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Abstract: Due to poor natural factors and human interference, the information that was obtained
by sensors tends to have high uncertainty and high conflict with others. A combination of highly
conflicting evidence with Dempster’s rule often produces results that run counter to intuition. To solve
the above problem, a conflict evidence combination methodology is proposed in this article, which
contains the distance of evidence, classical conflict coefficient, and two-tuple IOWA operator. Both the
classical conflict coefficient and Jousselme distance indicate the degree of evidence conflict, and it
is clear that the two parameters are symmetrical. First, the two-tuple IOWA operator is proposed.
Second, the orness is determined by aggregated data; then, the weighting vector is calculated by a
maximal entropy method. Finally, the weighted average is the evidence in the system by a two-tuple
IOWA operator; then, the Dempster combination rule is utilized to fuse information. Compared with
other existing methods, the presented methodology has high performance when dealing with conflict
evidence and has strong anti-interference ability.

Keywords: two-tuple IOWA operator; weighting vector; Dempster’s rule; distance of evidence;
conflict evidence

1. Introduction

The Dempster–Shafer (D–S) theory of evidence [1–7] was introduced by Dempster and Shafer [8]. It
can efficiently cope with imprecise and uncertain information without transcendental knowledge. Hence,
it has been diffusely applied in various scopes, such as information fusion [9,10], decision-making [11–15],
pattern recognition [16,17], dependence assessment [18,19], fault diagnosis [20–23], support vector
machine (SVM), and so on. In addition, evidence theory is combined with fuzzy theory to deal
with imprecise data and fuzzy information [24–27], and many studies about problems under fuzzy
environment were conducted. In addition, many new approaches based on belief function were
proposed [28–30]. Thierry et al. [28] proposed the EVCLUS algorithm that constructs a credal partition
in such a way that larger dissimilarities between objects correspond to higher degrees of conflict
between the associated mass functions. Su et al. [29] extended Dempster’s rule and presented a new rule
based on the concept of joint belief distribution to combine dependent bodies of evidence. Xiao [30]
proposed an improved conflicting evidence combination approach based on similarity measure and
belief function entropy.

In the frame of D–S evidence theory, while dealing with high conflict evidence, the results are
contrary to intuition [31,32]. For example, in the real battle field, because of poor natural factors and
human interference, the information that was obtained by sensors tends to have high uncertainty and
high conflict with others. Due to the high conflict, the application of D–S evidence theory in practice
will be limited to a great extent. In recent years, a lot of work on an evidence combination algorithm has
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emerged to settle the hot issue of high conflict evidence combination [33–37]. The existing processing
methods of the conflict information can be categorized into two classifications. One method is to
modify Dempster’s rule of combination such as the method of Yager [38], Quan Sun [39], Smets [40],
and so on. Another method is to revise the known data information, that is, the classic Dempster’s
combination rule should not be modified and the conflict evidence should be preprocessed before
the combination. The second category has many representative methods such as Murphy’s method
founded on arithmetic mean of bodies of evidence (BOEs) [35] and Deng’s method founded on
weighted average BOEs [41].

Thus far, since it is difficult to modify the mathematical framework of evidence theory, the primary
work of researchers at home and abroad is to revise the combination rule and BOEs [42–44].
These researchers who modify the combination rule argue that the normalization process in the
classical Dempster combination rules leads to counterintuitive results [45]. Although modifying a
combination rule can settle the problem of counterintuitive results at some level, it usually wrecks
the excellent characteristics such as commutativity and associativity. The different combination order
will generate different results without commutativity. This leads to the fact that the decision can not
be made for the decision maker. In fact, the viewpoint that the counterintuitive results are caused
by Dempster’s rule is irrational because outside intervention or sensor failure makes the provided
data inaccurate. As argued by Haenni [46], modifying the data information is more rational from
the perspective of practicality and philosophy. Based on the analysis above, in order to settle the
issue of a combination of high conflict evidence, the idea of modifying the data information is more
convenient. That is, the rule itself should not be revised and the evidence to be merged should be
revised or pretreated. However, the key issue in this methodology is that the weighting vector is
difficult to determine.

From the above analysis, the limitations of the classic Dempster’s combination rule have been
investigated. In this article, we proposed a method based on the second idea, a combination
methodology of conflict evidence based on evidence distance dj, classical conflict coefficient k, and a
two-tuple IOWA operator is proposed, which adopts the model of modifying the data. In the
methodology, the maximum entropy method is utilized to obtain the weighting vector based on
the collected evidence.

The organization of this paper is set out as follows: Section 2 briefly introduces the concepts
of Dempster–Shafer evidence theory, Jousselme distance, new conflict coefficient, two types of
aggregation operators, and a maximum entropy method (MEM). In Section 3, we describe how
to obtain the weighting vector and propose the two-tuple-IOWA operator. In Section 4, we present a
combination methodology of conflict evidence. In Section 5, two examples are given to illustrate the
feasibility of the proposed methodology. Some conclusions are given in Section 6.

2. Preliminaries

2.1. Dempster–Shafer Evidence Theory

Some definitions of D–S evidence theory are introduced [1,3].

Definition 1. Let Θ be the frame of discernment, with N mutually exclusive alternatives, denoted Θ =

{θ1, θ2, · · · , θN}. A basic probability assignment (BPA) is a mapping m from 2Θ to [0, 1] that fulfills: m(φ) = 0,
∑

A⊆2Θ
m(A) = 1, (1)

where φ represents an empty set and A is a subset of 2Θ. For subset A: m(A) > 0, that is, A is a focal element.
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There are two BPAs m1 and m2 in the frame of discernment Θ; then, Dempster’s combination rule
is defined as follows:

m(A) =


∑

B∩C=A
m1(B)m2(C)

1−k , A 6= φ,
0, A = φ,

(2)

where
k = ∑

B∩C=φ

m1(B)m2(C). (3)

Here, k is a normalization constant, which is considered as a conflict coefficient between two BPAs.

2.2. Jousselme Distance

Definition 2. Suppose mA and mB are two BPAs on the frame of discernment Θ. The Jousselme distance [47],
denoted as d(mA, mB), is defined below:

d(mA, mB) =
√

0.5∗(mA −mB)T D(mA −mB). (4)

Here, D is an 2N square matrix, defined as:

D(P, Q) =
|P ∩Q|
|P ∪Q| P, Q ∈ R(Θ). (5)

The Jousselme distance d(mA, mB) can also be represented as:

d(mA, mB) =
√

0.5 ∗ (‖mA‖2 + ‖mB‖2 − 2〈mA, mB〉), (6)

where ‖mA‖2 = 〈mA, mA〉; ‖mB‖2 = 〈mB, mB〉; 〈mA, mB〉 represents vector inner product of mA and
mB, namely:

〈mA, mB〉 =
2|Θ|

∑
i=1

2|Θ|

∑
j=1

mA(Pi)mB(Qj)
|Pi ∩Qj|
|Pi ∪Qj|

, (7)

where Pi and Qj are the elements of framework Θ (i, j = 1, 2, ..., 2|Θ|), |Pi ∩ Qj| is the cardinality of
common objects between elements Pi and Qj, and |Pi ∪Qj| is the number of subset of union Pi and Qj.

2.3. New Conflict Coefficient

It is a critical issue to determine the degree of evidence conflict before choosing the suitable
approach to fuse the conflict evidence. By now, there is no accurate method to measure the degree
of evidence conflict. In recent years, many works on measuring dissimilarity and similarity have
emerged. Researchers usually use classical conflict coefficient k or Jousselme distance d to represent
the degree of evidence conflict. However, many works have demonstrated that neither d nor k taken
alone are adequate to precisely indicate the degree of evidence conflict. Both k and d capture only one
aspect of dissimilarity between evidence. When indicating the degree of evidence conflict, it is obvious
that the conflict coefficient k and Jousselme distance d are symmetrical. d represents the difference
between evidence, and k indicates the non-inclusion between evidence. In addition, only non-inclusive
is not enough to accurately determine the degree of evidence conflict; the difference should be taken
into account. Taking into account the issues mentioned above, a conflict coefficient kd is proposed,
as follows:

Definition 3.
kd =

1
2
× (k + d). (8)
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Definition 3 reveals the relationship between two pieces of evidence: when k = 0 and d = 0, this
pair of values shows that there is no conflict between two pieces of evidence. When both k and d have
giant values, both of them show that two pieces of evidence are in high conflict. If one of them has low
value, there is little contradiction between two pieces of evidence. It can be seen that the smaller the kd

is, the smaller the degree of evidence conflict.

Example 1. Let mA, mB be two BPAs on frame Θ = {a1, a2, a3, a4, a5} such that

mA : {a1, a2, a3, a4} = 1,
mB : {a1, a2, a3, a5} = 1.

In this example, we can see that the two pieces of evidence have three compatible elements
a1, a2, a3 and only one incompatible element. Intuitively, it is expected that the similarity between
evidence should be larger than the dissimilarity between evidence.

According to Equations (3) and (6), we can obtain that:

k = 0 and d = 0.6325.

From the results, we can see that k = 0 indicates that there is no conflict and d = 0.6325 reveals
that the the dissimilarity is larger than the similarity. Therefore, both k and d are irrational.

Then, based on Definition 3, we get

kd =
1
2
× (0 + 0.6325) = 0.3163.

The obtained result kd = 0.3163 reveals that mA and mB are partially conflicting, and the dissimilarity
is smaller than the similarity, which is consistent with the above analysis.

Example 2. Let mA, mB be two BPAs from two distinct sources on frame Θ = {1, 2, 3, · · · , 20} and P is a
subset of Θ, such that

mA : mA{7} = 0.1, mA(P) = 0.9,
mB : mB{1, 2, 3, 4, 5} = 1.

Take twenty cases as an example, shown in Table 1. The comparison between k and kd is
graphically illustrated in Figure 1. From Figure 1, it can be clearly seen that

(1) The classical conflict coefficient k = 0.1 is constant for 20 cases, which reveals that the conflict
is small and unchanged. Thus, it is irrational. (2) The new conflict coefficient kd goes up and down,
when the size of A changes. The degree of conflict gets the minimum when A={1, 2, 3, 4, 5}, which
consists with the intuition.
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Figure 1. Comparison of d and kd.



Symmetry 2019, 11, 1369 5 of 15

Table 1. Comparison of dj, k and kd of m1 and m2 when subset A changes.

Case dj k kd

{1} 0.8544 0.1000 0.4772
{1, 2} 0.7416 0.1000 0.4208
{1, 2, 3} 0.6083 0.1000 0.3541
{1, 2, 3, 4} 0.4359 0.1000 0.2680
{1, · · · , 5} 0.1000 0.1000 0.1000
{1, · · · , 6} 0.4000 0.1000 0.2500
{1, · · · , 7} 0.5292 0.1000 0.3146
{1, · · · , 8} 0.5990 0.1000 0.3495
{1, · · · , 9} 0.6481 0.1000 0.3740
{1, · · · , 10} 0.6848 0.1000 0.3924
{1, · · · , 11} 0.7135 0.1000 0.4068
{1, · · · , 12} 0.7365 0.1000 0.4183
{1, · · · , 13} 0.7555 0.1000 0.4277
{1, · · · , 14} 0.7714 0.1000 0.4357
{1, · · · , 15} 0.7849 0.1000 0.4425
{1, · · · , 16} 0.7965 0.1000 0.4482
{1, · · · , 17} 0.8066 0.1000 0.4533
{1, · · · , 18} 0.8155 0.1000 0.4577
{1, · · · , 19} 0.8233 0.1000 0.4617
{1, · · · , 20} 0.8304 0.1000 0.4652

The two examples demonstrate that the new conflict coefficient kd can efficiently characterize
the conflict between pieces of evidence. In addition, it overcomes the drawback of classical conflict
coefficient k and evidence distance d to some extent.

2.4. OWA Operator and IOWA Operator

Definition 4. There are N clustering objects {A1, A2, . . . , AN} and the weight of each object is
wi(i = 1, 2, ..., N), which satisfied wi ∈ [0, 1] and ∑N

i=1 wi = 1.The ordered weighted aggregation (OWA)
operator is defined as follows [48–50]:

F(A1, A2, · · · , AN) =
N

∑
i=1

wi Ai. (9)

By extending the OWA operator, Yager and Filev introduced the definition of the induced
OWA(IOWA) as follows:

IOWA(〈U1, A1〉, · · · , 〈UN , AN〉) =
N

∑
i=1

wi〈Ui, Ai〉, (10)

where Ui is the order inducing variable and Ai is the argument variable.
To estimate the extent of aggregation such as or operation, which can be regarded as support in

the decision-making process. Yager [51] introduced α value of wi, which is defined as

α = orness(wi) =
1

N − 1

N

∑
i=1

wi(N − i). (11)

Yager [48] introduced entropy of wi, which is defined as follows:

H(wi) = −
N

∑
i=1

wiln(wi), (12)
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where H(wi) represents entropy of wi. The more uniform the distribution of each weight in the weight
vector, the greater the entropy.

2.5. Maximum Entropy Method

O’Hagan [52] introduced the maximum entropy method (MEM). This approach needs the
settlement of the following constrained nonlinear optimization model:

Maximize : H(wi) = −
N
∑

i=1
wi, ln(wi)

s.t. α = orness(wi) =
1

N−1

N
∑

i=1
wi(N − i),

N
∑

i=1
wi = 1,

wi ∈ [0, 1], i = 1, . . . , N.

(13)

The OWA operator weighting vectors can be obtained by the MEM for a given level of orness. It is
easy to find three special OWA weighting vectors for three special levels of orness.

If α = 0, then the associated weighting vecor is wi = {0, 0, · · · , 1}.
If α = 0.5, then the associated weighting vecor is wi = {1/n, 1/n, · · · , 1/n}.
If α = 1, then the associated weighting vecor is wi = {1, 0, · · · , 0}.

3. Two-Tuple IOWA Operator and the Determine Weighting Vector of Multi-Source BOEs

The following sections will present the proposed approach from two aspects. In the first part of
the proposed operator, a two-tuple IOWA operator as the order inducing variables is proposed. In the
second component, the weighting vector is determined by a maximum entropy method. This is a key
step that leads to a valid combination with evidence theory.

3.1. Two-Tuple IOWA Operator

According to Equation (10), the IOWA operator is IOWA(〈U1, A1〉, · · · , 〈UN , AN〉). Suppose that
there are two OWA pairs 〈Ui, Ai〉 and 〈Uj, Aj〉, where Ui = Uj(i,j=1,2,...,N). Thus, it can not order
the arguments Ai and Aj only based on inducing variable Ui and Uj. Assume there is another order
inducing variable vector V={v1, · · · , vN} and vi 6=vj, hence we can order the arguments Ai and Aj
based on variable vi and vj. Therefore, we refer to the two-tuples variable 〈Ui, vi〉 value as the order
inducing variables. The definition of modified IOWA operator is as follows:

Definition 5.

Ftw({〈U1, v1〉, A1}, · · · , {〈Un, vn〉, An}) =
N

∑
i=1

wi{〈Ui, vi〉, Ai}. (14)

If Ui > Uj, then {〈Ui, vi〉, Ai} > {〈Uj, vj〉, Aj}; if Ui = Uj and vi > vj, then{〈Ui, vi〉, Ai} >

{〈Uj, vj〉, Aj}. In other words, first we order the arguments Ai, Aj based on the Ui, Uj value. If Ui = Uj, we
order the arguments Ai, Aj based on vi and vj.

The following example illustrates the approach.
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Example 3. Suppose there are five two-tuple OWA pairs{〈Ui, vi〉, Ai}, and the weights of each pair are
wi = [0.3, 0.25, 0.2, 0.15, 0.1](i = 1, 2, 3, 4, 5):

{〈4, 3〉, 0.4},
{〈4, 4〉, 0.6},
{〈5, 2〉, 0.8},
{〈3, 3〉, 0.3},
{〈6, 4〉, 0.7}.

(15)

The first step is to sort the two-tuple OWA pairs according to two-tuple ordering inducing variable 〈Ui, vi〉.
The ordered result is obtained as follows:

{〈6, 4〉, 0.7},
{〈5, 2〉, 0.8},
{〈4, 4〉, 0.6},
{〈4, 3〉, 0.4},
{〈3, 3〉, 0.3}.

(16)

According to Equation (14), we obtain:

Ftw({〈Ui, vi〉, Ai})= 0.7 ∗ 0.3+0.8 ∗ 0.25+0.6 ∗ 0.2 + 0.4 ∗ 0.15+0.3 ∗ 0.1=0.62. (17)

Suppose that we have two two-tuple OWA pairs {〈Ui, vi〉, Ai} and {〈Uj, vj〉, Aj}. However, Ui = Uj and
vi = vj, thus we cannot order the two two-tuple OWA pairs according to two-tuple order inducing variables.

Example 4. Consider aggregation of the object

{〈4, 4〉, 0.4},
{〈4, 4〉, 0.6},
{〈5, 2〉, 0.8},
{〈3, 3〉, 0.3},
{〈6, 4〉, 0.7},

(18)

with the weighting vector wi =[0.3, 0.25, 0.2, 0.15, 0.1].
Performing the ordering of the objects, we obtain

{〈6, 4〉, 0.7},
{〈5, 2〉, 0.8},

{〈4, 4〉, 0.4}, {〈4, 4〉, 0.6},
{〈3, 3〉, 0.3}.

(19)

As for this case, we can not order {〈4, 4〉, 0.4}, {〈4, 4〉, 0.6} based on Definition 5. We argue they
have identical importance, namely, they should have the same weight. Thus, we can replace the
corresponding two weights [0.2,0.15] by their average [0.175, 0.175]. The associated weighting vector
wi =[0.3, 0.25, 0.2, 0.15, 0.1] is replaced by the modified weighting vector wi =[0.3, 0.25, 0.175, 0.175, 0.1].

According to Equation (14), we obtain:

Ftw({〈Ui, vi〉, Ai})= 0.7 ∗ 0.3+0.8 ∗ 0.25+0.6 ∗ 0.175 + 0.4 ∗ 0.175+0.3 ∗ 0.1=0.615. (20)

In particular, assume that two two-tuple OWA pairs {〈Ui, vi〉, Ai} and {〈Uj, vj〉, Aj} are exactly
the same, namely, Ui = Uj, vi = vj and Ai = Aj. For example, the second two-tuple OWA pairs
{〈4, 4〉, 0.6} in Example 4 changes into {〈4, 4〉, 0.4}; the other two-tuple OWA pairs and weighting
vector are not modified.
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As for this case, we can not order {〈4, 4〉, 0.4}, {〈4, 4〉, 0.4} as well. We can deal with them by the
same process in Example 4. Since they are totally the same, this course can be virtually expressed to
assign the sum of corresponding two weights to one two-tuple OWA pair and assign zero to the other
one. That is,

0.4 ∗ (0.2 + 0.15)/2 + 0.4 ∗ (0.2 + 0.15)/2 = 0.4 ∗ (0.2 + 0.15) + 0.4 ∗ 0 = 0.14. (21)

In other words, the weight wi = [0.3, 0.25, 0.2, 0.15, 0.1] is replaced by modified weight wi =

[0.3, 0.25, 0.35, 0, 0.1].
Similarly, if more than two two-tuple OWA pairs are totally the same, we assign the sum of

corresponding weights to one of two-tuple OWA pairs and assign zero to others.

3.2. The Determination of Associated Weight of BOEs

The flowchart of the determination of associated weight of BOEs is presented as Figure 2.
The proposed method for determining weight by the maximum entropy method is now presented
as follows:

Collect  n bodies of evidence

 Construct the Evidence

 distance matrix DM and conflict 

coefficient matrix K.

Calculate related parameters base on 

the obtained matrix

 Calculate  weighting

vector W  by MEM

Step 2 : 

Calculate parameters 

Step 1 : 

Construct matrix

Step 3 : 

Calculate W  

Figure 2. The flowchart of the proposed method.

assume that there are n bodies of evidence. The evidence set is E = {E1, · · · , En}. The conflict
coefficient kij and evidence distance dij can be obtained by Equations (2) and (5). Then, the conflict
coefficient matrix and evidence distance matrix could be constructed as follows:

K =



k11 · · · k1i · · · k1n
...

...
...

...
...

ki1 · · · kii · · · kin
...

...
...

...
...

kn1 · · · kni · · · knn


, (22)

where kij is the classical conflict coefficient between evidence Ei and evidence Ej:

DM =



d11 · · · d1i · · · d1n
...

...
...

...
...

di1 · · · dii · · · din
...

...
...

...
...

dn1 · · · dni · · · dnn


, (23)
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where dij is the Jousselme distance between evidence Ei and evidence Ej.

Definition 6. The average conflict coefficient di and the average evidence distance ki of evidence Ei are defined
respectively as follows:

ki =
∑n

j=1,j 6=i kij

n− 1
, i = 1, 2, · · · , n, (24)

di =
∑n

j=1,j 6=i dij

n− 1
, i = 1, 2, · · · , n. (25)

Definition 7. For all the evidence, calculate their corresponding di and ki, respectively, and then normalize
them, shown as follows:

kg =
∑n

i=1 ki

n
, (26)

dg =
∑n

i=1 di

n
, (27)

where kg is called global normalization conflict coefficient, dg is called global normalization evidence distance.
Since the definition of new conflict coefficient is kd = 1

2 × (k + dj), the conflict coefficient matrix can be
calculated by matrix K and DM, as follows:

KD =
1
2
(K + DM). (28)

Definition 8. The new global normalization conflict coefficient of evidence Ei is defined as follows:

kd
g =

n
∑

i=1

n
∑

j=1,
j 6=i

0.5× (kij + dij)

n(n− 1)
=

1
2
× (dg + kg). (29)

In recent years, the OWA operator and IOWA operator have received increasing attention [53]
and have been used in a wide range of applications including group decision-making [54,55], neural
networks [56–59], database mining [60], etc.

However, there are some drawbacks when researchers aggregate data by OWA operator or IOWA
operator. In general, the weighting vector in OWA and IOWA is irrelevant to its corresponding input,
so the weight vector can be considered to be a relatively independent part. For example, researchers
usually determine OWA operator weighting vector W by MEM, but the α value of constraint condition
is given by researchers. Thus, there is human preference in the α value. Since both the argument
variables and the interrelationships between them are not considered in the producing course of
weighting vector, the obtained weighting vector has a strong subjective randomness. Therefore,
the determined weighting vector is unreasonable. For instance, although there are two distinct sets of
data, the obtained weighting vectors must be the same if a researcher gives the same α value. Hence, it
is not rational since the obtained weighting vector cannot reflect the objectivity of given data. In order
to reduce the intervention of human factor when determining weighting vector, and to reflect the the
objectivity of the obtained weighting vector, we shall determine the α value based on the argument
variables and their interrelationships. According to such an idea, this paper determines the α value
based on the objective data from the BOEs to avoid the subjective randomness.

This paper constructs the relationship between global normalization new conflict coefficient kd
g

and constraint α of MEM. That is to say, α is determined by kd
g. Clearly, the larger the kd

g of BOEs,
the greater the total degree of conflict between evidence. We argue that the higher the total degree
of conflict is, the smaller the credibility difference between BOEs is. If the kd

g is larger, the weight of
BOE should be closer. Namely, the weighting vector is closer to W = { 1

n , · · · , 1
n}. At the same time,

the corresponding α is closer to 0.5. Furthermore, we should assign weight to each BOE according
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to the average conflict coefficient ki and average evidence distance of BOE di. The smaller the ki
and di of BOE Ei, the larger the corresponding credibility. That is, BOE Ei can greatly affect the final
result. Therefore, the endowed weight should be larger. kd

g = 1 indicates that the BOEs in system are
totally contradictory. In this case, we argue that every BOE has the same credibility, namely α = 0.5,
W = { 1

n , · · · , 1
n}. Otherwise, the smaller the kd

g is, the smaller the total degree of conflict of BOEs.
That is to say, the difference between evidence is smaller. All of the evidence can be represented by
one or more pieces of evidence. Partial evidence, whose ki and di values are smaller, takes most of the
weight, namely the corresponding α is close to 1 and W is close to W = {1, 0, · · · , 0}. If kd

g = 0, then
the n BOEs are totally identical. Thus, any one of the BOEs can be used to represent all the evidence.
Without loss of generality, we endow all weight to the first piece of evidence, namely W = [1, 0, · · · , 0],
α = 1. In summary, the smaller the kd

g, the larger the α. If kd
g = 1, then α = 0.5, W = { 1

n , · · · , 1
n}; if

kd
g = 0, then α=1, W={1, 0, · · · , 0}.

According to the analysis above, the relationship between α and kd
g is constructed as follows:

α = ekd
g∗ln0.5, (30)

where 0 ≤ kd
g ≤ 1, 0.5 ≤ α ≤ 1.

The parameter α is determined, then the weighting vector W = {w1, · · · , wn} can be obtained by
the maximum entropy method.

4. New Combination Approach of Conflict Evidence

This paper is ready to aggregate the evidence in the system by a two-tuple IOWA operator
proposed in Section 3. The proposed method can be enumerated at every step as follows:

step1: Calculate the Jousselme distance dij, the classic conflict coefficient kij, and construct the
evidence distance matrix DM and conflict coefficient matrix K.

step2: According to Definitions 6–8, calculate di, ki, kg, dg and kd
g based on the obtained matrix

DM and K.
step3: According to Equation (30), calculate α base on the kd

g obtained in step 2. Then,
the weighting vector W = {w1, w2, · · · , wn} can be obtained by MEM.

step4: First, construct two-tuple order inducing variable Si = 1− 〈di, ki〉 = 〈1− di, 1− ki〉, i =
1, · · · , n by di and ki. Then, construct a two-tuple OWA pair 〈Si, mi〉, i = 1, · · · , n, where mi is the
argument variable (BPA of evidence Ei).

step5: According to Equation (14), the weighted average evidence in the system is given as:

M = Ftw(〈S1, m2, 〉, 〈S2, m2, 〉, · · · , 〈Sn, mn〉) =
n

∑
j=1

wj〈Sj, mj〉. (31)

step6: When n pieces of evidence are combined using the classic Dempster rule, there are
combined n− 1 times. Then, the final combination result can be obtained.

5. Example and Analysis

In this section, the proposed combination method is applied in two examples to illustrate the
effectiveness of method.

Example 5. Suppose that a target was detected in combat air domain. The target was identified as an enemy by
military Identification Friend or Foe. Five different sensors such as airborne early warning radar (AEW radar)
and electronic warfare support measure (EMS) provide the type information of the target, where the frame of
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discernment is Θ = {A, B, C}. Sometimes, five sets of evidence are collected from five different sensors. Their
BPAs m1, m2, m3, m4, m5 are given as follows:

m1 : m1(A) = 0.5 , m1(B) = 0.2, m1(C) = 0.3,
m2 : m2(A) = 0.5 , m2(B) = 0.2, m2(C) = 0.3,
m3 : m3(A) = 0.55, m3(B) = 0.1, m3(AC) = 0.35,
m4 : m4(A) = 0.55, m4(B) = 0.1, m4(AC) = 0.35,
m5 : m5(A) = 0.6 , m5(B) = 0.1, m5(AC) = 0.3.

Supposing that the second sensor was interrupted by the electromagnetic interference of enemy,
the BPA provided by the second sensor changes into

m2 : m2(A) = 0, m2(B) = 0.9, m2(C) = 0.1.

It is clear that the BPA provided by the second sensor highly conflicts with others. This BPA is called
“bad” evidence. Applying different combination rules, we obtain the different combination results as
shown in Table 2.

Table 2. Results of different combination rules of evidence with one bad piece of evidence.

BOEs Approach m(A) m(B) m(C) m(AC) m(Θ) Target

Dempster 0 0.8571 0.1429 0 0 B
Yager [38] 0 0.1800 0.0300 0 0.7900 Θ

m1, m2 Murphy [35] 0.1543 0.7469 0.0988 0 0 B
Deng [41] 0.1543 0.7469 0.0988 0 0 B
Proposed 0.1543 0.7469 0.0988 0 0 B

Dempster 0 0.6316 0.3684 0 0 B
Yager [38] 0.4345 0.097 0.0105 0.2765 0.1815 A

m1, m2, m3 Murphy [35] 0.5568 0.3562 0.0782 0.0088 0 A
Deng [41] 0.6500 0.2547 0.0858 0.0095 0 A
Proposed 0.7429 0.1489 0.1019 0.0067 0 A

Dempster 0 0.3288 0.6712 0 0 C
Yager [38] 0.6430 0.0279 0.0037 0.1603 0.1652 A

m1, m2, m3, m4 Murphy [35] 0.8653 0.0891 0.0382 0.0074 0 A
Deng [41] 0.9305 0.0274 0.0339 0.0082 0 A
Proposed 0.9638 0.0049 0.0184 0.0139 0 A

Dempster 0 0.1404 0.8596 0 0 C
Yager [38] 0.7740 0.0193 0.0011 0.0977 0.1080 A

m1, m2, m3, m4, m5 Murphy [35] 0.9688 0.0156 0.0127 0.0029 0 A
Deng [41] 0.9846 0.0024 0.0098 0.0032 0 A
Proposed 0.9897 0.0002 0.0043 0.0058 0 A

From Table 2, it can be clearly seen that, when combining the conflict evidence with
traditional Dempster’s combination rules, the obtained results are contrary to intuition. The results
of the Dempster’s combination rules are different from those produced by other methods.
Yager’s combination results cannot recognize the target when there are two BOEs m1, m2.
With incremental evidence, Yager’s method, Murphy’method, Deng’s method, and the proposed
method can produce legitimate results. However, the uncertainty of other three methods are larger
than the proposed method, which is better for the decision-maker to make decisions. Moreover,
although the uncertainty of Yager’s approach decreases with the amount of evidence increasing,
the underspeed is much lower than the latter three methods. When the system collects five pieces
of evidence m1, m2, m3, m4, m5, the m(A) of Yager is 0.774, this is much smaller than the latter three
methods. To compare with Murphy’s method and Deng’s method, the proposed method converges
faster. In the proposed method, the difference between m(A) and other BPAs is greater. Obviously,
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the proposed method is very obvious to determine the most likely target. Murphy’s simple average
does not take into account the degree of correlation between evidence collected from multi-sources.
The weight assigned to each evidence is equivalent, thus the "bad" evidence will negatively affect
the final combination results. However, Deng’s weighted average method considers the difference
between evidence, which reduces the weight of "bad" evidence; therefore, it greatly reduces the impact
of "bad" evidence on the final combined outcome. It greatly offsets the shortage of Murphy’s method.
Compared with Deng’s method, the weight generating method of the proposed method was further
improved, hence the results of the proposed method are better than Deng’s. By using the proposed
approach, the obtained results are close to people’s expectation.

Example 6. Suppose that the fifth sensor also interferes since the enemy strengthened the electromagnetic
interference. The BPA provided by the fifth sensor changes into:

m5 : m5(A) = 0.1, m5(B) = 0.1, m5(C) = 0.8.

The different combination results with two “bad” pieces of evidence are shown in Table 3; it can
be seen that the combination results of both Dempster and Yager are illogical. Compared with the
proposed method, although the recognized target of both Murphy and Deng are A, their uncertainty
has increased a lot. In other words, the stability (anti-interference ability) of the proposed method is
greater than other approaches.

Table 3. Results of different combination rules of evidence with two bad pieces of evidence.

BOEs Approach m(A) m(B) m(C) m(AC) m(Θ) Target

Dempster 0 0.0577 0.9423 0 0 C
Yager [38] 0.0968 0.0193 0.2634 0 0.6205 Θ

m1, m2, m3, m4, m5 Murphy [35] 0.7250 0.0491 0.2244 0.0015 0 A
Deng [41] 0.8828 0.0062 0.1091 0.0019 0 A
Proposed 0.9039 0.0050 0.0900 0.0011 0 A

In conclusion, the proposed combination method can efficiently cope with the combination
problem of high conflict evidence. In addition, the proposed method converges faster than other
methods and the anti-interference ability of the proposed method is stronger, which can reduce the
uncertainty of the final recognized target.

6. Conclusions

When the evidence is highly conflicting, the classical Dempster combination rules are used to
obtain the results that are contrary to intuition. After analysis of different combination approaches,
a combination method based on distance of evidence d, classical conflict coefficient k, and two-tuple
IOWA operator was proposed in this paper. In this paper, the distance of evidence and conflict
coefficient are used to determine the conflict coefficient, which can reflect the degree of conflict
between the evidence more comprehensively. The method of obtaining the weighting vector by
maximum entropy is further improved, hence the proposed method can obtain more intuitive results.
The proposed method retains many great characteristics of Dempster’s method, such as commutativity
and associativity. In addition, compared with existing methods, the anti-interference ability of the
proposed method is stronger, which can enhance the reliability and rationality of the final results when
dealing with conflicting evidence.
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