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Abstract: The objective of this study is to analyze the natural convection flow of nanofluid along
a circular cone placed in a vertical direction. The generalized heat flux and mass flux models
are commonly known as the Cattaneo–Christov heat flux model and mass flux models. In the
present study, these models are used for both heat and mass transfers analysis in nanofluid flow.
For the governing equations, the Buongiorno transport model is used in which two important slip
mechanism, namely thermophoresis and Brownian motion parameters, are discussed. The resulting
governing equations in the form of partial differential equations (PDEs) are converted into ordinary
differential equations (ODEs) due to similar flow along the surface of a circular cone. To solve these
ODEs, a numerical algorithm based on implicit finite difference scheme is utilized. The effects of
dimensionless parameters on heat and mass transfer in nanofluid flow are discussed graphically in the
form of velocity profile, temperature profile, Sherwood number and Nusselt number. It is noted that
in the presence of the Cattaneo–Christov heat flux model and mass flux model, the heat transfer rate
decreases by increasing both thermal and concentration relaxation parameters; however, Sherwood
number decreases by increasing the thermal relaxation parameter, and increases by increasing the
concentration relaxation parameter.

Keywords: Cattaneo–Christov model; Buongiorno’s transport model; circular cone; natural
convection flow

1. Introduction

Improvement in the efficiency of cooling systems is essential in various industrial and engineering
processes. The excellent functioning of a cooling system requires a thermally efficient coolant. However,
the relatively poor thermal conductivity of conventional coolants is a significant constraint on the
emergence of highly effective cooling systems. In most of the heat transfer processes, conventional fluids
or base fluids like water, engine oil, and ethylene glycol, etc. are used as coolants. Due to low thermal
conductivity of these fluids, they do not provide efficient results in a cooling system. An inventive
procedure for enhancing the heat transfer rate in the conventional fluids is by colloidal suspension of
nanosized particles in base fluid, resulting in a mixture known as nanofluid [1,2]. Nanofluid exhibits
excellent potential, considering the substantial increase in heat transfer rates in a variety of applications.
Nanotechnology has been the source for the creation of nanoparticles in dimensions of nanometers,
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which possess distinctive chemical and physical properties. Nanofluid possesses high thermal
conductivity and promotes the heat transfer rate. Nanofluid helps in manufacturing light and smart
heat exchangers. Due to nano-sized particles, the fluid mixture is homogenous and stable without
having the problems of sedimentation and clogging. Nanofluids are most suitable for heating and
cooling systems. Therefore, for heating, nanofluids can be used to improve the heat transfer phenomena
in diverse thermal systems; and for cooling, its applications include engine cooling, refrigeration, use in
the petroleum industry, cancer therapy, nano-drug delivery, environmental remediation, inkjet printing,
etc. The work of the nanofluid fundamentally depends upon the size, percentage of nanoparticle
concentration, ability to stay suspended in base fluid, shape, and chemical unreactive in the base fluid.

Heat transfer is an important phenomenon in nature, which occurs due to the temperature
difference between two bodies or within the same body. The heat transfer characteristics have
wide-ranging demands in numerous industrial and engineering processes, such as: nuclear reactors,
fuel cells, transportation, microelectronics, etc. Fourier’s law of heat conduction explains the heat
transfer phenomena in various practical processes. Fourier’s law gives a parabolic energy equation
in which the whole system is instantly affected by the initial disturbance. To handle this situation,
a modified version of Fourier’s heat conduction law was introduced by Cattaneo including a relaxation
time. Christov incorporated Cattaneo’s theory and replaced the time derivative with an Oldroyd
upper-convected derivative. The derivative model of Cattaneo’s law is termed as the Cattaneo–Christov
heat flux model.

Many researchers and scientists studied self-similar solutions for natural convection flow over
a vertical cone. Hering and Grosh [3,4] studied natural convection flow along the vertical cone and
reported the similarity solution. Roy [5] investigated the heat transfer phenomena for a large Prandtl
number in natural convection flow along the vertical cone. Vajravelu and Nayfeh [6] studied heat
transfer analysis in a viscous heat source fluid along a cone and wedge surface and concluded that the
flow and heat transfer rates have smaller values along the cone surface, as compared to the wedge
surface. The study of Kafoussias [7] is related to the isothermal vertical cone. He grasped from the
results, that bouncy parameter and Schmidt number strongly affect the heat and mass transfer rates.

Yih [8] studied the radiation effects along a truncated isothermal cone and found the significant
contribution in the enhancement of Nusselt numbers. Behrang et al. [9] performed heat transfer
analysis along a vertical cone saturated in a porous medium. He established a new approach named the
hybrid neural network-particle swarm optimization method and concluded that values of the Nusselt
numbers found a good agreement with the numerically computed values. Cheng [10] discussed
natural convection flow of Newtonian fluid along the non-isothermal permeable vertical cone with
suction and variable properties. Through results, he concluded that the Nusselt number becomes
high with the increase of suction and viscosity variation parameters. Duwairi et al. [11] considered
magnetohydrodynamic (MHD) mixed convection flow over a cone and observed that the Nusselt
number increases with the increase of cone angle in a porous medium. Elbashbeshy et al. [12] examined
natural convection flow phenomena along a vertical circular cone in the presence of pressure work,
variable heat flux and heat generation. They observed that the skin friction increases, and the Nusselt
number decreases with the increments in heat generation parameters. Braun et al. [13] studied free
convection similarity flows along the families of bodies with closed lower ends and observed that the
body shape parameter enhances the heat transfer rate. Grosan [14] examined free convection flow
over a vertical cone in a viscoelastic fluid with a heat source in a porous medium. Chamkha et al. [15]
discussed the effects of a combined chemical reaction and pressure work in natural convection flow.
They found that the Nusselt number decayed with the enhancement of heat generation, chemical
reaction parameter, and the Schmidt number. Sohouli et al. [16] analyzed the free convection analytically
by using the Homotopy Analysis Method (HAM) in the Darcian fluid along a vertical cone.

Several researchers and scientists examined different techniques and models to explain the heat
transfer phenomena of nanofluid. There are two types of models available in the literature, namely,
the homogenous and the non-homogenous. Among homogenous theoretical models, the Buongiorno
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transport model [17,18] and Tiwari and Das model [19] are the most famous ones. Buongiorno (2006)
developed a theoretical model for convective transport in nanofluid by incorporating Brownian motion
and thermophoresis effects, whereas thermophysical properties of the nanoparticles were introduced
by Tiwari and Das [19] in their proposed model.

In the recent past, attention has been given to the boundary layer flow of nanofluid over a cone.
Mahdy [20] numerically computed the Sherwood and Nusselt numbers for the case of natural convection
flow along a vertical cone. He noticed with the variation of Brownian motion and thermophoresis
parameters, the Nusselt number decreased and the Sherwood number increased. Behseresht et al. [21]
discussed the free convection flow of nanofluid along a vertical cone using the Buongiorno model in a
porous medium. They noticed that the change in the heat transfer rate is negligible due to the migration
of nanoparticles in comparison with convection and heat conduction phenomenon. Noghrehabadi
et al. [22] discussed the natural convection flow of a nanofluid past an isothermal vertical cone in a
non-Darcy porous medium and noted that both heat and mass transfer rates reduce with increasing
non-Darcy parameters. Keshtkar and Hadizadeh [23] investigated boundary layer nanofluid flow along
a vertical cone in a porous medium. Fauzi et al. [24] studied mixed convection nanofluid flow along a
vertical cone. In a series of papers, Khan et al. [25,26] presented mathematical models to investigate
the natural convection flow of a water-based nanofluid containing gyrotactic microorganisms over
a truncated cone with a convective boundary condition at the surface. They found that in case of
non-Newtonian nanofluids, the local Nusselt and the local Sherwood numbers are found to be higher
for dilatant nanofluids than pseudoplastic and Newtonian fluid.

Straughan [27] investigated thermal convection phenomena with the Cattaneo–Christov heat flux
model. Tibulle and Zampoli [28] examined the Cattaneo–Christov heat flux model for incompressible
fluid flows. Kumar et al. [29] studied the MHD flow over a cone and a wedge with the Cattaneo–Christov
heat flux model and shows that the heat transfer rate in the fluid flow over a cone is higher than that of
the flow over a wedge. Further, numerous researchers [30–35] used the Cattaneo–Christov heat flux
model to formulate energy equations and discuss the flow and heat transfer phenomenon for different
types of non-Newtonian fluids.

With such an intensive literature review, we came to know that a study on natural convection
flow along a vertical cone under the effects of Brownian motion, thermophoresis parameter, buoyancy
force and the presence of Cattaneo–Christov heat flux model, has not yet been examined. To deal
with this theoretical investigation, self-similar transformations are used and obtained by a coupled
system of non-linear ordinary differential equations. The problem is solved numerically by applying
the Keller-box scheme [36,37]. The impact of different involved parameters on the concentration,
temperature and velocity profiles, Nusselt number, Sherwood number and skin friction are presented
through graphs. The numerical values of the Nusselt and the Sherwood numbers are computed and
reported in the form of Tables.

2. Mathematical Formulation

Steady two-dimension flow problem along a vertical cone of a circular base with radius r is
considered. The symbol γ is used to represent the internal half-angle cone. The temperature and
concentration at the surface of the circular cone are kept constant, Tw i.e., (Tw > T∞) and Cw(Cw > C∞).
The symbols T∞ and C∞ are used to represent the constant ambient temperature and concentration far
away from the surface. The flow is developed in an upward direction. The x-axis is taken along the
surface of the cone, and the y-axis is taken normal to it as depicted in Figure 1.
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Figure 1. Flow geometry and the coordinate system. 
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Figure 1. Flow geometry and the coordinate system.

Brownian motion and thermophoresis effects of nanoparticles are considered, which are studied
using the Buongiorno nanofluid model. According to the Buongiorno’s model [21,22], the mass,
momentum and energy conservation laws after the consideration of the above assumptions are
written as:

Mass
∂(ru)
∂x

+
∂(rv)
∂y

= 0, (1)

Momentum

u
∂u
∂x

+ v
∂u
∂y

= v
∂2u

∂y2 + gβ(T − T∞). (2)

The generalized heat and mass flux models for the thermal and concentration diffusions are
commonly termed as Cattaneo–Christov heat and mass flux models. These models are defined as:

q + λE

(
∂q
∂t

+ V.∇q− q.∇V + (∇.V)q
)
= −κ∇T, (3)

J + λC

(
∂J
∂t

+ V.∇J− J.∇V + (∇.V)J
)
= −Dm∇C, (4)

where λE and λC are the relaxation time parameter for heat flux and mass flux, k represents the thermal
conductivity, and Dm is used to represent the mass diffusion coefficient. The above-generalized flux
models become to Fourie and Fick’s laws, if λE = 0, and λC = 0, that is:

q + λE(V.∇q− q.∇V) = −κ∇T, (5)

J + λC(V.∇J− J.∇V) = −Dm∇C. (6)

Hence after the incorporation of Cattaneo–Christov heat and mass flux models, energy and
concentration equations can be written as [19,20]:

Energy

u
∂T
∂x

+ v
∂T
∂y

+ λEφE = α
∂2T

∂y2 + τ

DB
∂T
∂y
∂C
∂y

+
DT

T∞

(
∂T
∂y

)2, (7)

Concentration

u
∂C
∂x

+ v
∂C
∂y

+ λCφC = DB
∂2T

∂y2 +
DT

T∞
∂2T

∂y2 , (8)

where

φE =

(u∂u
∂x

+ v
∂u
∂y

)
∂T
∂x

+

(
u
∂v
∂x

+ v
∂v
∂y

)
∂T
∂y

+ 2uv
∂2T
∂x∂y

+ u2 ∂
2T

∂x2 + v2 ∂
2T

∂y2

. (9)



Symmetry 2019, 11, 1363 5 of 13

and

φC =

(u∂u
∂x

+ v
∂u
∂y

)
∂C
∂x

+

(
u
∂v
∂x

+ v
∂v
∂y

)
∂C
∂y

+ 2uv
∂2C
∂x∂y

+ u2 ∂
2C

∂x2 + v2 ∂
2C

∂y2

. (10)

The used symbols are defined as:
DT : Thermophoretic diffusion coefficient; α : Thermal diffusivity;
DB: Brownian diffusion coefficient; g : Gravitational acceleration;
τ : The ratio of heat capacity of a

nanoparticle to the base fluid;
C Concentration;

T Temperature;
The local radius r of the cone surface is described as r(x) = xSinγ, as shown in Figure 1.

The appropriate boundary conditions are written as:

y = 0 : u = 0, v = 0, C = Cw, T = Tw, y→∞ : u = 0, C = C∞, T = T∞ . (11)

The stream function in the polar form is defined as rv = −∂ψ/∂x , ru = ∂ψ/∂y, which satisfies
the continuity equation identically. To achieve the dimensionless form, the following transformations
are utilized (see [6]):

ξ = x = x
l , r = r

l , η = ξ−
1
4

y
l Gr

1
4 , u =

ρl
µ Gr−

1
2 u , v =

ρl
µ Gr−

1
4 (v),

r(ξ) = ξSinγ, Pr = ν
α ,ϕ(η) = C−C∞

Cw−C∞ ,θ(η) = T−T∞
Tw−T∞ , ψ(η) = ξ

3
4 r f (η),

(12)

which transforms the governing PDEs (2)–(8) to dimensionless ODEs i.e.,

f ′′′ +
7
4

f f ′′ −
1
2

f ′2 + θ = 0, (13)

1
Pr
θ′′ +

7
4

fθ′ − δ1

((35
8

)
f f ′θ′ +

(49
16

)
f 2θ′′

)
+ Nbθ′ϕ′ + Ntϕ′2 = 0, (14)

1
Le

(
ϕ′′ +

Nt
Nb

θ′′
)
+

7
4

fϕ′ − δ2

((35
8

)
f f ′ϕ′ +

(49
16

)
f 2ϕ′′

)
= 0, (15)

where
Gr = gβ(Tw−T∞)l3

ν2 , Le = ν
DB

, Nb =
τDB(Tw−T∞)

ν , Nt = τDT(Cw−C∞)
T∞ν ,

Pr = ν
α , δ1 = λEν/l2

√
Gr/x, δ2 = λCν/l2

√
Gr/x,

(16)

are the Grashof number, Lewis number, Brownian motion parameter, thermophoresis parameter, and
Prandtl number respectively. Accordingly, the boundary conditions are also transformed and written as

f (0) = 0, f ′(0) = 0, ϕ(0) = 1, θ(0) = 1,
f ′(∞)→ 0, ϕ(∞)→ 0, θ(∞)→ 0.

(17)

The aforementioned prime symbol “ ‘ ” is used to represent the differentiation with respect to η.
The wall shear stress (τw = µ(∇u )y=0,) the surface heat flux (qw = −κ(∇T)y=0) and the surface mass
flux (qm = −DB(∇C)y=0) are the quantities of physical interest. The coefficient of skin friction, the
Nusselt number and the Sherwood number in the non-dimensional form are

C f = C f x(Gr/x)
1
4 = f ′′ (0),

Nu = −Nux
(
Grx3

)− 1
4 = −θ′(0), Sh = −Shx

(
Grx3

)− 1
4 = −ϕ′(0),

(18)

where C f x = τw/ρU2, Nux = xqw/κ(Tw − T∞) and Shx = xqm/DB(Cw −C∞) denote the coefficient of
skin friction, the Nusselt number, and the Sherwood number respectively.
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3. Method of Solution

The Keller-box [36,37] method, based on the finite difference scheme, is used to find the solution
in numerical form for Equations (13)–(15) with the given boundary conditions (Equation (17)).
The implementation of the Keller-box method can be described in the following steps:

(i) The higher-order differential equations are transformed into the first-order. For this purpose, lets
us consider

f ′ = U, f ′′ = V, θ′ = P, φ′ = Q,

then Equations (13)–(15) can take the following form

V′ +
7
4

f V −
1
2

U2 + θ = 0,

V′ +
7
4

f V −
1
2

U2 + θ = 0,

1
Pr

P′ +
7
4

f P− δ1

(35
8

f UP +
49
16

f 2P′
)
+ NbPQ + NtQ2 = 0,

1
Le

(
Q′ +

Nt
Nb

P′
)
+

7
4

f Q− δ2

((35
8

)
f UQ +

(49
16

)
f 2Q′

)
= 0,

and the boundary conditions are

f = 0, U = 0, θ = 1, φ = 1 at η = 0,

f = 0, U = 0, θ = 1, φ = 1 at η = 0,

U = 0, θ = 0, φ = 0 as η→∞.

(ii) The derivatives are discretized by the central difference formula

() j− 1
2
=

1
h

(
() j − () j−1

)
,

and the functions are replaced by their means value like

() j− 1
2
=

1
2

(
() j + () j−1

)
.

(iii) The discretized nonlinear algebraic equations are linearized with the help of Newton’s technique.
For this purpose, the functions at (i + 1)th iteration are written as

()i+1 = ()i + δ()i,

where δ()i represents the small increment in the function’s values. The second and higher orders’
terms in δ()i are neglected.

(iv) Linearized algebraic equations are finally solved through block-tridiagonal elimination method.

The present results of the skin friction coefficient C f x(Gr/x)
1
4 and heat transfer rate Nux

(
Grx3

)−1/4

have been compared with the available results of Yih et al. [8] in Table 1, and excellent agreement is
achieved. This validates our current solution scheme and allows for further analysis.
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Table 1. Comparison of the current solution with the already existing results.

Pr
f”(0, 0) −θ

′

(0, 0)

Present Yih et al. [8] Present Yih et al. [8]

0.0001 1.452616 1.6006 0.033845 0.0079
0.001 1.440436 1.5135 0.038402 0.0246
0.01 1.348483 1.3551 0.075460 0.0749
0.1 1.095916 1.0960 0.211345 0.2116
0.7 0.819591 - 0.451095 -
1 0.769428 0.7699 0.510399 0.5109

10 0.487697 0.4877 1.033989 1.0339
100 0.289635 0.2896 1.922854 1.9226

1000 0.166145 0.1661 3.470171 3.4696
10000 0.094042 0.0940 6.200679 6.1984

4. Results and Discussion

The graphical representations of the dimensionless velocity f ′(η), temperature θ(η), and
nanoparticle concentration ϕ(η) profiles, in addition to the local Sherwood number Sh = −ϕ′(0)
and local Nusselt number Nu= = −θ′(0) are made in this Section. The impact of the involved
parameters on the graphs of the quantities named above are discussed in detail. Some numerical values
of Sh and Nu against various values of parameters γ1, γ2, Nb, Le, Nt, and Pr are given in Tables 2–4.
Table 2 reveals that the Nu reduces with the increase of Nt and Nb; however, Sh rises with increasing
Nt and Nb. Table 2 shows that Sh decreases for high values of Nt and Nb. Table 3 provides numerical
results for the impact of Pr and Le on heat transfer rate Nu and mass transfer rate Sh. It is noted that
Nu decreases and Sh increases with increasing Pr and Le. Table 4 is prepared for the numerical data of
the local Nusselt number Nu and Sherwood number Sh for various values of the thermal relaxation
parameter δ1 and concentration relaxation parameter δ2. It is observed that Nu has lower values when
the larger values of δ1 and δ2 are taken. It is further observed that numerical values of Sh are higher
for increasing values of δ2 and lower for higher values of δ1.

Table 2. The Nu and Sh values for different Nt and Nb when Le = Pr = 1.0, δ1 = δ2 = 0.1.

Nt/Nb
0.1 0.2 0.3 0.4 0.5

Nu Sh Nu Sh Nu Sh Nu Sh Nu Sh

0.1 0.47256 0.29844 0.45902 0.10786 0.44588 −0.06091 0.43312 −0.2091 0.42074 −0.33788
0.2 0.45094 0.41891 0.43785 0.33380 0.42515 0.25910 0.41284 0.19421 0.40089 0.13854
0.3 0.42988 0.46077 0.41724 0.4106 0.40499 0.36703 0.39311 0.32968 0.38161 0.29816
0.4 0.40938 0.48295 0.39720 0.45007 0.38540 0.42190 0.37396 0.39814 0.36290 0.37853
0.5 0.38947 0.49724 0.37774 0.47459 0.36639 0.45551 0.3554 0.43978 0.34476 0.42718

Table 3. Nu and Sh data for different Pr and Le when Nt = Nb = δ1 = δ2 = 0.1.

Pr/Le
2 3 5

Nu Sh Nu Sh Nu Sh

2 0.54899 0.44100 0.59205 0.37685 0.63310 0.30480
3 0.53896 0.61442 0.57534 0.56004 0.6035 0.50459
5 0.52795 0.84874 0.55651 0.80533 0.5693 0.76937
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Table 4. Nu and Sh values for different γ1 and γ2 when Nt = Nb = 0.1, Pr = Le = 1.0.

δ1→/δ2↓
0.0 0.2 0.3 0.4

Nu Sh Nu Sh Nu Sh Nu Sh

0.0 0.47432 0.29986 0.47140 0.29258 0.47015 0.28898 0.46904 0.28545
0.2 0.47384 0.30440 0.47091 0.29714 0.46966 0.29351 0.46855 0.28992
0.3 0.47358 0.30685 0.47064 0.29961 0.46939 0.29597 0.46827 0.29235
0.4 0.47331 0.30945 0.47036 0.30221 0.46910 0.29857 0.46798 0.29493

Figure 2 illustrates the impact of thermal and concentration relaxation parameters δ1 and δ2 on the
dimensionless profiles i.e., ′(η), θ(η), and ϕ(η). It is observed that the thermal relaxation parameter
reduces the velocity profile, whereas no significant change occurs in the case of the concentration
relaxation parameter. It is further observed the temperature within the nanofluid reduces with
increasing the values of δ1, but enhancement is observed in the dimensionless concentration profile.
Figure 2 also shows that δ2 temperature profile increases whereas concentration distribution decreases.
Additionally, reduction in the concentration profile is more prominent, as compared to enhancement in
the temperature distribution. Overall, temperature and concentration distributions within nanofluid
become higher in the case of δ2 and δ1.

Figure 3 depicts the influence of the parameters Nb and Nt on f ′(η), θ(η), and ϕ(η) distributions.
From Figure 3, it is seen that by increasing Nb and Nt parameters, the velocity inside the boundary
layer decreases. Figure 3 also shows that an increase in the parameters Nb and Nt enhances the
dimensionless temperature, whereas dimensionless concentration shows the same behavior, as observed
in temperature distribution in the case of Nt and the opposite behavior observed in the case of Nb.

The graphical results for Nu and Sh are plotted against Nt for variation of Nb, Pr and Le and
shown in Figures 4 and 5. Figure 4 shows that Nu decreases with the increasing Nb while increasing
with increasing Pr and Le. Figure 5 reveals that Sh rises with increasing Nb and Le and reduces with
the variation of Pr, whereas, an enhancement in this profile is more prominent in the case of Nb and Le.
This is due to the reason that the increase in Le is equivalent to a decrease in Brownian diffusion, and
as a result, dimensionless concentration reduces and the mass transfer rate ϕ′(0) increases.
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Figure 2. Effect of δ1& δ2 on velocity, temperature, and concentration profiles.
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Figure 4. Influence of Pr, Le & Nb on temperature gradient against Nb.
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Figure 5. Variation of concentration gradient against Nt for different Pr, Le & Nb.

Figures 6 and 7 analyze the impact of the thermal and concentration relaxation parameters
δ1and δ2 on Nu and Sh against Nt. Figure 6 shows that by increasing the parameters δ1 and δ2, Nu
reduces and the change in the values of Nu is more prominent in the case of δ1, whereas Figure 7
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depicts that concentration of nanofluid particle at the surface increases with the increasing values of δ2

and opposite behavior is observed in case of δ1.
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In Cattaneo–Christov heat and flux models, heat flux and mass flux are dependent upon the
temperature gradient, concentration gradient, and the fluid velocity.

5. Concluding Remarks

In this paper, natural convection flow along a circular cone is investigated theoretically in the
presence of Brownian motion and thermophoresis parameters of nanoparticles. Implicit finite difference
technique is used to solve the transformed ordinary differential equations along with the boundary
conditions. Computational results are displayed for essential quantities of physical nature such as
velocity, temperature, concentration profiles, Nusselt number and Sherwood number. From this study,
the obtained results are concluded here:

• With the increase of Brownian motion parameters, Sherwood number increases, whereas it gains
reverse behavior against thermophoresis parameter.

• With the increase of thermophoresis and Brownian motion parameters, Nusselt number decreases.
• Nusselt number decreases by increasing Prandtl and Lewis numbers.
• Sherwood number increases by increasing Lewis numbers and decreasing Prandtl numbers.
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• Nusselt number decreases by increasing thermal and concentration relaxation parameters
(δ1 and δ2).

• Sherwood number increases by increasing concentration relaxation parameter (δ2).
• Sherwood number decreases by increasing thermal relaxation parameter (δ1).
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Nomenclature

DT thermophoretic diffusion coefficient;
DB Brownian diffusion coefficient;
T Temperature;
α thermal diffusivity;
g Gravitational acceleration;
C Concentration;
Nb Brownian motion parameter
Nt thermophoresis parameter
T Temperature of the fluid
T∞ Ambient fluid temperature
Tw Surface temperature
C Solutal concentration
C∞ Ambient solutal concentration
Cf Skin friction coefficient
Cw Solutal concentration at the wall
Nu Nusselt number
Pr Prandtl number
Sc Schmidt number
Sh Sherwood number
u, v Dimensional velocity components in x and y directions
u, v Dimensionless velocity components in x and y directions
x, y Coordinates along and normal to the surface in dimensional form
x, y Coordinates along and normal to the surface in dimensionless form
r Radius of the base of cone
Gr Grashof number
Le Lewis number
Greek symbols
γ Internal half angle of the cone
τ The ratio of heat capacity of a nanoparticle to the base fluid
φ Dimensionless concentration
τw Wall shear stress
ψ Stream function
v Kinematic viscosity
µ Dynamic viscosity
ρ Fluid density
c Relaxation time of the mass flux
λE Relaxation time of the heat flux
δ1 Dimensionless relaxation time of the heat flux
δ2 Dimension relaxation time of the mass flux
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