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Abstract: In this paper, we propose a novel data augmentation method with respect to the target
context of the data via self-supervised learning. Instead of looking for the exact synonyms of
masked words, the proposed method finds words that can replace the original words considering
the context. For self-supervised learning, we can employ the masked language model (MLM),
which masks a specific word within a sentence and obtains the original word. The MLM learns the
context of a sentence through asymmetrical inputs and outputs. However, without using the existing
MLM, we propose a label-masked language model (LMLM) that can include label information
for the mask tokens used in the MLM to effectively use the MLM in data with label information.
The augmentation method performs self-supervised learning using LMLM and then implements
data augmentation through the trained model. We demonstrate that our proposed method improves
the classification accuracy of recurrent neural networks and convolutional neural network-based
classifiers through several experiments for text classification benchmark datasets, including the
Stanford Sentiment Treebank-5 (SST5), the Stanford Sentiment Treebank-2 (SST2), the subjectivity
(Subj), the Multi-Perspective Question Answering (MPQA), the Movie Reviews (MR), and the Text
Retrieval Conference (TREC) datasets. In addition, since the proposed method does not use external
data, it can eliminate the time spent collecting external data, or pre-training using external data.

Keywords: data augmentation; self-supervised learning; natural language processing; text classification

1. Introduction

The rapid development of effective and efficient machine learning and deep learning has
changed the paradigm of methodologies in various fields. In particular, the neural network-based
model provides exceptional performance in a variety of computer vision (CV) tasks including image
classification [1], image generation [2], semantic segmentation [3], and object detection [4]. It also
performs well in natural language processing (NLP), such as machine translation [5], language
modelling [6], question answering [7], sentiment analysis [8], and text classification [7].

Recently, various variants of convolutional neural networks (CNNs) [9], recurrent neural
networks (RNNs) [10], and Transformer [11] model structures are used to improve performance.
Moreover, training techniques for neural networks, such as label smoothing [12], learning rate
decay [13], and transfer learning [14], have been used to improve learning efficiency or performance.
In addition to these studies, the automatic hyperparameter optimization method for data and models,
automated feature learning for extracting only necessary features from input data, and neural
architecture search for constructing a suitable model for data, are also being studied [15,16].

To achieve good performance on the neural network models, both the structure and the data
used on the training process are important. The amount and quality of data affect the performance
of most machine learning models. However, the size of the data most neural models take in as input
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often turns out to be unsatisfactory. Such deficiencies can lead to incomplete training or overfitting
that causes failure in generalization. Solving the problem of neural network overfitting is one of the
important areas of research in deep learning. Among the various studies, dropout [17] and batch
normalization [18] are known as ways to overcome overfitting well. However, even these methods are
not effective when the amount of data is small.

In order to alleviate the aforementioned problem, many studies take advantage of augmentation of
the existing data [9,19–24]. Data augmentation is used for small amounts of data, but also unbalanced
data. In addition, data augmentation has become almost indispensable in improving the performance
of CV application and has been followed by various studies on other applications as well. In the CV
field, image data can be easily augmented using various methods, such as cropping, rotation, scaling,
shifting, and noise addition. Beyond the technique of augmenting the data similar to the original
image, methods for augmenting the image with a large difference from the original image are being
studied, as in Cutout [25], Mixup [26], and CutMix [27].

On the other hand, in the NLP field, data augmentation methods are not so popular, as text data
are discrete and cannot be completely transformed into a continuous space, so the methods above
cannot be used. For this reason, in general, NLP uses a method of replacing a specific word with a
synonym from a thesaurus. Another method is to replace any word in the sentence with the closest
word in the embedding space [21]. However, this method can be applied only when the words share the
same or similar meanings in context, otherwise, it is difficult to expect good performance. Furthermore,
the method of data augmentation using only words in a sentence does not reflect the context well.
In order to solve this problem, contextual data augmentation methods have been studied [23,28,29].

In this paper, we propose a new data augmentation method that finds replacements for particular
words under a certain context. Instead of the shallow concatenation of an independently trained
forward and backward language model (LM), it uses deep bidirectional LM, in order to better
understand contextual information. Unlike shallow bidirectional LM, which concatenates two
LMs such as forward LM and backward LM, deep bidirectional LM can recognize bidirectional
representation with a single LM. A deep bidirectional LM can be designed using a masked language
model (MLM) [8], a self-supervised model of randomly masking words in a sentence and then finding
the original words from the surrounding context. Also, we propose the label-masked language model
(LMLM), which has been enhanced to effectively employ the MLM in data with annotation information.
In the existing MLM, only one mask token was used, but the proposed LMLM has mask tokens for each
label class. In addition, the proposed method conducts self-supervised learning upon the LMLM with
only the given data of the task rather than fine-tuning the task-specific dataset after pre-training the
external data in advance. In short, our method allows the original dataset to generate additional data.

We demonstrate that the proposed method boosts the classification accuracy of RNN [10] and
CNN [30] based classifiers through various experiments for text classification benchmark datasets,
including the Stanford Sentiment Treebank-5 (SST5), the Stanford Sentiment Treebank-2 (SST2),
the subjectivity (Subj), the Multi-Perspective Question Answering (MPQA), the Movie Reviews
(MR), and the Text Retrieval Conference (TREC) datasets. The proposed method shows an increase
of 0.5–2.6% depending on the type of dataset and neural classification, compared to the model
without data augmentation. Also, compared with the method proposed by Kobayashi (baseline) [29],
the RNN model has improved the classification performance in all datasets, while the CNN model is
improved only in some datasets. However, Kobayashi’s method is time-consuming because it requires
pre-training using external data. As our proposed method does not pre-train, it takes less time than
Kobayashi’s method. Kobayashi’s method took about 20 h to pre-train and fine-tune, but our proposed
method took less than two hours for each dataset.

The remainder of the paper is organized as follows: In Section 2, we review the related works about
self-supervised learning, data augmentation, Transformer, and masked language model. Section 3
introduces the proposed method and the proposed model. The experiment, dataset, baselines,
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hyperparameters, and results are discussed in Section 4. Finally, in Section 5, we present the study’s
conclusion, including discussion and future works.

2. Related Work

2.1. Self-Supervised Learning

The self-supervised learning method is one of the unsupervised learning approaches. This method
automatically creates a labeled dataset using a given dataset and uses the generated dataset to help
the model learn feature representations. It has been used extensively in various domains such as
reinforcement learning [31–33], CV [34–36], and NLP [8,37]. Self-supervised learning can be as simple
as predicting how rotated an image is [35] or solving a puzzle made from an image [36]. Another task
is restoring the erased part of an image [38]. Recently, in the NLP field, deep bidirectional LMs, such
as MLM, are trained through fill-in-the-blank tasks, which finds the original token from the masked
token in a given sentence [8].

Normally, self-supervised learning is used as an auxiliary training process as well as pre-training
before the downstream tasks training process. Unlike as mentioned above, we do not use
self-supervised learning for pre-training or auxiliary training. On the contrary, in our proposed
method, the self-supervised learning is employed to train the MLM for a regular training phase.

2.2. Data Augmentation

Common data augmentation methods for image data are rotation, cropping, scaling, shifting,
and noise addition. Krizhevsky et al. [9] adjusted RGB channels, transformed the image, and made
horizontal reflections to reduce overfitting. Zhong et al. [19] performed data augmentation using a
method of erasing part of an image and filling the erased part with random values. Similarly, DeVries
and Taylor [25] removed certain parts, but proposed a method to fill the erased parts with zeros instead
of random values. In addition, new data can be created by applying weighted linear interpolation
to data and labels, respectively [26]. Instead of erasing parts of the image and filling it with zeros,
Yun et al. [27] used the method of filling the erased regions with parts of another image. The labels
are also blended according to the proportions of the combined images. This method has achieved
state-of-the-art performance on CIFAR and ImageNet classification tasks.

The text data augmentation method has been studied for various NLP tasks. Zhang et al. [20]
arbitrarily selected a word in the sentence and replaced the word with synonyms from multiple
thesauruses. Wang and Yang [21] have proposed replacing words in sentences with their neighbors
in embedding space. Kafle et al. [22] used task-specific heuristic rules and long short-term memory
(LSTM)-RNN [39] LMs to create new sentences. Fadaee et al. [40] have used bidirectional LSTM-LM
for low-resource neural machine translation and to create new data by replacing words in sentences
with rare words. Gao et al. [28] used soft contextual data augmentation for neural machine translation.
The method is replacing randomly chosen words in a sentence with a mixture of multiple related
words based on a distributional representation. The contextual data augmentation studies [23,29],
which are the most similar to ours, used a bidirectional LSTM-LM or MLM to change the words in
a sentence using a fill-in-the-blank task. These contextual data augmentation methods achieved the
state-of-the-art results on the text classification benchmark dataset.

The audio data augmentation methods have been proposed to perturb the speed of the data [41],
add noise to the data [42], and drop out the features of the data [43]. Park et al. [44] have achieved
state-of-the-art performance by erasing data in a specific frequency region or erasing data at a specific
time region.

2.3. Transformer and Transformer Encoder

The Transformer method [11] consists of transformer encoders and transformer decoders.
The transformer encoder and decoder are based on self-attention rather than recurrence and
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convolutional layers. The self-attention, also known as intra-attention, computes a weighted sum
of the features at all tokens by attending to all tokens within the same sentence. In the transformer
encoder, self-attention is calculated as multi-head attention that includes scaled dot-product attention.
When the input is given the value Q for queries, K for keys, V for values, and dk, the dimension of
keys, scaled dot-product attention is calculated as follows [11]:

Attention(Q, K, V) = softmax(
QKT
√

dk
)V.

By performing scaled dot-product attention h times, the assorted attention information can be
obtained. This approach is called multi-head attention. Given the projection parameters WQ

i , WK
i , WV

i
and WO, multi-head attention can be computed as [11]:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO

where headi = Attention(QWQ
i , KWK

i , VWV
i ).

Then, we performed two linear transformations using the values obtained from the multi-head
attention. The Rectified Linear Unit (ReLU) activation function is used between linear transformations.
Both Wi and bi are learnable parameters and have a dimension of d f f . This operation is called a
position-wise feed-forward network [11].

FFN(x) = max(0, xW1 + b1)W2 + b2.

In general, in the transformer encoder, Q, K, and V are the same values, indicating the input of
the Transformer. The input of the Transformer consists of not only the token embedding, but also the
positional encoding that injects the relative or absolute position of the token to handle the sequential
data. The transformer encoder has the advantages of the parallelization found in a CNN and the
sequential characteristics of a RNN, and is used for various NLP tasks with long-term dependency.

2.4. Masked Language Model

Bidirectional encoder representations from transformers (BERT) [8] has recently been used in
most areas of natural language processing and has achieved state-of-the-art results. To train a deep
bidirectional LM, BERT proposed the masked language model by referring to the Cloze Task [45].
The MLM, which directly implements bidirectional LM using the Transformer encoder including
self-attention layers, token embedding, segment embedding, and position embedding, achieves better
performance than a shallow bidirectional LM, which is indirectly implemented by concatenating
left-to-right and right-to-left LMs. The MLM randomly masks input words and then predicts the
original words only based on their context. Using MLM to predict the original word from a masked
token is called an MLM task. Furthermore, it was used to pre-train a large quantity of external text
data before task-specific fine-tuning in the BERT.

3. Proposed Method

We developed our method based on the intuition that the contextual representation of data
depends on the domain of the dataset. For example, since the SST5 [46] dataset is in the domain of
movie reviews, there is little data or terminology about politics. Therefore, there is no increase in
performance when the pre-trained data does not share a similar domain with the data to be augmented.
Although pre-training can be performed with a large amount of data for various domains, it creates
a large number of parameters and a long training time. Accordingly, we train the proposed model,
the label-masked language model, through self-supervision on given data without pre-training on
external data. In other words, our proposed method does not pre-train, which contributes to reducing
the time spent on training.



Symmetry 2019, 11, 1393 5 of 16

In summary, the proposed method uses deep bidirectional LM (label-masked language model) to
increase the contextual representation of the model inferring masked words through the surrounding
context compared to shallow bidirectional LM. Additionally, it eliminates the need for external data
and reduces the procedure for data augmentation.

3.1. Label-Masked Language Model

The goal of the MLM, deep bidirectional LM, is to predict the masked word using the surrounding
context after randomly masking words in the given sentence. In the proposed method, data
augmentation is performed with previously used data, without pre-training. Therefore, prediction and
learning are performed only on masked words.

We propose the label-masked language model (LMLM), which has been enhanced to effectively
employ the MLM in data with label information. The LMLM has the same input and output sentences,
but some words are masked at the input, making the input and output asymmetric. This asymmetry
and the labeled mask token allow the model to learn the relationship between masked words and a
surrounding context. In the existing MLM, only one mask token was used, but the proposed LMLM
employs labeled mask tokens for each label class. Label information is important when performing
the MLM task on labeled data. We mask words using mask tokens that represent the labels of a
given sentence. Then LMLM learns to find out what words the labeled mask tokens originally are.
This learning process allows LMLM to infer words based on the label information of the mask token.
It also helps to ensure that newly created sentences with data augmentation do not have labels that
differ from the original sentences. If the mask token does not contain label information, the masked
token can be replaced by a word with a different label. For example, if we put a mask token that
does not include label information for the “fantastic” token in the positive sentence “The actors are
fantastic”, it can be replaced by a negative word such as “boring” or “bad” by the surrounding context.
Also, this situation can lead to a decrease in the performance of the classifier. Thus, we defined the
label of the mask token by applying the label of the given sentence. In the dataset, the label of each
sentence is pre-defined (the labels depend on the dataset. For instance, it can be positive or negative in
a binary classification task, or it can be a named entity in a named entity recognition task), and we
specified a word mask based on the label of the given sentence. For example, if the label of a given
sentence is positive, a positive mask is automatically applied to every randomly selected word in
the given sentence. In other words, we replace the selected word token with a positive mask token.
The positive mask is an indication that a given mask token comes from a positive sentence. We created
a labeled mask token for each label based on the dataset. Figure 1 shows the top five words predicted
by the trained LMLM from the mask token along with the label information for each word.

Unlike the original MLM in BERT, the LMLM does not use segment embedding. The LMLM
consists of position embedding, token embedding, and only one transformer encoder layer.
Furthermore, when a word to be masked is selected, it is replaced by a masking token unconditionally
without replacing with the other word or retaining. Although LMLM—the model we use in our
proposed method—has fewer parameters than the originally proposed BERT’s MLM, the number
of parameters is sufficient to build a structure for the proposed method while maintaining a rapid
learning speed. The overall structure of LMLM is shown in Figure 2.
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Figure 1. Top five words predicted by the model from the two different labeled mask tokens for the
sentence “the actors are [MASK].” [P-MASK] is the positive mask token, and [N-MASK] is the negative
mask token.

Figure 2. Model structure of the label-masked language model. [N-MASK] is a mask token containing
negative label information.

3.2. Self-Supervised Contextual Data Augmentation

The proposed method learns context information through self-supervision using the given dataset.
First, the dataset is duplicated N times for augmentation. Then, arbitrary words corresponding to τ%
of each sentence are masked. τ is a parameter that determines how much to mask. Masked sentences,
including their mask tokens, are used as inputs to the LMLM, which is then trained to predict the
original words of the mask token. The preceding training process is considered a type of self-supervised
learning. After this process of self-supervised learning is completed, a new sentence with a similar
context of the same label as the existing sentence is created by randomly replacing one of the prediction
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probabilities among the top-K words for all the mask tokens, with the LMLM and the dataset used
during the training. K represents a number that determines whether to replace from the top few words.
After the learning process is complete, we can perform data augmentation using the learned LMLM.
The overview of the proposed method and test process are shown below in Figure 3.

Figure 3. Overview of the proposed method. Self-supervised learning and data augmentation phase:
We duplicate the original dataset, and mask random words for each dataset. After, the LMLM trains
with a self-supervised learning method using various masked datasets, and then we perform data
augmentation. Supervised learning and performance measurement phase: The neural classifier uses
the original dataset and the augmented dataset to train for the text classification tasks.

The method can only replace words that are masked at the initial stage. Conversely, if we set N
(the number of replicas made from the original dataset) as 1 and re-mask the original training data for
each iteration on the self-supervised learning process, we can train a general MLM for a task-specific
dataset. However, this technique takes a long time to converge.

4. Experiment and Results

4.1. Experiments Setup

We conducted an experiment on six text classification tasks including SST5, SST2, Subj, MPQA,
MR, and TREC using LSTM-RNN and CNN-based neural classifiers.

4.2. Datasets

Six benchmark datasets were used in the experiments. In the training process, we used a
development set to validate the performance of the model for various hyperparameters and to use
the early stopping method. If the dataset had a development set, it was removed, and 10% of the
training set, which was arbitrarily picked, was used as a new development set. In addition, 10-fold
cross-validation was performed on data where test and training data were not split a priori. Below is a
brief description of the benchmark dataset, and the summary statistics are in Table 1 [30].
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• SST5: The Stanford Sentiment Treebank-5 is data for emotion classification tasks, which contains
movie reviews with five labels (very positive, positive, neutral, negative, and very negative) [46].

• SST2: The Stanford Sentiment Treebank-2 is the same as SST5 but eliminates neutral reviews and
has binary labels (positive and negative) [46].

• Subj: The subjectivity dataset is data for sentence classification tasks used to classify sentences
with annotations based on whether they are subjective or objective [47].

• MPQA: The Multi-Perspective Question Answering dataset is an opinion polarity detection
dataset consisting of short phrases. It has binary labels with positive and negative. [48].

• MR: Another Movie Reviews sentiment classification task dataset with binary labels (positive and
negative) [49].

• TREC: The Text Retrieval Conference dataset consists of six question types and classifies
the questions into different categories (abbreviation, entity, description, human, location,
and numerical value) [50].

Table 1. Summary statistics for the datasets after tokenization. Class is the number of the target
classes and length is average sentence length. The cross-validation indicates that the dataset was
not divided between the training set and test set and thus 10-fold cross-validation was performed.
The Stanford Sentiment Treebank-5 (SST5), the Stanford Sentiment Treebank-2 (SST2), the subjectivity
(Subj), the Multi-Perspective Question Answering (MPQA), the Movie Reviews (MR),and the Text
Retrieval Conference (TREC) datasets.

Dataset Class Length Dataset Size Vocabulary Size Testset Size

SST5 5 18 11,855 17,836 2210
SST2 2 19 9613 16,185 1821
Subj 2 23 10,000 21,323 cross-validation

MPQA 2 3 10,606 6246 cross-validation
MR 2 20 10,662 18,765 cross-validation

TREC 6 10 5952 9592 500

4.3. Neural Classifier Architecture

We implemented LSTM-RNN and CNN-based neural classifiers in order to compare the
performances of the contextual augmentation method [29] and our method.

The RNN based classifier consists of a single-layer LSTM, followed by a fully connected layer and
the softmax function.

The CNN-based classifier uses convolutional filters of size ranges from three to five. The output
from each filter was concatenated and then applied to the max-pooling over time, then fed to the
fully connected layer with the ReLU as the activation function, followed by the softmax function.
Both structures use dropout [17] and the Adam optimizer [51] to optimize their weights. We also
terminated the training with an early stopping method to prevent the models from overfitting.

4.4. Hyperparameters

The hyperparameters of LMLM is shown in Table 2, and the training epoch was adjusted for
each dataset. The learning rate, embedding dimension, number of the filters, and dropout rate
of the classifier were selected using a grid search for each dataset with reference to the baseline
hyperparameters [29]. The search space of the hyperparameters for the neural classifiers is shown
in Table 3.
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Table 2. The hyperparameters of label-masked language model (LMLM).

Hyperparameters Value

Learning rate 0.0001
Embedding dimension 512
Number of the head (h) 4
Hidden dimension (dk) 128

Feed forward dimension (d f f ) 2048
Dropout rate 0.1

Table 3. The hyperparameter search space of neural classifiers.

Hyperparameters Value

Learning rate [0.001, 0.0003, 0.0001]
Embedding dimension [300]

Hidden (filters) unit [256, 512]
Dropout rate [0.1, 0.2, 0.3, 0.4, 0.5]

In the data augmentation phase, we experimented with two combinations of N, indicating the
number of replicas made from the original dataset, and K, the number determining whether to replace
the top few words. The first combination was called “Small”, (N = 2, K = 2), and does not replace
the original word. The second was called “Big”, (N = 5, K = 3), but the mask token can be replaced
with the original word. In addition, the number of words that can be masked in each sentence ranges
from 1 to 10, and the masking rate τ was tested at (0.05, 0.1, 0.2, 0.3, 0.4, 0.5). The reported accuracy
was averaged over 20 models trained using different seeds and the best performance among the N, K,
and τ combinations were recorded.

4.5. Baselines

We compare the following models to evaluate the performance of the proposed method.

• RNN / CNN Without data augmentation method.
• w/synonym A method of substituting random words with synonyms using WordNet [52].
• w/context A method of contextual augmentation for each word using bidirectional LM proposed

by Kobayashi [29].
• w/context+label A method that adds a label condition to w/context [29].

4.6. Experiment Results

The quality of the generated data can be determined by the rate at which the words of the sentence
are masked. If too few words are masked, they may not be different from the original sentences. If a
large number of words are masked, words that can identify the context may be removed and the
meaning of the original sentence may be lost. For this reason, the study used a rate between 0.05 and
0.5, but the masking rate of each dataset for data augmentation is a hyperparameter that the user must
identify. We experimented with six datasets using the masking rates mentioned above. As a result,
it was confirmed that the masking rates for obtaining the highest performance for each dataset differ
from each other. That is, the distribution of words and the context representation may be different
depending on the dataset. Thus, a task-specific masking rate should be determined. In addition,
the number of words used in the sentence, the amount of data, and the average sentence length are
all different. The dataset itself may affect how our method works. The masking rate is especially
influenced by the length of sentences and the number of words used in each dataset. For this reason,
the effect of the masking rate on each dataset is different. The performance of Big models according to
the masking rates used for each dataset are shown below in Figures 4–9.
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Figure 4. The effect of masking rate on the SST5 dataset. Recurrent neural network (RNN),
convolutional neural network (CNN).

Figure 5. The effect of masking rate on the SST2 dataset.
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Figure 6. The effect of masking rate on the Subj dataset.

Figure 7. The effect of masking rate on the MPQA dataset.
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Figure 8. The effect of masking rate on the MR dataset.

Figure 9. The effect of masking rate on the TREC dataset.

Table 4 lists the accuracy of the baseline and the proposed method. In Table 4, the values
in parentheses represent the mask rate during data augmentation. The results show that our
self-supervised contextual data augmentation method increases the performance of the model over
most of the existing methods for various datasets. The performance enhancement is particularly
noticeable in the RNN-based classifier when compared to the CNN-based classifier. Also, it can be
seen that the performance has much improved in the case of the combination Big. We deem that Big
can generate more various data than Small can.

In the case of the CNN-based classifier, it is better than the methods without data augmentation,
but there are cases where it is similar to the method proposed by Kobayashi [29] or its performance is
worse. However, our method is more efficient because Kobayashi’s method requires a large amount of
data and time for pre-training.
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Kobayashi’s method took about 20 h to pre-train shallow bidirectional LM using the Wikitext-103
dataset, and to fine-tune. In contrast, our method of self-supervised learning took less than two hours
for each dataset. In this experiment, we used a Geforce RTX 2080 for training and used the deep
learning frameworks Chainer [53] and Tensorflow [54] respectively. Although there is a difference in the
framework, it shows that the proposed method can save a lot of time compared to the existing method.

Table 4. Accuracies and mask rates of the models on the different benchmark datasets. The values in
parentheses represent the mask rate during data augmentation. The bold is the best performance.

Models SST5 SST2 Subj MPQA MR TREC Avg.

RNN 40.2 80.3 92.4 86.0 76.7 89.0 77.43
w/ synonym 40.5 80.2 92.8 86.4 76.6 87.9 77.40
w/ context 40.9 79.3 92.8 86.4 77.0 89.3 77.62

+ label 41.1 80.1 92.8 86.4 77.4 89.2 77.83

Ours (Small) 42.0 (0.2) 81.5 (0.2) 93.0 (0.5) 86.1 (0.5) 78.3 (0.5) 91.1 (0.1) 78.67
Ours (Big) 42.4 (0.3) 81.9 (0.2) 93.3 (0.5) 86.5 (0.5) 78.4 (0.5) 91.6 (0.05) 79.02

CNN 41.3 79.5 92.4 86.1 75.9 90.0 77.53
w/ synonym 40.7 80.0 92.4 86.3 76.0 89.6 77.50
w/ context 41.9 80.9 92.7 86.7 75.9 90.0 78.02

+ label 42.1 80.8 93.0 86.7 76.1 90.5 78.20

Ours (Small) 41.7 (0.2) 79.9 (0.1) 92.5 (0.5) 86.2 (0.5) 76.9 (0.5) 90.9 (0.2) 78.02
Ours (Big) 42.3 (0.3) 80.9 (0.3) 93.2 (0.5) 86.4 (0.5) 77.2 (0.4) 91.0 (0.05) 78.50

5. Discussion and Conclusions

In this paper, we propose a novel data augmentation method that takes context into consideration
by using a masked language model for self-supervised learning. The experiment shows that our
proposed method outperforms the conventional methods for most data. Our method, unlike the
previous studies, simplifies the overall procedure by skipping pre-training and adopts LMLM to
improve a bidirectional representation. In addition, our method is easy to use with any sentence
that is labeled in various domains and tasks, without needing any linguistic knowledge or specific
domain terminology.

This study has the limitation that it can only be used for labeled text data, and each dataset must
find the masking rate that is appropriate for each. In addition, it takes longer to train the LMLM to
create a generic LMLM for data augmentation on the task-specific dataset. In future works, we will
focus on extending the current method for general and fast data augmentation that can be used for all
kinds of NLP tasks beyond the problems of sentences with labels. We will also study robust methods
regardless of the masking rate.
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Abbreviations

The following abbreviations are used in this manuscript:

MLM Masked language model
CV Computer vision
NLP Natural language processing
LM Language model
RNN Recurrent neural network
CNN Convolutional neural network
LSTM Long short-term memory
ReLU Rectified linear unit
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