- Succi, S. The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Echevarria, J.I.; Wilensky, G.; Krishnaswamy, A.; Kim, B.; Gutierrez, D. Computational simulation of alternative photographic processes. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2013; Volume 32, pp. 7–16. [Google Scholar]
- Chu, N.S.H.; Tai, C.L. MoXi: Real-time ink dispersion in absorbent paper. ACM Trans. Graph. TOG 2005, 24, 504–511. [Google Scholar] [CrossRef]
- Aaltosalmi, U. Fluid Flow in Porous Media with the Lattice-Boltzmann Method; University of Jyväskylä: Jyväskylän yliopisto, Finland, 2005. [Google Scholar]
- Boek, E.S.; Venturoli, M. Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math. Appl. 2010, 59, 2305–2314. [Google Scholar] [CrossRef]
- Grucelski, A.; Pozorski, J. Lattice Boltzmann simulation of fluid flow in porous media of temperature-affected geometry. J. Theor. Appl. Mech. 2012, 50, 193–214. [Google Scholar]
- Wei, X.; Li, W.; Mueller, K.; Kaufman, A.E. The Lattice-Boltzmann method for simulating gaseous phenomena. IEEE Trans. Vis. Comput. Graph. 2004, 10, 164–176. [Google Scholar]
- Thürey, N.; Iglberger, K.; Rüde, U. Free surface flows with moving and deforming objects for LBM. In Proceedings of the Vision, Modeling and Visualization, Aachen, Germany, 22–24 November 2006; Volume 2006, pp. 193–200. [Google Scholar]
- Thürey, N.; Rüde, U. Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids. Comput. Vis. Sci. 2009, 12, 247–263. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, X.; Liu, Y.; Wu, E. Simulation of miscible binary mixtures based on lattice Boltzmann method. Comput. Animat. Virtual Worlds 2006, 17, 403–410. [Google Scholar] [CrossRef]
- Zhu, H.; Bao, K.; Wu, E.; Liu, X. Stable and efficient miscible liquid-liquid interactions. In Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology, Newport Beach, CA, USA, 5–7 November 2007; ACM: New York, NY, USA, 2007; pp. 55–64. [Google Scholar]
- Dellar, P.J. Incompressible limits of lattice Boltzmann equations using multiple relaxation times. J. Comput. Phys. 2003, 190, 351–370. [Google Scholar] [CrossRef]
- Chen, S.; Doolen, G.D. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef]
- Nithiarasu, P.; Seetharamu, K.; Sundararajan, T. Natural convective heat transfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Transf. 1997, 40, 3955–3967. [Google Scholar] [CrossRef]
- Mavko, G.; Nur, A. The effect of a percolation threshold in the Kozeny-Carman relation. Geophysics 1997, 62, 1480–1482. [Google Scholar] [CrossRef]
- Thürey, N. Physically Based Animation of Free Surface Flows with the Lattice Boltzmann Method: Physikalische Animation Von Strömungen Mit Freien Oberflächen Mit Der Lattice-Boltzmann-Methode; Verlag Dr. Hut: München, Germany, 2007. [Google Scholar]
- Lattice Boltzmann Methods. Available online: https://en.wikipedia.org/wiki/Lattice_Boltzmann_methods (accessed on 13 November 2019).
- Ladd, A.; Verberg, R. Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 2001, 104, 1191–1251. [Google Scholar] [CrossRef]
- Guo, Z.; Zheng, C.; Shi, B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 2002, 65, 046308. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, E.; Kim, B.; Song, O.-Y. Lattice-Boltzmann and Eulerian Hybrid for Solid Burning Simulation. Symmetry 2019, 11, 1405. https://doi.org/10.3390/sym11111405
Jo E, Kim B, Song O-Y. Lattice-Boltzmann and Eulerian Hybrid for Solid Burning Simulation. Symmetry. 2019; 11(11):1405. https://doi.org/10.3390/sym11111405
Chicago/Turabian StyleJo, Eunchan, Byungmoon Kim, and Oh-Young Song. 2019. "Lattice-Boltzmann and Eulerian Hybrid for Solid Burning Simulation" Symmetry 11, no. 11: 1405. https://doi.org/10.3390/sym11111405