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Abstract: We consider a family of cubic Liénard oscillators with linear damping. Particular cases
of this family of equations are abundant in various applications, including physics and biology.
There are several approaches for studying integrability of the considered family of equations such as
Lie point symmetries, algebraic integrability, linearizability conditions via various transformations
and so on. Here we study integrability of these oscillators from two different points of view, namely,
linearizability via nonlocal transformations and the Darboux theory of integrability. With the help of
these approaches we find two completely integrable cases of the studied equation. Moreover, we
demonstrate that the equations under consideration have a generalized Darboux first integral of a
certain form if and only if they are linearizable.
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1. Introduction

In this work we study the following family of Liénard equations

yzz + (a1y + a0)yz + b3y3 + b2y2 + b1y + b0 = 0, (1)

where a1 6= 0, b3 6= 0 and a0, bi, i = 0, 1, 2 are arbitrary parameters.
This family of equations has a lot of applications applications. For example, the travelling wave

reduction of the Burgers–Huxley equation ([1–3]) belongs to family (1). The generalized modified
Emden equation [4,5] is also a particular case of (1). While various particular analytical solutions of (1)
have been studied (see, e.g., [1–3,6] and references therein), to the best of our knowledge, a complete
analysis of the integrability of (1) has not been carried out yet.

Therefore, the main aim of this work is to study various aspects of the integrability of (1) and
their interconnections and find new completely integrable cases of (1). There are different approaches
for studying integrability of nonlinear oscillators like point symmetries, algebraic integrability, local
and nonlocal equivalence problems (see, e.g., [6–10]) and references therein). In this work we apply
two of them to study (1). First, we consider linearizability conditions for (1) via different classes
of nonlocal transformations. We show that such conditions allow us to find Liuvillian integrable
subfamilies of (1) or subfamilies admitting a non-autonomous first integral. We also demonstrate
that the general solution for the linearizable cases can be constructed in the parametric form. Second,
we use the Darboux theory of integrability, which is a powerful tool for constructing and classifying
first integrals of ordinary differential equations. The main objects in the Darboux theory are invariant
algebraic curves (or Darboux polynomials) and exponential factors [11,12]. The knowledge of the
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complete set of these invariants allows one to derive necessary and sufficient conditions of Darboux
and Liouvillian integrability.

Notice that, without the loss of generality, one can assume that a1 = 1 and a0 = 0 in (1). This can
be done via scalings and shifts in the dependent variable. Thus, further, we consider the equation

yzz + yyz + b3y3 + b2y2 + b1y + b0 = 0. (2)

The rest of this work is organised as follows. In the next section we consider linearizability
conditions for (2) via nonlocal transformations and provide new integrable cases of (2). In Section 3 we
present the general structure of irreducible Darboux polynomials related to Equation (2). In addition,
in Section 3 we classify cubic Liénard oscillators with linear damping possessing generalised Darboux
first integrals of a special form. In the last section we briefly summarise and discuss our results.

2. Linearization via Nonlocal Transformations

In this section we consider equivalence criteria between (2) and the damped harmonic oscillator

wζζ + βwζ + αw = 0, (3)

with equivalence transformations given by

w = F(z, y), dζ = G(z, y)dz. (4)

Here we suppose that β 6= 0 and α are arbitrary parameters and FyG 6= 0.
Transformations (4) are often called the generalised Sundman transformations (see, e.g., [6,13–16]

and references therein). Linearization of second-order differential equations via (4) was considered for
the first time in [13], where the Laguerre normal form of (3) was used. On the other hand, in [14] it was
shown that it is not sufficient to consider the Laguerre form of (3) and transformation of second-order
differential equations into (3) was studied. However, in [14] only restricted case of transformations (4),
namely Fz = 0, was considered. Below, we find linearization conditions for (2) without this restriction
and show that they lead to a new non-trivial integrable case of (2).

Equivalence between (2) and (3) via (4) not only allows us to find the general solution of the
former in the parametric form, but also to construct a first integral for (2). Indeed, although obvious
first integral for (3) is nonautonomous, this equation has a less well-known autonomous first integral

I =
(

2wζ + (β +
√

β2 − 4α)w
)√β2−4α

β +1 (
2wζ + (β−

√
β2 − 4α)w

)√β2−4α

β −1
. (5)

This first integral can be used in combination with (4) to provide a first integral for (2). Let us
remark that we assume that β2 − 4α 6= 0, since otherwise first integral (5) degenerates. This particular
case should be considered elsewhere.

It is worth noting that whether we obtain an autonomous or non-autonomous first integral for (2)
from (5) depends on transformations (4) and the existence of an autonomous first integral leads to a
Liuvillian integrable equation from family (2). It can be easily shown that (4) keep (5) autonomous
if and only if Fz = Gz = 0. Thus, further, we consider two cases of transformations (4) separately.
First we study the case of Fz = Gz = 0 and then we consider the general case of (4).

First we proceed to case of (2) with an autonomous first integral:

Theorem 1. Equation (2) can be transformed into (3) via (4) with Fz = Gz = 0 if and only if

b0 = b2 = 0, b3 =
α

2β2 , (6)
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b1 is arbitrary and
F = αy2 + 2β2b1, G =

y
β

. (7)

Proof. Let us start with the necessary conditions. Substituting transformations (4) with Fz = Gz = 0
into (3) we get

yzz + f yz + g = 0, (8)

if the following relation holds
GFyy − FyGy = 0. (9)

Here

f = βG, g =
αFG2

Fy
. (10)

Thus, Equation (2) can be transformed into (3) via (4) with Fz = Gz = 0 if it is of the form (8).
Requiring that f = y and g = b3y3 + b2y2 + b1y+ b0 and taking into account condition (9) we obtain an
overdeterminated system of ordinary differential equations for F and G. The compatibility conditions
for this system lead to (6). This completes the proof.

As a consequence we have that the Liénard equation

yzz + yyz +
α

2β2 y3 + b1y = 0, (11)

is Liuvillian integrable with the following first integral

I =
(

4αβyz + (β +
√

β2 − 4α)(αy2 + 2β2b1)

)√β2−4α

β +1
×

(
4αβyz + (β−

√
β2 − 4α)(αy2 + 2β2b1)

)√β2−4α

β −1
.

(12)

Let us remark that the general solution of (11) can be obtained in the parametric form with the help
of (4) and the general solution of (3). On the other hand, since we have autonomous first integral (12),
one does not need to explicitly present the general solution of (11).

Now we consider the non-autonomous case of transformations (4), i.e., we assume that |Fz|2 +
|Gz|2 6= 0. This results in the following family of equations from (2) admitting a first integral:

Theorem 2. Equation (2) can be transformed into (4) via (2) if and only if

b3 =
α

2β2 , b2 =
(9α− 2β2)ν

β2 b1 =
2ν2(27α− 8β2)

β2 , b0 =
12ν3(9α− 2β2)

β2 , (13)

where ν is arbitrary constant and

F = (6ν + y)2e−4νz, G =
y
β
+

6ν

β
. (14)

Proof. The proof is similar to those of Theorem 1 and, therefore, is omitted.

Consequently, the following family of equations

yzz + yyz +
α

2β2 y3 +
(9α− 2β2)ν

β2 y2 +
2ν2(27α− 8β2)

β2 y +
12ν3(9α− 2β2)

β2 = 0, (15)
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has the first integral

I = e
−8ν
√

β2−4α

β z
[

β(4yz + y2 + 4νy− 12ν2) +
√

β2 − 4α(6ν + y)2
]√β2−4α

β +1
×

[
β(4yz + y2 + 4νy− 12ν2)−

√
β2 − 4α(6ν + y)2

]√β2−4α

β −1
.

(16)

The general solution of (15) can be obtained in the parametric form with the help of
transformations (4) with (14) as follows

y = ±e2νz√w− 6ν, z =
1

2ν
ln
{
±2ν

∫
βdζ√

w

}
, (17)

where w is the general solution of (3).
Let us briefly discuss the results of this section. We believe that Theorem 2 provides a new

integrable case of (2) since linearization problem for (2) via (4) with Fz 6= 0 has not been considered
previously. Although linearization via an autonomous case of (4) was studied (see, e.g., [14,15]),
the corresponding integral of (3) has not been used for the construction of a first integral for (2) and,
thus, we also believe that Liuvillian integrable case of (2) is presented for the first time.

3. Darboux Polynomials

In this section our aim is to study the problem of finding Darboux polynomials for differential
equations given by (1). Rewriting these equations as an equivalent dynamical system, we obtain{

yz = w,

wz = −yw− (b3y3 + b2y2 + b1y + b0).
(18)

All the parameters are supposed to be form the field C and b3 6= 0. Let us note that cubic Liénard
dynamical systems with linear dumping belong to Liénard dynamical systems of type (m, m + 1),
which are degenerate in a certain sense. These degeneracy results form the complicated local structure
of their solutions. In what follows we shall discuss this fact in detail.

A polynomial F(y, w) ∈ C[y, w] \C is called a Darboux polynomial of system (18) if it satisfies
the following equation

wFy − (yw + b3y3 + b2y2 + b1y + b0)Fw = λ(y, w)F, (19)

where λ(y, w) ∈ C[y, w] is refereed to as the cofactor. The degree of λ(y, w) is at most two. By C[y, w]

we denote the ring of polynomials in variables y and w with coefficients in the field C. The zero
set of the Darboux polynomial F(y, w) defines an invariant algebraic curve of the corresponding
dynamical system. It is known that Darboux polynomials are of great importance if one studies the
integrability problem and wants to derive all independent first integrals that are Darboux or Liouvillian
functions [11,12].

An effective method of finding and classifying Darboux polynomials is the method of Puiseux
series introduced in articles [10,17]. The main idea of this method is to use the representation of
Darboux polynomials in the field of Puiseux series. It is known that any solutions of the equation
F(y, w) = 0 viewed as an implicit equation can be locally represented by means of Puiseux series [18].
A Puiseux series around the point y = ∞ can be defined as

w(y) =
+∞

∑
l=0

cly
l0−l
n0 , (20)
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where l0 ∈ Z and n0 ∈ N. The set of all the Puiseux series forms an algebraically closed field, which
we shall denote by C∞{y}. Privileging the variable w with respect to the variable y, we see that the
function w(y) satisfies the following first-order ordinary differential equation

wwy + yw + b3y3 + b2y2 + b1y + b0 = 0. (21)

It is straightforward to prove ([10], Lemma 2.1) that Darboux polynomials of dynamical system (18)
capture Puiseux series satisfying this differential equation. Let us introduce the operator of projection
{S(y, w)}+ that gives the polynomial part of the expression S(y, w) being a polynomial in y with
coefficients from the field C∞{y}.

The structure of Darboux polynomials related to dynamical system (18) essentially depends on
the properties of the following quadratic equation

p2 − δp + 2δ = 0, (22)

where the parameter δ is given by

δ =
8b3 − 1

b3
. (23)

In what follows by p1 and p2 we shall denote the roots of Equation (22). In addition, Q+ will
stand for positive rational numbers.

Theorem 3. Let F(y, w) with F(y, w) ∈ C[y, w] \C and Fy 6≡ 0 be an irreducible Darboux polynomial of
dynamical system (18). The following possibilities take place:

1. if p1, p2 6∈ Q+ ∪ {0}, then the polynomial F(y, w) is of degree at most two (with respect to y) and

F(y, w) =
{{

w− w(1)(y)
}s1
{

w− w(2)(y)
}s2
}
+

,

w(k)(y) =
∞

∑
m=0

c(k)m y2−m, c(k)0 =
1

pk − 4
, k = 1, 2,

(24)

where s1 and s2 are either 0 or 1 independently, s1 + s2 > 0 and all the Puiseux series w(j)(y), which are
in fact Laurent series, possess uniquely determined coefficients;

2. if pk ∈ Q+, pl 6∈ Q+, where either k = 1, l = 2 or k = 2, l = 1, then the polynomial F(y, w) takes
the form

F(y, w) =

{
Nk

∏
j=1

{
w− w(k)

j (y)
}{

w− w(l)(y)
}sl

}
+

,

w(k)
j (y) =

∞

∑
m=0

c(k)m, j y2− m
nk , w(l)(y) =

∞

∑
m=0

c(2)m y2−m,

c(k)0, j =
1

pk − 4
, c(l)0 =

1
pl − 4

,

(25)

where sl is either 0 or 1, the Puiseux series w(l)(y), which is in fact Laurent series, possesses uniquely
determined coefficients and the Puiseux series w(k)

j (y) possess pairwise distinct coefficients c(k)nk pk , j,
the number nk is defined as pk = qk/nk, where qk, nk ∈ N, (qk, nk) = 1;

3. if p1 ∈ Q+, p2 ∈ Q+, then the polynomial F(y, w) takes the form

F(y, w) =

{
N1

∏
j=1

{
w− w(1)

j (y)
} N2

∏
j=1

{
w− w(2)

j (y)
}}

+

,

w(1)
j (y) =

∞

∑
m=0

c(1)m, j y2− m
n1 , w(2)

j (y) =
∞

∑
m=0

c(2)m, j y2− m
n2 , c(k)0, j =

1
pk − 4

, k = 1, 2,

(26)
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where N1 + N2 > 0, the Puiseux series w(k)
j (y) possess pairwise distinct coefficients c(k)nk pk , j, the number

nk is defined as pk = qk/nk, where qk, nk ∈ N, (qk, nk) = 1, k = 1, 2;
4. if p1 = p2 = 0, then the polynomial F(y, w) takes the form

F(y, w) = w +
1
4

y2 + 4b2y + 2(b1 + 16b2
2) (27)

and exists provided that b0 = −8b2(b1 + 16b2
2).

Proof. Substituting λ(y, w) = λ0(y)wl , F(y, w) = µ(y)wN with l, N ∈ N ∪ {0}, 0 ≤ l ≤ 2 into
Equation (19) and balancing the highest-order terms, we conclude that µ(y) ∈ C, l = 0, and N ∈ N.
This means that cofactors of Darboux polynomials do not depend on w and there are no Darboux
polynomials independent on w. In addition, we observe that the highest-order coefficient (with respect
to w) of F(y, w) is a constant. Without loss of generality we set µ = 1. Let us suppose that F(y, w) with
F(y, w) ∈ C[y, w] \C and Fy 6≡ 0 is an irreducible Darboux polynomial of dynamical system (18).

Now let us perform the classification of Puiseux series near the point y = ∞ that satisfy
Equation (21). For this aim we shall use the Painlevé methods and the power geometry [19,20].
There exists only one dominant balance producing asymptotics near the point y = ∞. This balance
and power solution of the corresponding ordinary differential equation take the form

wwy + yw + b3y3 = 0 : w(k)(y) = c(k)0 y2, k = 1, 2, (28)

where the coefficients c(1,2)
0 satisfy the following equation 2c2

0 + c0 + b3 = 0. Calculating the Gâteaux
derivative of the balance at its power solutions yields the following equation for the Fuchs indices
pc0 − 4c0 − 1 = 0. Expressing c0 from this equation and substituting the result into the equation
2c2

0 + c0 + b3 = 0, we get (22). It is known that starting from power asymptotics it is possible to derive
asymptotic series possessing these asymptotics as leading-order terms [19,20].

If Equation (22) does not have positive rational solutions, then the Puiseux series related to
asymptotics (28) possess uniquely determined coefficients. Since the number of distinct Puiseux series
near the point y = ∞ satisfying Equation (21) is finite, it follows from the results of article ([10],
Theorem 1.4) that the degrees (with respect to w) of irreducible Darboux polynomials is bounded by 2.
Using the fact the filed C∞{y} is algebraically closed, we represent the polynomials as given in (24).

Further, if one of the solutions of Equation (22) defining the Fuchs indices is a positive rational
number and another one is not, then the Puiseux series related to the former case possesses an arbitrary
coefficient provided that the compatibility condition for this Fuchs index is satisfied. Another Puiseux
series possesses uniquely determined coefficients. As a result, we obtain factorization (25). Since the
Darboux polynomial is irreducible, the coefficients c(k)nk pk , j corresponding to the positive rational Fuchs
index should be pairwise distinct. The number nk can be obtained from the relation pk = qk/nk, where
qk, nk ∈ N, (qk, nk) = 1.

If both solutions of Equation (22) are positive rational numbers, then the Puiseux series have
arbitrary coefficients and exist whenever the corresponding compatibility conditions for the Fuchs
indices hold. We get factorization (26). Since the Darboux polynomials are irreducible, we conclude that
the coefficients with the same upper index c(k)nk pk , j, k = 1, 2 should be pairwise distinct. The numbers
nk, k = 1, 2 are found similarly to the previous case.

Finally, we are left with the case c(1)0 = c(2)0 = −1/4. In such a situation the left hand side in
Equation (22) is identically zero and b3 = 1/8. Making the substitution w(y) = −y2/4 + h(y) in
ordinary differential Equation (21), we get(

h− 1
4

y2
)

hy +
1
4

yh + b2y2 + b1y + b0 = 0. (29)
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Carrying out the classification of Puiseux series near the point y = ∞ solving this equation, we
obtain the unique series

w(y) =
∞

∑
m=0

cmy2−m, c0 = −1
4

(30)

provided that b2 6= 0. In the case b2 = 0, b1 6= 0 the corresponding Puiseux series is also of the form (30)
but with c1 = 0. Let us consider the case b2 = 0 and b1 = 0. In such a situation series (30) has an
arbitrary coefficient c2. Let us introduce the new variable

u = w +
1
4

y2 − c1y. (31)

There exists the one-to-one correspondence between the Darboux polynomial F(y, w) and the
polynomial G(y, u) = F(y, u − y2/4 + c1y). If F(y, w) is irreducible in the ring C[y, w], then so is
G(y, u) in the ring C[y, u]. Using our results, we can represent G(y, u) over the field C∞{y} as

G(y, u) =

{
N

∏
j=1

(u− c2,j)

}
. (32)

Analysing this representation, we conclude that G(y, u) is irreducible provided that G(y, u) =
u− c2. Consequently, irreducible Darboux polynomials of dynamical system (18) in the case c(1)0 =

c(2)0 = −1/4 exist provided that the corresponding series terminates at the zero term. In all these
situations dynamical system (18) possesses Darboux polynomials whenever Equation (21) admits a
polynomial solution. Substituting w(y) = −y2/4 + c1y + c2 into the equation in question, we find
only one polynomial solution w(y) = −y2/4 − 4b2x − 2(b1 + 16b2

2) existing under the condition
b0 = −8b2(b1 + 16b2

2). This completes the proof.

Remark 1. If pk ∈ N in the case of representation (25) and the compatibility condition for the Puiseux
series w(k)

j (y) to exist is not satisfied, then the irreducible Darboux polynomial (if exists) is of the form

F(y, w) = w− c(l)0 y2 − c(l)1 y− c(l)2 . If a similar situation occurs for representation (26), then either N1 = 0 or
N2 = 0 and the product in expression (26) involving the corresponding series is absent. Further, if p1, p2 ∈ N
and the compatibility condition for both Puiseux series are not satisfied, then there are no Darboux polynomials.

Our next step is to study the integrability problem for cubic Liénard equations with linear
dumping. Our goal is to relate the results that can be obtained via the generalized Sundman
transformations and the results arising in the framework of Darboux theory of integrability. We shall
consider the generic case, i.e., let us suppose that Equation (22) does not have solutions in Q+.
In addition, we introduce the parameter σ according to the rule

b3 =
1− σ2

8
, σ ∈ C, σ 6= ±1. (33)

Theorem 4. Let σ 6= ±n/(n− 4m) with n, m ∈ N and n 6= 4m, then dynamical system (18) possesses the
generalized Darboux first integral of the form

I(y, w, z) =
N

∏
j=1

F
αj
j (y, w) exp(α0z), α0, . . . , αN ∈ C, N ∈ N,

N

∑
j=1
|αj| > 0 (34)
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if and only if one of the following set of conditions is satisfied

(I) : b0 = 0, b2 = 0;

(I I) : b0 =
192b3

2
(9σ2 − 1)2 , b1 = −

8(27σ2 + 5)b2
2

(9σ2 − 1)2 .
(35)

In case (I) a first integral takes the form

I(y, w, z) = F1(y, w)σ+1F2(y, w)σ−1, (36)

where F1(y, w) and F2(y, w) are the Darboux polynomials

F1(y, w) = w +
1
4
(1 + σ) y2 − 2b1

σ− 1
, F2(y, w) = w +

1
4
(1− σ) y2 +

2b1

σ + 1
. (37)

In case (I I) a first integral reads as

I(y, w, z) = F1(y, w)σ+1F2(y, w)σ−1 exp
[

32σb2z
9σ2 − 1

]
, (38)

where F1(y, w) and F2(y, w) are the Darboux polynomials

F1(y, w) = w +
1
4
(1 + σ) y2 − 4b2

(3σ− 1)
y +

48b2
2

(3σ− 1)(3σ + 1)2 ,

F2(y, w) = w +
1
4
(1− σ) y2 +

4b2

(3σ + 1)
y−

48b2
2

(3σ + 1)(3σ− 1)2 .

(39)

Proof. We begin the proof by recalling that a function of the form (34) is a first integral of a polynomial
dynamical system in the plane if and only if F1(y, w), . . ., FN(y, w) are irreducible Darboux polynomials
of this system such that their cofactors λ1(y, w), . . ., λN(y, w) satisfy the condition [21]

N

∑
j=1

αjλj(y, w) + α0 = 0. (40)

Let us note that Equation (22) under normalisation (33) reads as

{p(σ + 1)− 4σ}{p(σ− 1)− 4σ} = 0. (41)

This equation does not have positive rational solutions provided that the following conditions
σ 6= ±n/(n− 4m) with n, m ∈ N and n 6= 4m are valid. Consequently, it follows from Theorem 3 that
the degree with respect to w of irreducible Darboux polynomials of dynamical system (18) is either 1
or 2. Moreover, if there exists an irreducible Darboux polynomial of degree 2 with respect to w, then it
is unique. In addition, there can arise at most two distinct irreducible Darboux polynomials of degree
1 with respect to w. Thus, the number N in expression (34) is either 1 or 2. Calculating the polynomial
part in expression (24) with s1 = 1, s2 = 0 and s1 = 0, s2 = 1 and s1 = 1, s2 = 1, we find the Darboux
polynomials. Substituting the results into (19), we get restrictions on the parameters of the original
system and explicit expressions of the cofactors. If s1 = 1, s2 = 1, then N = 1 and λ1 = −y + A0.
Thus we see that condition (40) is not satisfied. Further, this condition is also not valid provided that
only one irreducible Darboux polynomial of degree 1 with respect to w exists. This follows from the
fact that the cofactor is either of the form λ1 = (σ− 1)y/2 + A0 or of the form λ1 = −(σ + 1)y/2 + A0.
Finally, we suppose that there exist two distinct irreducible Darboux polynomials of degree 1 with
respect to w. In this situation (40) reads as
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α1
σ− 1

2
y + α1 A(1)

0 − α2
σ + 1

2
y + α2 A(2)

0 + α0 = 0. (42)

The parameters α1 and α2 can be taken in the form: α1 = σ + 1 and α2 = σ − 1. The value
of α0 we find from relation (42). The result is given in (36) and (38). Recall that restrictions (35) on
the parameters of the original system arose when we considered the existence of the corresponding
Darboux polynomials. The explicit expressions of the Darboux polynomials are presented in (37)
and (39).

Remark 2. Let us note that the parameters α0, α1, . . ., αN are defined up to a constant non-zero multiplier C.
The corresponding first integrals with different values of C are functionally dependent.

Remark 3. If Equation (41) with σ 6= ±1/3 possesses a positive rational solution, then functions (36) and (38)
are still first integrals of dynamical system (18). However, there can exist generalised Darboux first integrals
(34) of a more complicated structure.

4. Conclusions and Discussion

In this section we briefly summarise and discuss our results. Let us remark that linearizability
conditions presented in Theorems 1, 2 coincide with those of Theorem 4 and, therefore, the following
statement holds:

Theorem 5. Equation (2) is equivalent to (3) via transformations (4) if and only if it has a generalized Darboux
first integral of the form (34).

Proof. If we let α
β2 = 1−σ2

4 and take into account the expression for b2 from (13), then formulas (6),
(13) transform into (33), (35) and integrals (12), (16) into integrals (36), (38). This completes the
proof.

As far as linearizbility conditions presented in Section 2 are concerned, to the best of our
knowledge, Theorem 2 provides a new criterion of linearizability of (2). Although conditions presented
in Theorem 1 can be obtained from known ones (see, e.g., [14,15]), we believe that first integral (12) is
presented here for the first time. Moreover, not only one can provide a first integral for linearizable
cases of (2), but one can also construct the general solution of the corresponding equation from (2) with
the help of (4) and the general solution of (3). Another novel result of the present article is the general
structure of irreducible Darboux polynomials related to Equation (2). In addition, the necessary and
sufficient conditions enabling existence of the generalised Darboux first integrals (34) in generic cases
also seem to be new.

Finally, let us mention that we have classified generalised Darboux first integrals of the
form (34) for generic values of the parameters appearing in the cubic Liénard oscillators with linear
damping. However, there may exist some exceptional cases with interesting integrability properties.
Consequently, these exceptional cases are also worth studying.
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