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Abstract: In this paper, we focus on a new class of optimal control problems governed by a simple
integral cost functional and isoperimetric-type constraints (constant level sets of some simple integral
functionals). By using the notions of a variational differential system and adjoint equation, necessary
optimality conditions are established for a feasible solution in the considered optimization problem.
More precisely, under simplified hypotheses and using a modified Legendrian duality, we establish a
maximum principle for the considered optimization problem.
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1. Introduction

Currently, the optimal control theory is under continuous development. This theory is based on
the optimization of some functionals with ordinary differential equations/partial differential equations
(in short, ODE/PDE) constraints, all depending on the control functions (for variational control problems
with first-order PDE constraints, the reader is directed to Mititelu and Treanţă [1], Treanţă [2,3], and
Treanţă and Arana-Jiménez [4,5]). There are three approaches: variational calculus, the maximum
principle, and dynamic programming. One of the most important approaches is the second (see
Pontriaguine et al. [6]), providing necessary optimality conditions. Also, in additional conditions, from
this principle one can derive the Euler-Lagrange or Hamilton equations (see Treanţă [7,8]). Noether-type
theorems between symmetries and conservation laws for dynamical systems (governed by autonomous
second-order Lagrangians) have been investigated in Treanţă [9]. The sufficient optimality conditions
are more complicated and they have most frequently been formulated in simplified versions (see,
for instance, Hestenes [10], Maurer and Pickenhain [11], Rosenblueth and Sanchez Licea [12,13], and
Treanţă [14]). In [15], Agrachev et al. provided sufficient conditions for a bang-bang extremal (to be a
strong local minimizer) in a Mayer control problem, where the state space and the end point constraints
are finite-dimensional smooth submanifolds and the controls take values in a polyhedron and appear
linearly. Caputo (see [16,17]) has developed fundamental identities linking the optimal solution functions
and optimal value functions for reciprocal pairs of isoperimetric control problems. In Aronsson and
Barron [18], Aronsson–Euler equations have been obtained for L∞ variational problems with holonomic,
nonholonomic, isoperimetric, and isosupremic constraints on the minimizer.

Motivated and inspired by the aforementioned research works, the main aim of this paper is
to formulate and prove necessary optimality conditions for a feasible solution in isoperimetric-type
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constrained control problems. More precisely, by using the concepts of a variational differential system ,
adjoint equation and a modified Legendrian duality, under simplified hypotheses, we establish a maximum
principle for the considered optimal control problem.

The optimal control problems with isoperimetric constraints are governed by some basic elements:
(1) the control u(t) (arising in the objective functional and isoperimetric constraints) so that any change in
the control u(t) involves a change in the state x(t), (2) the state equation (the isoperimetric constraints)
provides the dependence between the control and the state, (3) the functional to be extremized, called the
objective functional or the cost functional, depending on the control and the state. The goal is to find an
admissible control that generates a satisfactory state and extremizes the value of the objective functional
(the admissible control having this property is called optimal control in the considered optimization
problem). For other ideas that are connected to this subject, the reader is directed to Evans [19], Kalaba
and Spingarn [20,21], Lee and Markus [22], Barbu et al. [23], van Brunt [24], and Treanţă [25,26].

2. Problem Formulation and Auxiliary Results

In this section, we investigate the following optimization problem governed by simple integral
objective functional and isoperimetric-type constraints:

(CP) max
(x,u)

∫ t0

0
X (t, x(t), u(t)) dt (1)

such that ∫ t0

0
Xa (t, x(t), ẋ(t), u(t)) dt = la, a = 1, r, r ≤ n, (2)

x(0) = x0, x(t0) = xt0 , t ∈ [0, t0]. (3)

Our working hypotheses and notations are: t ∈ [0, t0] ⊂ R is the time; the space X of all functions
x : [0, t0] → Rn, where x(t) = (xi(t)), i = 1, n, is a C2-class function (called the state variable), and
the space U of all functions u : [0, t0] → Rk, where u(t) = (uα(t)), α = 1, k, is a piecewise continuous
function (called the control variable), satisfying (2) and (3), which define the feasible set associated with (CP);
Xa (t, x(t), ẋ(t), u(t)) , a = 1, r, r ≤ n, are C1-class functions; the objective functional (non-autonomous
Lagrange functional) X (t, x(t), u(t)) is a C1-class function.

Further, in order to study the previous optimal control problem, let us introduce the auxiliary variables
ya(t), a = 1, r, as follows

ya(t) =
∫ t

0
Xa (s, x(s), ẋ(s), u(s)) ds,

ya(0) = 0, ya(t0) = la, a = 1, r, r ≤ n,

or, equivalently,
ẏa(t) = Xa (t, x(t), ẋ(t), u(t)) , ya(t0) = la, a = 1, r, r ≤ n. (4)

In this way, the isoperimetric-type constraints are substituted by constraints of ODE type.
In the following, Einstein’s summation is assumed. By considering the Lagrange multiplier, p(t) =

(pa(t)) , a = 1, r, also called co-state variable (co-state vector), we introduce a new Lagrangian

L (t, x(t), ẋ(t), y(t), ẏ(t), u(t), p(t)) = X (t, x(t), u(t))

+pa(t) [Xa (t, x(t), ẋ(t), u(t))− ẏa(t)] ,
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changing the aforementioned isoperimetric-type constrained optimization problem into a new optimal
control problem (without isoperimetric-type constraints):

(CP1) max
(x,u;y,p)

∫ t0

0
L (t, x(t), ẋ(t), y(t), ẏ(t), u(t), p(t)) dt

such that
p(t) ∈ P , t ∈ [0, t0],

x(0) = x0, y(0) = 0, x(t0) = xt0 , y(t0) = l,

where P represents the set of all co-state functions (introduced in the next section).
Now, by considering the control Hamiltonian

H (t, x(t), ẋ(t), u(t), p(t)) = X (t, x(t), u(t)) + pa(t)Xa (t, x(t), ẋ(t), u(t)) ,

or, equivalently,
H = L+ paẏa (modified Legendrian duality),

we can rewrite the aforementioned optimal control problem under the next equivalent form:

(CP1) max
(x,u;y,p)

∫ t0

0
[H (t, x(t), ẋ(t), u(t), p(t))− pa(t)ẏa(t)] dt

such that
p(t) ∈ P , t ∈ [0, t0],

x(0) = x0, y(0) = 0, x(t0) = xt0 , y(t0) = l.

In the following, let us consider the relations formulated in (4). Now, we fix the control variable u(t)
and the associated solution y(t) of (4). Denote by y(t, η) a differentiable variation for y(t), fulfilling

ẏa(t, η) = Xa (t, x(t, η), ẋ(t, η), u(t)) ,

y(t, 0) = y(t), a = 1, r, r ≤ n.

By a derivation with respect to η, for η = 0, we get the following variational differential system

ẏa
η(t, 0) = Xa

xi (t, x(t), ẋ(t), u(t)) xi
η(t, 0) + Xa

ẋi (t, x(t), ẋ(t), u(t)) ẋi
η(t, 0).

By considering ya
η(t, 0) = va(t), xi

η(t, 0) = ωi(t), ẋi
η(t, 0) = ω̃i(t), we introduce the following adjoint

differential equation

ṗa(t)va(t) = −pa(t)
[

Xa
xi (t, x(t), ẋ(t), u(t))ωi(t) + Xa

ẋi (t, x(t), ẋ(t), u(t)) ω̃i(t)
]

associated with the previous variational differential system in the sense that pa(t)va(t) is a first integral,
that is,

d
dt

[pa(t)va(t)] = 0.
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3. Main Result: Necessary Optimality Conditions for (CP)

In this section, we formulate and prove the main result of this paper. More concretely, under simplified
hypotheses, we establish necessary conditions of optimality for the considered optimal control problem
(CP) involving isoperimetric-type constraints. For other connected ideas to this subject, the reader is
directed to Treanţă [27], where several optimization problems governed by simple, multiple, or curvilinear
integral functionals (involving second-order Lagrangians) subject to ODE, PDE, or isoperimetric constraints
are considered. Also, Treanţă [28] introduced a modified multidimensional optimal control problem and
established the associated saddle-point optimality criteria.

In the following, we consider the control variable û(t) = (ûα(t)) , α = 1, k, with û ∈ U, as an optimal
control for the considered optimization problem (CP). Select η > 0 and define the control variation
u(t, η) = û(t) + ηh(t), where h(·) is some given function (called acceptable variation) selected so that u(·, η)

is an admissible control for all sufficiently small η > 0. We shall use this η in our variational arguments.
The state variable x(t, η), associated with the control function u(t, η), satisfies

ẏa(t, η) = Xa (t, x(t, η), ẋ(t, η), u(t, η)) , a = 1, r, t ∈ [0, t0]

and y(0, η) = 0, x(0, η) = x0. For all sufficiently small η > 0, introduce the following function

I(η) =
∫ t0

0
X (t, x(t, η), u(t, η)) dt.

By hypothesis, û(t) is an optimal control in (CP) and, consequently, it results I(0) ≥ I(η), for all
sufficiently small η > 0. Also, the following equality

∫ t0

0
pa(t) [Xa (t, x(t, η), ẋ(t, η), u(t, η))− ẏa(t, η)] dt = 0

is fulfilled for any continuous function p = (pa(t)), a = 1, r, t ∈ [0, t0]. The variations involve

L (t, x(t, η), ẋ(t, η), y(t, η), ẏ(t, η), u(t, η), p(t)) = X (t, x(t, η), u(t, η))

+pa(t) [Xa (t, x(t, η), ẋ(t, η), u(t, η))− ẏa(t, η)] ,

and the corresponding function

I(η) =
∫ t0

0
L (t, x(t, η), ẋ(t, η), y(t, η), ẏ(t, η), u(t, η), p(t)) dt.

For the following computations, the co-state variable p(t) = (pa(t)) is considered of C1-class.
Considering the control Hamiltonian involving variations

H (t, x(t, η), ẋ(t, η), u(t, η), p(t)) = X (t, x(t, η), u(t, η)) + pa(t)Xa (t, x(t, η), ẋ(t, η), u(t, η)) ,

it follows

I(η) =
∫ t0

0
[H (t, x(t, η), ẋ(t, η), u(t, η), p(t))− pa(t)ẏa(t, η)] dt.

By derivation with respect to η, for η = 0, and using the adjoint differential equation, we have

I′(0) =
∫ t0

0

[
Hxi (t, x(t), ẋ(t), û(t), p(t))− pa(t)Xa

xi (t, x(t), ẋ(t), û(t))
]

xi
η(t, 0)dt
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+
∫ t0

0

[
Hẋi (t, x(t), ẋ(t), û(t), p(t))− pa(t)Xa

ẋi (t, x(t), ẋ(t), û(t))
]

ẋi
η(t, 0)dt

+
∫ t0

0
Huα (t, x(t), ẋ(t), û(t), p(t)) hα(t)dt

=
∫ t0

0
Hxi (t, x(t), ẋ(t), û(t), p(t)) xi

η(t, 0)dt +
∫ t0

0
ṗa(t)va(t)dt

+
∫ t0

0
Hẋi (t, x(t), ẋ(t), û(t), p(t)) ẋi

η(t, 0)dt

+
∫ t0

0
Huα (t, x(t), ẋ(t), û(t), p(t)) hα(t)dt,

where x(t) is the state variable corresponding to the optimal control variable û(t). By hypothesis, it follows
I′(0) = 0, for any acceptable variation h(t) = (hα(t)). Also, the function ya

η(t, 0) solves the following
Cauchy problem,

∇tya
η(t, 0) = Xa

x (t, x(t), ẋ(t), û(t)) xη(t, 0) + Xa
ẋ (t, x(t), ẋ(t), û(t)) ẋη(t, 0)

+Xa
u (t, x(t), ẋ(t), û(t)) h(t),

t ∈ [0, t0], yη(0, 0) = 0.

Now, taking into account the previous mathematical context, the results are

∂H
∂uα

(t, x(t), ẋ(t), û(t), p(t)) = 0, t ∈ [0, t0], α = 1, k (5)

and, also,
∂H
∂xi (t, x(t), ẋ(t), û(t), p(t)) = 0, t ∈ [0, t0], i = 1, n, (6)

∂H
∂xi (t, x(t), ẋ(t), û(t), p(t))− d

dt

(
∂H
∂ẋi (t, x(t), ẋ(t), û(t), p(t))

)
= 0, (7)

t ∈ [0, t0], i = 1, n.

Define P as the set of solutions for

ṗa(t) = 0, a = 1, r, (8)

that is, the Lagrange multiplier p = (pa) is a constant (p = (pa(t)) is a constant function). Moreover,

ẏa(t) =
∂H
∂pa

(t, x(t), ẋ(t), û(t), p(t)) , t ∈ [0, t0], a = 1, r, r ≤ n, (9)

y(0) = 0, y(t0) = l.

Finally, taking into account all the previous computations, we are able to formulate a simplified
maximum principle. The following theorem represents the main result of the present paper. More precisely,
necessary optimality conditions are established for the considered optimal control problem (CP) involving
isoperimetric-type constraints.

Theorem 1. Let (x, û) ∈ X×U be an optimal solution in the considered optimal control problem (CP). Then, there
exists the constant co-state variable p = (pa) such that the relations (5–9) are fulfilled, except at discontinuities.
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Remark 1.

(i) The algebraic systems in (5) and (6) describe the critical points associated withH with respect to the control
variable u = (uα) and the state variable x = (xi).

(ii) The differential Equations (8) and (9) and the conditions formulated in (5), (6), and (7) represent the
Euler–Lagrange ODEs, respectively,

∂L
∂ya −

d
dt

∂L
∂ẏa = 0,

∂L
∂pa
− d

dt
∂L
∂ ṗa

= 0, a = 1, r,

∂L
∂uα
− d

dt
∂L
∂u̇α

= 0, α = 1, k,

∂L
∂xi −

d
dt

∂L
∂ẋi = 0, i = 1, n,

corresponding to the new Lagrangian L.

Further, by using the new Lagrangian L and the aforementioned remark, we establish the
following result.

Corollary 1. Consider (x, û) ∈ X×U is an optimal solution associated with the optimal control problem (CP).
Then, there exists the constant co-state variable p = (pa) such that

ẏa(t) = Xa (t, x(t), ẋ(t), u(t)) , ya(t0) = la, a = 1, r, r ≤ n

and the following Euler–Lagrange ODEs associated with the Lagrangian L

∂L
∂ya −

d
dt

∂L
∂ẏa = 0,

∂L
∂pa
− d

dt
∂L
∂ ṗa

= 0, a = 1, r,

∂L
∂uα
− d

dt
∂L
∂u̇α

= 0, α = 1, k,

∂L
∂xi −

d
dt

∂L
∂ẋi = 0, i = 1, n,

are satisfied, except at discontinuities.

4. Conclusions

In this paper, by using corresponding variational differential systems, adjoint equations and a
modified Legendrian duality, we have derived necessary optimality conditions for a feasible point in
the considered isoperimetric-type constrained optimal control problem. The main result of this work is
original and complements previously known results (see, for instance, Treanţă [7,8,14,29]). The current
research paper can be extended for other classes of optimal control problems such as variational control
problems under uncertainty. Also, the study of sufficient optimality conditions for such optimal control
problems is another topic open to research.
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