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Abstract: Let Σ be the class of meromorphic functions f of the form f (ζ) = ζ + ∑∞
n=0 anζ−n which are

analytic in ∆ := {ζ ∈ C : |ζ| > 1}. For n ∈ N0 := N∪ {0}, the nth Faber polynomial Φn(w) of f ∈ Σ
is a monic polynomial of degree n that is generated by a function ζ f ′(ζ)/( f (ζ)−w). For given f ∈ Σ,
by Fn,i( f ), we denote the ith coefficient of Φn(w). For given 0 ≤ α < 1 and 0 < β ≤ 1, let us consider
domains Hα and Sβ ⊂ C defined by Hα = {w ∈ C : Re(w) > α} and Sβ = {w ∈ C : | arg(w)| < β},
which are symmetric with respect to the real axis. A function f ∈ Σ is called meromorphic starlike of
order α if ζ f ′(ζ)/ f (ζ) ∈ Hα for all ζ ∈ ∆. Another function f ∈ Σ is called meromorphic strongly
starlike of order β if ζ f ′(ζ)/ f (ζ) ∈ Sβ for all ζ ∈ ∆. In this paper we investigate the sharp bounds
of Fn,n−i( f ), n ∈ N0, i ∈ {2, 3, 4}, for meromorphic starlike functions of order α and meromorphic
strongly starlike of order β. Similar estimates for meromorphic convex functions of order α (0 ≤ α < 1)
and meromorphic strongly convex of order β (0 < β ≤ 1) are also discussed.

Keywords: meromorphic functions; starlike functions; convex functions; Faber polynomials;
coefficient problems

1. Introduction

Let D = {z ∈ C : |z| < 1} be the open unit disk in C. Let D∗ = D \ {0} and ∆ = {ζ ∈ C : |ζ| > 1}
be the punctured unit disk and the exterior of D.

Let Σ by the class of meromorphic functions

f (ζ) = ζ +
∞

∑
n=0

anζ−n, ζ ∈ ∆, (1)

that are univalent in ∆. Let Σ̃ be class of functions in Σ which have the form (1) with a0 = 0.
Let α ∈ [0, 1) be given and consider a domain Hα := {w ∈ C : Re(w) > α} which is symmetric

with respect to the real axis. A meromorphic function f ∈ Σ is called starlike of order α if f satisfies
ζ f ′(ζ)/ f (ζ) ∈ Hα for all ζ ∈ ∆. A meromorphic function f ∈ Σ is called convex of order α if f satisfies
1 + ζ f ′′(ζ)/ f ′(ζ) ∈ Hα for all ζ ∈ ∆. By S∗Σ(α) and KΣ̃(α) we denote the classes of starlike and convex
functions of order α. That is, f ∈ S∗Σ(α) if and only if f ∈ Σ and f satisfies

Re
{

ζ f ′(ζ)
f (ζ)

}
> α, ζ ∈ ∆.
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Furthermore, f ∈ KΣ̃(α) if and only if f ∈ Σ and f satisfies

Re
{

1 +
ζ f ′′(ζ)

f ′(ζ)

}
> α, ζ ∈ ∆.

For given β ∈ (0, 1], consider a domain Sβ = {w ∈ C : | arg(w)| < β} which is symmetric with
respect to the real axis. A meromorphic function f ∈ Σ is called strongly starlike of order β if f satisfies
ζ f ′(ζ)/ f (ζ) ∈ Sβ for all ζ ∈ ∆. A meromorphic function f ∈ Σ is called strongly convex of order β

if f satisfies 1 + ζ f ′′(ζ)/ f ′(ζ) ∈ Sβ for all ζ ∈ ∆. By SS∗Σ(β) and SKΣ̃(β) we denote the classes of
strongly starlike and strongly convex functions of order β. That is, f ∈ SS∗Σ(β) if and only if f ∈ Σ
and f satisfies ∣∣∣∣arg

{
ζ f ′(ζ)

f (ζ)

}∣∣∣∣ < π

2
β, ζ ∈ ∆.

In addition, f ∈ SKΣ̃(β) if and only if f ∈ Σ and f satisfies∣∣∣∣arg
{

1 +
ζ f ′′(ζ)

f ′(ζ)

}∣∣∣∣ < π

2
β, ζ ∈ ∆.

Note that S∗Σ := S∗Σ(0) = SS∗Σ(1) and KΣ̃ = KΣ̃(0) = SKΣ̃(1) are the classes of starlike and
convex functions which are frequently studied classes in the area of univalent function theory.

Computing the bounds of coefficients is an interesting problem to study. In particular, the bound
of the nth coefficient of functions in S∗Σ(α) and SS∗Σ(β) was found by Pommerenke [1] and
Brannan et al. [2]. Another interesting problem is to find the bound of Λγ( f ) := a1 − γa2

0, γ ∈ C,
which is known as Fekete–Szegö functional for meromorphic functions. Many authors examined the
functional Λγ( f ) over subclasses of Σ (see [3–5]). The object of this paper is to investigate bounds of
new functionals over the classes S∗Σ(α), KΣ̃(α), SS

∗
Σ(β) and SKΣ̃(β), generated by polynomials.

For the f ∈ Σ consider the expansion

ζ f ′(ζ)
f (ζ)− w

=
∞

∑
n=0

Φn(w)ζ−n, ζ ∈ ∆. (2)

The nth Faber polynomial Φn of the function f ∈ Σ is a monic polynomial of degree n given by
the formula

Φn(w) =
n

∑
k=0

Fn,k( f )wk. (3)

Since Φn is monic, there must be Fn,n( f ) = 1. If f has the form (1), by dividing the expression
ζ f ′(ζ) by ( f (ζ)− w), the formulas Φi are of w as follows:

Φ0(w) = 1, Φ1(w) = w− a0, Φ2(w) = w2 − 2a0w + (a2
0 − 2a1), (4)

Φ3(w) = w3 − 3a0w2 + (3a2
0 − 3a1)w + (−a3

0 + 3a1a0 − 3a2) (5)

and

Φ4(w) = w4 − 4a0w3 + (6a2
0 − 4a1)w2 − 4(a3

0 − 2a0a1 + a2)w

+ (a4
0 − 4a2

0a1 + 2a2
1 + 4a0a2 − 4a3).

(6)

Moreover, if f ∈ Σ̃, then a0 = 0 and we have

Φ0(w) = 1, Φ1(w) = w, Φ2(w) = w2 − 2a1, Φ3(w) = w3 − 3a1w− 3a2

and
Φ4(w) = w4 − 4a1w2 − 4a2w + (2a2

1 − 4a3).
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In this paper, we investigate the bounds of coefficients in Φn(w) for given functions in the
classes S∗Σ(α), SS

∗
Σ(β), KΣ̃(α) and SKΣ̃(β). In Section 2, we will formulate the functional Fn,n−i( f ),

i ∈ {1, 2, 3, 4} in terms of coefficients that appear in f ∈ Σ. Then sharp bounds Fn,n−i( f ), i ∈ {2, 3, 4},
for given f in S∗Σ(α) and SS∗Σ(β) will be examined in Section 3. In Section 4, the sharp bounds
Fn,n−i( f ), i ∈ {2, 3, 4} over the classes KΣ̃(α) and SKΣ̃(β) will be discussed.

Let P be a class of functions p:

p(z) = 1 +
∞

∑
n=1

cnzn, z ∈ D (7)

such that p(0) = 1 and p(z) is into the right-half plane H := H0 = {w ∈ C : Re(w) > 0}. The following
property for functions in P is well-known (e.g., [6], p. 41) and will be used for our considerations.

Lemma 1. If p ∈ P and has the form (7), then the sharp inequality |cn| ≤ 2 holds for n ∈ N.

Also, the following lemma for functions in P will be used for our proofs. It contains the
well-known formula for c2 (e.g., [6], p. 166), the formula for c3 due to Libera and Zlotkiewicz [7,8] and
the formula for c4 found by the authors [9].

Lemma 2. If p ∈ P is of the form (7) with c1 ∈ R and c1 ≥ 0, then

2c2 = c2
1 + τ(4− c2

1), (8)

4c3 = c3
1 + 2c1(4− c2

1)τ − c1(4− c2
1)τ

2 + 2(4− c2
1)(1− |τ|2)η (9)

and

8c4 =c4
1 + (4− c2

1)τ
[
c2

1(τ
2 − 3τ + 3) + 4τ

]
− 4(4− c2

1)(1− |τ|2)
[
c1(τ − 1)η + τη2 −

(
1− |η|2

)
ξ
] (10)

for some τ, η, ξ ∈ D := {z ∈ C : |z| ≤ 1}.

2. Some Identities for Coefficients of Faber Polynomials

Let f ∈ Σ. Since Φn(w) is a monic polynomial of degree n, Fn,n( f ) = 1 (n ∈ N0). Some initial
coefficients of Φn(w) for early n can be obtained by the formulas in (4)–(6). For example, F1,0( f ) = −a0,
F2,0( f ) = a2

0 − 2a1 and F2,1( f ) = −2a0. In fact, the functionals Fn,n−i( f ), i ∈ {1, 2, 3, 4}, are obtained
by (2) and (3), and are represented as follows.

Fn,n−1( f ) = −na0 (n ≥ 1), (11)

Fn,n−2( f ) =
1
2

n(n− 1)a2
0 − na1 (n ≥ 2), (12)

Fn,n−3( f ) = −1
6

n(n− 1)(n− 2)a3
0 + n(n− 2)a0a1 − na2 (n ≥ 3) (13)

and

Fn,n−4( f ) =
1
24

n(n− 1)(n− 2)(n− 3)a4
0 −

1
2

n(n− 2)(n− 3)a2
0a1

+
1
2

n(n− 3)a2
1 + n(n− 3)a0a2 − na3 (n ≥ 4).

(14)
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Indeed, from (2) and (3), we get the following identity (see also [6], p. 57):

Φn(w) = (w− a0)
n − na1(w− a0)

n−2 − na2(w− a0)
n−3 + · · ·

= wn − na0wn−1 + · · · .
(15)

Hence, the Formula (11) follows from (15).
Next we will show that the formula for Fn,n−4( f ), n ≥ 4, is given by (14). For this, we assume that

the expressions (12) and (13) are true. When n = 4, the assertion is clear by (6). Suppose now that (14)
holds for 4 ≤ n ≤ k and recall the following recurrence formula from (2) and (3) (see also [6], p. 57):

Φk+1(w) = (w− a0)Φk(w)−
k−1

∑
ν=1

ak−νΦν(w)− (k + 1)ak. (16)

By differentiating the both sides of (16), since Φ(k−3)
ν (w) = 0 for ν ≤ k− 4, we get

Φ(k−3)
k+1 (0) = (k− 3)Φ(k−4)

k (0)−
3

∑
i=0

aiΦ
(k−3)
k−i (0). (17)

By dividing the both sides of (17) by (k− 3)! and using Φ(k)
n (0)/k! = Fn,k( f ), we obtain

Fk+1,k−3( f ) = Fk,k−4( f )−
3

∑
i=0

aiFk−i,k−3( f ).

Therefore, by using the equalities (11)–(13), we get

Fk+1,k−3( f ) =
1
24

k(k + 1)(k− 1)(k− 2)a4
0 −

1
2
(k + 1)(k− 1)(k− 2)a2

0a1

+
1
2
(k + 1)(k− 2)a2

1 + (k + 1)(k− 2)a0a2 − (k + 1)a3,

which means that (14) holds for n = k + 1. Thus, it follows by induction that (14) holds for all n ∈ N
with n ≥ 4.

It now remains to be checked that the formulas for Fn,n−2( f ) and Fn,n−3( f ) are true. By a similar
process with the above we can obtain the identities (12) and (13), and the detailed proofs of them
are omitted.

3. Bounds for the Coefficient of Faber Polynomial of Meromorphic Starlike Functions

In this section we find the sharp bounds for Fn,n−i( f ), i ∈ {1, 2, 3, 4}, where f is in S∗Σ(α) and
SS∗Σ(β).

From (11), we see that |Fn,n−1( f )| ≤ n|a0| for f ∈ Σ. Then, for f ∈ S∗Σ(α), the inequality
|Fn,n−1( f )| ≤ 2(1− α)n follows from |a0| ≤ 2(1− α) [10], p. 232. Similarly, for f ∈ SS∗Σ(β), by the
inequality |a0| ≤ 2β [10], p. 233, we have |Fn,n−1( f )| ≤ 2βn.

Next, the following result gives the sharp bounds for Fn,n−i( f ), i ∈ {2, 3, 4}, of f ∈ S∗Σ(α).

Theorem 1. Let α ∈ [0, 1) and f ∈ S∗Σ(α) be of the form (1). Then the following inequalities hold:

|Fn,n−2( f )| ≤ (1− α)(2ρ2 + 1)n, n ∈ N \ {1}; (18)

|Fn,n−3( f )| ≤ 2
3
(1− α)(1 + ρ3)(1 + 2ρ3)n, n ∈ N \ {1, 2}; (19)

|Fn,n−4( f )| ≤ 1
6
(1− α)(1 + ρ4)(1 + 2ρ4)(3 + 2ρ4)n, n ∈ N \ {1, 2, 3}, (20)
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where ρk = (1− α)(n− k), k ∈ {2, 3, 4}. All the results are sharp and the equalities hold for the function f1

given with
f1(ζ) = ζ(1− ζ−1)2(1−α), ζ ∈ ∆. (21)

Before proving the above result, let us recall the notion of the subordination. For analytic functions
f and g we say that f is subordinate to g and write f ≺ g, if there is an analytic function ω : D→ D
with ω(0) = 0 such that f = g ◦ω on D. If g is univalent, then f ≺ g is equivalent to f (0) = g(0) and
f (D) ⊂ g(D).

The following lemma is a special case of more general results due to ([3], Theorem 1) and will be
used to obtain our results in this section.

Lemma 3. Let ϕ(z) = 1 + ∑∞
n=1 Bnzn belong to P . If f has the form (1) and satisfies −zg′(z)/g(z) ≺ ϕ(z),

where g(z) = f (1/z), then

|a1 − γa2
0| ≤

1
2
|B1| ·max

{
1,
∣∣∣∣B2

B1
− (1− 2γ)B1

∣∣∣∣} .

This result is sharp.

Here, note that the condition −zg′(z)/g(z) ≺ ϕ(z) in Lemma 3 is well-defined since the function
−zg′(z)/g(z) has a removable singularity at z = 0 and

lim
z→0

(
− zg′(z)

g(z)

)
= 1 = ϕ(0).

Now we prove Theorem 1.

Proof of Theorem 1. Let f ∈ S∗Σ(α) be of the form (1) and g(z) = f (1/z), z ∈ D∗.
Since Fn,n−2( f ) = −n[a1 − ((n− 1)/2)a2

0] and −zg′(z)/g(z) ≺ ϕ(z), where ϕ ∈ P is the function
defined by

ϕ(z) =
1 + (1− 2α)z

1− z
= 1 + 2(1− α)

∞

∑
n=1

zn,

by applying Lemma 3 with B1 = 2(1− α) = B2 and γ = (n− 1)/2, we have the inequality (18).
By dividing the expands in numerator and denominator, we note that

ζ f ′(ζ)
f (ζ)

= 1− a0ζ−1 + (a2
0 − 2a1)ζ

−2 + (−a3
0 + 3a0a1 − 3a2)ζ

−3

+ (a4
0 − 4a2

0a1 + 2a2
1 + 4a0a2 − 4a3)ζ

−4 + · · · , ζ ∈ ∆.
(22)

Since f ∈ S∗Σ(α) and g(z) = f (ζ), where z = 1/ζ ∈ D∗, we have

Re
{

1
1− α

(
− zg′(z)

g(z)
− α

)}
> 0, z ∈ D∗. (23)

Recall that the function −zg′(z)/g(z) has a removable singularity at z = 0 and

lim
z→0

1
1− α

(
− zg′(z)

g(z)
− α

)
= 1.

Therefore, the inequality (23) holds for all z ∈ D and there exists a function p ∈ P such that

1
1− α

(
− zg′(z)

g(z)
− α

)
= p(z), z ∈ D. (24)
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Since ζ f ′(ζ)/ f (ζ) = −zg′(z)/g(z), where ζ = 1/z, if p has the form given by (7), then (24)
implies that

ζ f ′(ζ)
f (ζ)

= 1 + (1− α)
∞

∑
n=1

cnζ−n, ζ ∈ ∆. (25)

Equating the coefficients in (22) and (25), we get

a0 = −(1− α)c1, a1 =
1
2
(1− α)[(1− α)c2

1 − c2], (26)

a2 =
1
6
(1− α)[−(1− α)2c3

1 + 3(1− α)c1c2 − 2c3] (27)

and
a3 =

1
24

(1− α)[(1− α)3c4
1 − 6(1− α)2c2

1c2 + 3(1− α)c2
2 + 8(1− α)c1c3 − 6c4]. (28)

Let n ∈ N with n ≥ 3. By substituting the expressions (26) and (27) into (13), we obtain

Fn,n−3( f ) =
1
6
(1− α)n[(1− α)2(n− 3)2c3

1 + 3(1− α)(n− 3)c1c2 + 2c3].

Therefore, it follows from the triangle inequality and Lemma 1 that the inequality (19) holds.
Next, let n ∈ N with n ≥ 4. By using the Equations (26)–(28) and (14), we have

Fn,n−4( f ) =
1
24

(1− α)n[λ5c4
1 + λ4c2

1c2 + λ3c2
2 + λ2c1c3 + λ1c4],

where λ5 = ρ3
4, λ4 = 6ρ2

4, λ3 = 3ρ4, λ2 = 8ρ4 and λ1 = 6. Since λi ≥ 0 for all i ∈ {1, 2, 3, 4, 5}, the
inequality (20) follows from the triangle inequality and Lemma 1.

The function f1 defined by (21) has the form (1) with

a0 = −2(1− α), a1 = 1− 3α + 2α2, a2 =
2
3

α(1− 3α + 2α2)

and
a3 =

1
6

α(1− α− 4α2 + 4α3).

Putting these quantities into (12)–(14), we get

Fn,n−2( f1) = (1− α)(2n + 4α− 2αn− 3)n,

Fn,n−3( f1) =
2
3
(1− α)n[2(1− α)2(n− 3)2 + 3(1− α)(n− 3) + 1]

and

Fn,n−4( f1) =
1
6
(1− α)n[4(1− α)3(n− 4)3 + 12(1− α)2(n− 4)2 + 11(1− α)(n− 4) + 3],

respectively, which show that the inequalities (18)–(20) are sharp. The proof of Theorem 1 is now
completed.

The sharp bounds for Fn,n−i( f ), i ∈ {2, 3, 4}, where f ∈ SS∗Σ(β), are given as in the following
theorem.

Theorem 2. Let β ∈ (0, 1] and f ∈ SS∗Σ(β). Then

|Fn,n−2( f )| ≤ βn ·max{1, β(2n− 3)}, n ∈ N \ {1}. (29)
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If β and n satisfy one of the following conditions:

(i) 3 ≤ n ≤ (14β + 1)/(6β);
(ii) (14β + 1)/(6β) ≤ n ≤ (7β + 2)/(3β) and β2(6n2 − 27n + 29) ≤ 2,

then we have
|Fn,n−3( f )| ≤ 2

3
βn, n ∈ N \ {1, 2}. (30)

If β and n are satisfying one of the following conditions:

(iii) n ≥ (7β + 2)/(3β);
(iv) (14β + 1)/(6β) ≤ n ≤ (7β + 2)/(3β) and β2(6n2 − 27n + 29) ≥ 2,

then we have
|Fn,n−3( f )| ≤ 2

9
βn[1 + β2(29− 27n + 6n2)], n ∈ N \ {1, 2}. (31)

The inequalities (29)–(31) are sharp.

Let B0 be a class of Schwarz functions ω:

ω(z) =
∞

∑
n=1

dnzn, z ∈ D, (32)

such that ω(0) = 0 and ω(z) ∈ D. Then ω ∈ B0 if and only if p(z) := (1 + ω(z))/(1− ω(z)) ∈ P .
The following property for the Schwarz functions will be used for our proof of Theorem 2.

Lemma 4 ([11], Prokhorov and Szynal). If ω ∈ B0 has the form (32), then for any real numbers µ and ν the
following sharp estimate holds:

Ψ(µ, ν) := |d3 + µd1d2 + νd3
1| ≤ Ψ̂(µ, ν), (33)

where

Ψ̂(µ, ν) :=



1, (µ, ν) ∈ D1 ∪ D2 ∪ {(2, 1)},
|ν|, (µ, ν) ∈ ⋃7

k=3 Dk,
2
3 (|µ|+ 1)

(
|µ|+1

3(|µ|+1+ν)

)1/2
, (µ, ν) ∈ D8 ∪ D9,

1
3 ν
(

µ2−4
µ2−4ν

) (
µ2−4

3(ν−1)

)1/2
, (µ, ν) ∈ D10 ∪ D11 \ {(2, 1)},

2
3 (|µ| − 1)

(
|µ|−1

3(|µ|−1−ν)

)1/2
, (µ, ν) ∈ D12.

(34)

Here, the sets Di ⊂ R2, i ∈ {1, 2, · · · , 12}, are defined as follows.

D1 =

{
(µ, ν) ∈ R2 : |µ| ≤ 1

2
, |ν| ≤ 1

}
,

D2 =

{
(µ, ν) ∈ R2 :

1
2
≤ |µ| ≤ 2,

4
27

(|µ|+ 1)3 − (|µ|+ 1) ≤ ν ≤ 1
}

,

D3 =

{
(µ, ν) ∈ R2 : |µ| ≤ 1

2
, ν ≤ −1

}
,

D4 =

{
(µ, ν) ∈ R2 : |µ| ≥ 1

2
, ν ≤ −2

3
(|µ|+ 1)

}
,

D5 =
{
(µ, ν) ∈ R2 : |µ| ≤ 2, ν ≥ 1

}
,

D6 =

{
(µ, ν) ∈ R2 : 2 ≤ |µ| ≤ 4, ν ≥ 1

12
(µ2 + 8)

}
,
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D7 =

{
(µ, ν) ∈ R2 : |µ| ≥ 4, ν ≥ 2

3
(|µ| − 1)

}
,

D8 =

{
(µ, ν) ∈ R2 :

1
2
≤ |µ| ≤ 2,−2

3
(|µ|+ 1) ≤ ν ≤ 4

27
(|µ|+ 1)3 − (|µ|+ 1)

}
,

D9 =

{
(µ, ν) ∈ R2 : |µ| ≥ 2,−2

3
(|µ|+ 1) ≤ ν ≤ 2|µ|(|µ|+ 1)

µ2 + 2|µ|+ 4

}
,

D10 =

{
(µ, ν) ∈ R2 : 2 ≤ |µ| ≤ 4,

2|µ|(|µ|+ 1)
µ2 + 2|µ|+ 4

≤ ν ≤ 1
12

(µ2 + 8)
}

,

D11 =

{
(µ, ν) ∈ R2 : |µ| ≥ 4,

2|µ|(|µ|+ 1)
µ2 + 2|µ|+ 4

≤ ν ≤ 2|µ|(|µ| − 1)
µ2 − 2|µ|+ 4

}
,

D12 =

{
(µ, ν) ∈ R2 : |µ| ≥ 4,

2|µ|(|µ| − 1)
µ2 − 2|µ|+ 4

≤ ν ≤ 2
3
(|µ| − 1)

}
.

Now we prove Theorem 2.

Proof of Theorem 2. Let β ∈ (0, 1] and f ∈ SS∗Σ(β). Further, g(z) = f (1/z), z ∈ D∗.
Since −zg′(z)/g(z) ≺ ϕ(z), where ϕ ∈ P is the function defined by

ϕ(z) =
(

1 + z
1− z

)β

= 1 + 2βz + 2β2z2 + · · · ,

the inequality (29) follows from (12) and Lemma 3 with B1 = 2β, B2 = 2β2 and γ = (n− 1)/2.
Since f ∈ SS∗Σ(β), we have

Re

{(
ζ f ′(ζ)

f (ζ)

)1/β
}

> 0, ζ ∈ ∆.

By a similar argument with the proof of Theorem 1, there exists a function p ∈ P such that

ζ f ′(ζ)
f (ζ)

= (p(1/ζ))β, ζ ∈ ∆. (35)

Here, we choose the branch of functions z 7→ (p(z))β for z ∈ D, so that p(0)β = 1.
Let p have the form given by (7). Then, by the Laurent queue for (p(z))β and by equating the

coefficients in (35), we obtain

a0 = −βc1, a1 =
1
4

β[(1 + β)c2
1 − 2c2] (36)

and
a2 =

1
36

β[(−4− 3β + β2)c3
1 + 6(2 + β)c1c2 − 12c3]. (37)

Let n ∈ N with n ≥ 3. By using the equalities (13), (36) and (37) we have

Fn,n−3( f ) =
1

36
βn · [12c3 + κ1c1c2 + κ2c3

1], (38)

where
κ1 = 6[−2 + β(−7 + 3n)]

and
κ2 = 4 + β(21− 9n) + β2(29− 27n + 6n2).

Note that κ2 ≥ 0 for n ≥ 3.
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When the condition (iii) is satisfied, we have κ1 ≥ 0. Therefore, the inequality (31) follows from
the triangle inequality and Lemma 1.

Now, let n < (7β + 2)/(3β). Let ω(z) = (p(z)− 1)/(p(z) + 1) and suppose ω has the form given
by (32). Using the relations

c1 = 2d1, c2 = 2(d2
1 + d2) and c3 = 2(d3

1 + 2d1d2 + d3),

together with (38), we obtain

Fn,n−3( f ) =
2
3

βnΨ(µ, ν), (39)

where Ψ is defined by (33) with

µ = β(3n− 7) and ν =
1
3
[1 + β2(6n2 − 27n + 29)]. (40)

Suppose that (i) is satisfied. Then it holds that 0 < µ ≤ 1/2 and 0 < ν < 1. Indeed, let
Iβ = [3, (14β + 1)/(6β)] and consider a function k : Iβ → R defined by

k(x) =
1
3
[1 + β2(6x2 − 27x + 29)].

Then k(x) increases on Iβ. Thus, we have

0 <
43
123

= k(3) ≤ k(x) ≤ k
(

14β + 1
6β

)
=

1
18

(7 + 8− 8β2) ≤ 25
64

< 1

for x ∈ Iβ, which leads us to get 0 < ν < 1. Therefore, we have (µ, ν) ∈ D1, and it follows from (39)
and Lemma 4 that the inequality (30) holds.

Now consider the case (14β + 1)/(6β) ≤ n ≤ (7β + 2)/(3β). In this case, we have 1/2 ≤ µ < 2.
Therefore, we get

− 4µ3 + 15µ + 32 ≥ 30. (41)

Moreover it is observed that

− 3β2(18n2 − 87n + 109) ≥ −6(4− β + 2β2) ≥ −30. (42)

By combining (40), (41) and (42), we have

27ν− 4(µ + 1)3 + 27(µ + 1)

= −4µ3 + 15µ + 32− 3β2(18n2 − 87n + 109) ≥ 0,

which implies that ν ≥ (4/27)(µ + 1)3 − (µ + 1). Now, if β2(6n2 − 27n + 29) ≤ 2, then ν ≤ 1 and
(µ, ν) ∈ D2. Thus, it follows from (39) and Lemma 4 that the inequality (30) holds. If β2(6n2 − 27n +

29) ≥ 2, then ν ≥ 1 and (µ, ν) ∈ D5. Therefore, by Lemma 4, we obtain the inequality (31).
Finally, let us consider the sharpness of this result. For given m ∈ N, define a function gm : D∗ → C

by

gm(z) =
1
z

exp

[
−
∫ z

0

1
t

((
1− tm

1 + tm

)β

− 1

)
dt

]
(43)

and let f̂m(ζ) = gm(1/ζ), ζ ∈ ∆. Then we get

f̂1(ζ) = ζ − 2β + β2ζ−1 − 2
9

β(1− β2)ζ−2 +
1
9

β2(1− β2)ζ−3 + · · · , z ∈ ∆,
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f̂2(ζ) = ζ − βζ−1 − 1
9

β(1− β2)ζ−5 + · · · , z ∈ ∆

and
f̂3(ζ) = ζ − 2

3
βζ−2 − 1

9
β2ζ−5 + · · · , z ∈ ∆.

Hence, from (11)–(14), we have

Fn,n−2( f̂1) = β2(2n− 3)n, Fn,n−2( f̂2) = βn, Fn,n−3( f̂3) = 2βn/3

and
Fn,n−3( f̂1) =

2
9

βn[1 + β2(29− 27n + 6n2)].

The inequality (29) is sharp for the function f̂2 when 1 ≥ β(2n− 3) and for the function f̂1 when
1 ≤ β(2n− 3). When β and n satisfy the condition (i) or (ii), the equality in (30) holds for f̂3. In addition,
the equality in (31) holds for f̂1, when β and n satisfy the condition (iii) or (iv). The proof of Theorem 2
is completed.

4. Bounds for the Coefficient of Faber Polynomial of Meromorphic Convex Functions

In this section we find the sharp bounds for Fn,n−i( f ), i ∈ {2, 3, 4}, of f in KΣ̃(α) and SKΣ̃(β).
We find the sharp bounds for the functional a3 − γa2

1 of f in KΣ̃(α) and SKΣ̃(β) for our investigations.

Proposition 1. Let α ∈ [0, 1) and γ ∈ R. If f ∈ KΣ̃(α), then

|a3 − γa2
1| ≤

1
6
(1− α)max {1, |α− 6γ + 6αγ|} . (44)

This result is sharp.

Proof. Suppose f ∈ KΣ̃(α). Then we have

1 +
ζ f ′′(ζ)

f ′(ζ)
= 1 + 2a1ζ−2 + 6a2ζ−3 + 2(a2

1 + 6a3)ζ
−4 + · · · , ζ ∈ ∆. (45)

Since f ∈ KΣ̃(α), a similar argument of the proof of Theorem 1 implies that there exists a function
p ∈ P such that

1
1− α

(
1 +

ζ f ′′(ζ)
f ′(ζ)

− α

)
= p(1/ζ), ζ ∈ ∆.

Let p have the form given by (7). Then

(1− a)p(1/ζ) + α = 1 + (1− α)
∞

∑
n=1

cnζ−n, ζ ∈ ∆. (46)

Therefore, by equating the coefficients in (45) and (46) we get c1 = 0,

a1 =
1
2
(1− α)c2, a2 =

1
6
(1− α)c3 and a3 = − 1

24
(1− α)2c2

2 +
1

12
(1− α)c4. (47)

Since c1 = 0, by Lemma 2, we have

c2 = 2τ and c4 = 2τ2 − 2(1− |τ|2)
(

τη2 − (1− |η|2)ξ
)

, (48)
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where τ, η, ξ ∈ D. Substituting (48) into (47) we obtain

6
1− α

(a3 − γa2
1) = (α− 6γ + 6αγ)τ2 − (1− |τ|2)τη2 + (1− |τ|2)(1− |η|2)ξ. (49)

Taking the absolute values of the both sides in (49) and the triangle inequality together with
|ξ| ≤ 1 yield that

|a3 − γa2
1| ≤

1
6
(1− α)H1(|τ|, |η|), (50)

where H1 : [0, 1]× [0, 1]→ R is a function defined by

H1(x, y) = |α− 6γ + 6αγ|x2 + (1− x2)xy2 + (1− x2)(1− y2).

A simple computation gives us to get

H1(x, y) ≤ H1(x, 0) = (|α− 6γ + 6αγ| − 1) x2 + 1

= max{1, |α− 6γ + 6αγ|}, (x, y) ∈ [0, 1]× [0, 1].
(51)

Since τ, η ∈ D, it follows from (50) and (51) that the inequality (44) holds.
Now, consider a function f̃1 : ∆ → C such that f̃ ′1(ζ) = (1 − ζ−4)(1−α)/2. Then we have

f̃1 ∈ KΣ̃(α) and

f̃1(ζ) = ζ +
1
6
(1− α)ζ−3 + · · · , ζ ∈ ∆,

which implies that a3 − γa2
1 = (1− α)/6. This shows that the inequality (44) is sharp for f̃1 when

|α− 6γ + 6αγ| ≤ 1. Next we consider a function f̃2 : ∆→ C such that f̃ ′2(ζ) = (1− ζ−2)1−α. Then we
have a1 = 1− α and a3 = α(1− α)/6, which implies that

a3 − γa2
1 =

1
6
(1− α)(α− 6γ + 6αγ).

Thus, when |α− 6γ + 6αγ| ≥ 1, the inequality (44) is sharp with the extremal function f̃2 and it
completes the proof of Proposition 1.

Proposition 2. Let β ∈ (0, 1] and γ ∈ R. If f ∈ SKΣ̃(β) has the form given by (1), then

|a3 − γa2
1| ≤

β

6
·max {1, 6β|γ|} . (52)

This result is sharp.

Proof. Let f ∈ SKΣ̃(β). Then, by a similar argument as in the proof of Theorem 1, we have

1 +
ζ f ′′(ζ)

f ′(ζ)
= (p(1/ζ))β, ζ ∈ ∆, (53)

for some p ∈ P . If p is of the form (7), then we get c1 = 0 from (53) and

a1 =
1
2

βc2, a2 =
1
6

βc3 and a3 = − 1
24

βc2
2 +

1
12

βc4.

Therefore, we have

a3 − γa2
1 = β

[
−
(

1
24

+
1
4

βγ

)
c2

2 +
1

12
c4

]
.
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Using the relations in (48), we have

(6/β)(a3 − γa2
1) = −6βγτ2 − (1− |τ|2)τη2 + (1− |τ|2)(1− |η|2)ξ

with τ, η, ξ ∈ D. Therefore, we get

|a3 − γa2
1| ≤

β

6
· H2(|τ|, |η|), (54)

where H2 : [0, 1]× [0, 1]→ R is a function defined by

H2(x, y) = 6β|γ|x2 + (1− x2)xy2 + (1− x2)(1− y2).

Since
H2(x, y) ≤ max{1, 6β|γ|}, (x, y) ∈ [0, 1]× [0, 1],

the inequality (52) follows from (54).
Finally, we will show that this result is sharp. Consider a function f̃3 ∈ SKΣ̃(β) such that

ζ f̃ ′3(ζ) = g2(1/ζ), ζ ∈ ∆, where g2 is the function defined by (43) with m = 2. Then f̃3 is represented by

f̃3(ζ) = ζ + βζ−1 +
1

45
β(1− β2)ζ−5 + · · · , ζ ∈ ∆.

Thus, a3 − γa2
1 = −β2γ and the function f̃3 which makes the equality in (52) when 6β|γ| ≥ 1.

Next, let us consider a function f̃4 ∈ SKΣ̃(β) such that ζ f̃ ′4(ζ) = g4(1/ζ), ζ ∈ ∆, where g4 is the
function defined by (43) with m = 4. Then we have

f̃4(ζ) = ζ +
β

6
ζ−3 +

β2

56
ζ−7 + · · · , ζ ∈ ∆,

or a3 − γa2
1 = β/6. Thus, it follows that the inequality (52) is sharp with the extremal function f̃4 for

the case 6β|γ| ≤ 1. Thus, the proof of Proposition 2 is completed.

Now we obtain the sharp bounds for Fn,n−i( f ), i ∈ {2, 3, 4}, of f in KΣ̃(α) and SKΣ̃(β).

Theorem 3. Let f ∈ KΣ̃(α). Then the following sharp inequalities hold for n ∈ N.

(i) |Fn,n−2( f )| ≤ (1− α)n for n ≥ 2;
(ii) |Fn,n−3( f )| ≤ (1− α)n/3 for n ≥ 3;

(iii) |Fn,n−4( f )| ≤ ((1− α)n/6) ·max {1, |α− 3(n− 3)(1− α)|} for n ≥ 4.

Proof. Since Fn,n−2( f ) = −na1 and Fn,n−3( f ) = −na2 for f ∈ Σ̃, the inequalities in (i) and (ii)
follows from (47) and Lemma 1. Next we note that |Fn,n−4| = n · |a3 − ((n− 3)/2)a2

1|. Therefore, by
Proposition 1 with γ = (n− 3)/2, we obtain the inequality in (iii).

Theorem 4. Let f ∈ SKΣ̃(β) be of the form (1). Then the following sharp inequalities hold for n ∈ N.

(i) |Fn,n−2( f )| ≤ βn for n ≥ 2;
(ii) |Fn,n−3( f )| ≤ βn/3 for n ≥ 3;

(iii) |Fn,n−4( f )| ≤ (βn/6) ·max{1, 3β(n− 3)} for n ≥ 4.

We will finish our paper by giving the sharp bounds of Fn,n−i( f ), i ∈ {2, 3, 4}, for a starlike
function f ∈ Σ̃ of order α (α ∈ [0, 1)), or a strongly starlike function f ∈ Σ̃ of order β (β ∈ (0, 1]).
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Theorem 5. Let f ∈ S∗Σ(α) ∩ Σ̃. Then the following sharp inequalities hold for n ∈ N.

(i) |Fn,n−2( f )| ≤ (1− α)n for n ≥ 2;
(ii) |Fn,n−3( f )| ≤ 2(1− α)n/3 for n ≥ 3;

(iii) |Fn,n−4( f )| ≤ ((1− α)n/2) ·max {1, |α(4− n) + n− 3|} for n ≥ 4.

Proof. Let

g(ζ) =
∫ ζ

ζ0

f (t)
t

dt, ζ ∈ ∆,

where ζ0 is determined so that g(ζ) = ζ + ∑∞
n=1 bnζ−n. From f ∈ S∗Σ(α) ∩ Σ̃, we have g ∈ KΣ̃(α).

Furthermore we have an = −nbn for n ∈ N. Therefore, the relations Fn,n−2( f ) = −Fn,n−2(g) and
Fn,n−3( f ) = −2Fn,n−3(g) hold. Hence, by Theorem 3, we obtain the inequalities in (i) and (ii). Next,
we note that

|Fn,n−4( f )| =
∣∣∣∣12 n(n− 3)a2

1 − na3

∣∣∣∣ = 3n
∣∣∣∣b3 +

1
6
(n− 3)b2

1

∣∣∣∣ .

Then it follows from Proposition 1 with γ = −(n− 3)/6 that the inequality in (iii) holds.

Theorem 6. Let f ∈ SS∗Σ(β) ∩ Σ̃ be of the form (1). Then the following sharp inequalities hold for n ∈ N.

(i) |Fn,n−2( f )| ≤ βn for n ≥ 2;
(ii) |Fn,n−3( f )| ≤ 2βn/3 for n ≥ 3;

(iii) |Fn,n−4( f )| ≤ (nβ/2) ·max{1, β(n− 3)} for n ≥ 4.

Proof. The assertions given above can be proved by similar processes with the proof of Theorem 5.

5. Conclusions

In the present paper, we obtained the sharp inequalities for Fn,n−i( f ), n ∈ N0, i ∈ {1, 2, 3, 4},
where Fn,i( f ) is the ith coefficient of the Faber polynomial of a meromorphic function f ∈ Σ, which are
starlike (or convex) functions of order α (α ∈ [0, 1)) and strongly starlike (or convex) functions of order
β (β ∈ (0, 1]). In particular, we observed that the sharp inequality |Fn,n−i( f )| ≤ |Fn,n−i( f1)|, where
f1 is the function defined by (21), holds for i ∈ {1, 2, 3, 4} and f ∈ S∗Σ(α). Hence, it can be naturally
expected that this sharp inequalty would hold for all i ≤ n− 1.
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