
symmetryS S

Article

A Robust and High Capacity Data Hiding Method for
H.265/HEVC Compressed Videos with Block
Roughness Measure and Error Correcting Techniques

Kusan Biswas

School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
kusan91_scs@jnu.ac.in

Received: 7 September 2019; Accepted: 18 October 2019; Published: 3 November 2019
����������
�������

Abstract: Recently, the H.265/HEVC video coding has been standardised by the ITU-T VCEG
and the ISO/IEC MPEG. The improvements in H.265/HEVC video coding structure (CTU, motion
compensation, inter- and intra-prediction, etc.) open up new possibilities to realise better data hiding
algorithms in terms of capacity and robustness. In this paper, we propose a new data hiding method
for HEVC videos. The proposed method embeds data in 4× 4 and some selected larger transform
units. As theory of Human Visual System suggests that human vision is less sensitive to change in
uneven areas, relatively coarser blocks among the 8× 8 and 16× 16 blocks are selected as embedding
destinations based on the proposed Jensen-Shannon Divergence and Second Moment (JSD-SM)
block coarseness measure. In addition, the SME(1,3,7) embedding technique is able to embed
three bits of message by modifying only one coefficient and therefore exhibits superior distortion
performance. Furthermore, to achieve better robustness against re-compression attacks, BCH and
Turbo error correcting codes have been used. Comparative studies of BCH and Turbo codes show
the effectiveness of Turbo codes. Experimental results show that the proposed method achieves
greater payload capacity and robustness than many existing state-of-the-art techniques without
compromising on the visual quality.

Keywords: data hiding; H.265/HEVC; robustness; coding theory

1. Introduction

Digital motion picture, colloquially known as video, has become one of the most popular media
in the global entertainment industry. It also has widespread use in IP telephony, surveillance and
audio-visual education. The growing dependence on Internet and ubiquitous availability of network
coverage through ADSL broadband, Wi-Fi, 3G and 4G LTE mobile Internet services together with
cheap data packages has enabled almost exponential growth in usage of popular social media and
content sharing services such as Facebook, YouTube, Instagram, Twitter, etc. The availability of high
speed mobile Internet and the convenience of handheld mobile devices has given rise to online
content sharing and streaming services such as Netflix, YouTube, Hulu, etc., which are rapidly
replacing the traditional cable and satellite TV services. Due to the ease and convenience with which
video contents can be downloaded and shared through social networking services over the Internet,
the industry feels the need control, manage and protect their copyrights of their intellectual property.
Specifically, the industry wishes: (1) to manage distribution rights of their video content to protect
their business interest; (2) to monitor and keep track of when, where, how many times and by whom
a copyrighted video has been downloaded, shared and streamed; and (3) to hyperlink the related
contents together to enhance the end-user experience. Data hiding in video is one of the possible
solutions that can fulfil the aforementioned objectives. Data hiding is the process of embedding

Symmetry 2019, 11, 1360; doi:10.3390/sym11111360 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-1225-7965
http://dx.doi.org/10.3390/sym11111360
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/11/1360?type=check_update&version=2

Symmetry 2019, 11, 1360 2 of 30

private information inside public medium by altering some of its features. Apart from content
protection and rights management, data hiding is also used in covert communication. The science of
covert communication by means of hiding secret information in a public carrier medium is known as
Steganography. In steganography, secret data are embedded in digital files in such a way that their
presence is not perceptible. The carrier file is called the cover medium. The idea of steganography
is to hide information inside cover medium such that its presence is not suspected in the first place,
and even if it is suspected, can not be extracted by an unintended recipient or eavesdropper without
the knowledge of a secret key. A successful steganography algorithm has to fulfil three main objectives:
(1) the change in the cover medium due to secret data embedding is not perceptible; (2) the purpose
and integrity of cover medium is maintained (e.g., a video cover file should be playable and not get
corrupted due to data embedding, or else will raise suspicion); and (3) data should be recoverable by
the intended recipient. In addition to these requirements, efforts are made to achieve high payload
capacity, lower distortion, total recover-ability of embedded data, better resilience against transmission
loss and security against statistical steganalysis attacks.

With growing popularity of online video, the demand for better video coding standard also arose.
The industry needed more efficient video coding with better visual quality and better compression ratio.
With the standardisation of H.264/AVC (technically known as ISO/IEC 14496-10 and ITU-T H.264) by
ITU-T in 2003, the demands of the industry and the end users were partially met. Since then, with the
increase in Internet penetration, Internet bandwidth and growing popularity of online streaming
services (e.g., Youtube, Netflix, Hulu, etc.) and mobile video telephony, the industry has started to
demand for even better video quality with better coding efficiency than the previous generation coding
standards. Moreover, with large screen displays becoming ubiquitous, end users now demand beyond
HD resolutions such as 4K (3840× 2160 and 4096× 2160) and 8K (7680× 4320). To fulfil these demands,
the MPEG and ITU-T VCEG have designed a new video coding standard called the H.265 High
Efficiency Video Coding, commonly referred to as H.265/HEVC or MPEG-H Part 2. The first version
of the H.265/HEVC standard was formally published in 2013. Since then, it has undergone several
revisions and several extensions addressing specific applications have been added to it. The latest
version, i.e., version 4, has been approved by the ITU-T in 2016. The H.265/HEVC standard has been
designed to address four main issues: better compression ratio at the same perceptual quality compared
to H.264/AVC, higher supported video resolution, better usage of parallel processing capabilities
of modern CPUs/GPUs and less computationally intensive decoding. Since its standardisation,
H.265/HEVC has been found to provide 50% better compression ratio than H.264/AVC at the same
quality [1]. Due to this significant savings in bitrate, HEVC is already seeing widespread adoption in
the industry and it is gradually replacing H.264/AVC in many application domains. In the coming
years, H.265/HEVC is expected to be ubiquitous along with H.264/AVC if not totally replace the
latter. Due to foreseen future popularity and widespread adoption of H.265/HEVC, and due to
the importance of better data hiding methods for this new video coding technology, in this paper,
we present a robust and secure data hiding method that achieves much larger payload capacity than
earlier state-of-the-art methods, yet does not compromise on visual quality.

The rest of the paper is organised as follows. In Section 2, we discuss the related works and their
weaknesses that motivate this research work. Section 3 gives a brief overview of H.265/HEVC and
discusses its improvements and new features over the older video coding standards, especially the
H.264/AVC. In Section 4, we discuss the theories of data encoding that have used in the proposed
method. In Section 5, the proposed data hiding framework is presented. Next, in Section 6,
the experimental results are presented and discussed. Finally, in Section 7, the paper is concluded
with remarks on further research in this area.

2. Related Works and Motivation

In literature, many data hiding schemes (both steganographic and watermarking) have been
proposed for H.264/AVC [2–10]. Recently, after the final standardisation of H.265/HEVC, many

Symmetry 2019, 11, 1360 3 of 30

data hiding methods [2,11–13] have been proposed for this new standard. Similar to data hiding
methods in image and early video compression standards such as H.264/AVC, data hiding methods
for H.265/HEVC embed data by modifying one or more types compression features available in the
H.265 coding standard. These include the quantised DCT and/or DST coefficients (i.e., the QTCs),
motion vectors (MVs), coding block size pattern, intra-prediction modes, etc. Selection of appropriate
type and number of embedding venue (e.g., QTCs) is done according to proposed models that aim
to minimise embedding distortion and to increase payload. In addition to these, robustness against
common attacks such as re-compression (i.e., re-quantisation) and image/video processing attacks (e.g.,
Gaussian filter, salt and pepper noise) are attempted to ensure by introducing redundancy in embedded
data using error correcting codes such as Cyclic Redundancy Check (CRC), Hamming codes, BCH
codes, Reed–Solomon codes, etc. In the following, we discuss some notable HEVC data hiding
techniques proposed in the literature, whose merits and shortcomings motivate our work.

Chang et al. [2] discussed a method that embeds data only in the intra-coded frames of HEVC
video sequence. It embeds data by introducing perturbation to the quantised DCT and DST coefficients
of the luma prediction blocks. However, since only one feature is used (QTCs) in I-frames and since
there is only one I-frame in each GOP of a video sequence, the overall payload capacity has room
for improvement. Liu et. al. [12] discussed a data hiding method that avoids intra-frame distortion
drift by selecting embedding destinations according to three conditions. These destinations are the
DST coefficients in the luma channel of 4× 4 blocks in I-frames. This method also suffers from low
payload capacity as it embeds data only in the 4× 4 blocks of only the I-frames. In [13], the authors
discussed a scheme that embeds data in the non-zero quantised (NNZ) transform coefficients of the
4× 4 intra-predicted blocks of the luminance channel. In this method, candidate 4× 4 blocks for
embedding are selected based on a number of criterion: number of NNZ coefficients, smoothness,
motion information and quality. Next, a bipolar sequence of data is embedded in each candidate block
by perturbing the values of the first two NNZ AC coefficients. The authors of [14] proposed a method
that embeds data in 4× 4 DCT blocks of some selected frames that met their proposed conditions
to avoid distortion. Shamir’s (t,n)-threshold secret sharing claimed to have improved robustness
of the method, but the payload capacity is very low. In [15], the authors proposed a watermarking
method for H.265/HEVC videos that embeds data in the LSBs of QTCs which are selected based on
pre-defined thresholds. This method suffers from low payload capacity and robustness. The authors
of [4] proposed a method that aims to minimise distortion by embedding data in paired-coefficients of
the 4× 4 blocks in selected frames. The authors also used BCH error correction coding to improve
robustness. This method achieves good robustness but payload capacity is unsatisfactory. In [16],
the authors proposed a method for HEVC videos that embeds data the 4 × 4 luma discrete sine
transform blocks that meet their proposed grouping criteria for lower distortion. The authors also
used BCH error correcting code to achieve robustness against re-quantisation attacks. However, both
payload capacity and robustness have rooms for further improvement as only the 4× 4 blocks are
used as data embedding venues. Gaj et al. [17] proposed a watermarking technique that embeds
data in the non-zero transform coefficients of the “motion-coherent” luma transform blocks that
are selected based motion-vector information from neighbouring P-frames. This method yields
good visual quality and robustness against salt and pepper, median-filter and Gaussian-filter attacks.
However, payload capacity is not satisfactory as it embeds data in QTCs of only the of 4× 4 blocks.
Several techniques [18,19] have been proposed that embeds data in coding block size pattern. In [18],
data are encoded in the video stream by adaptively manipulating the HEVC block size decision.
The RDO (Rate Distortion Optimiser) module of HEVC estimates the cost function of distortion
and bits required for all possible combinations of block sizes and takes decision what block size to
allocate in a CTB structure in order for optimum compression ration with an specified video bit-rate.
In [18], RDO is overridden and block size decision is manipulated to encode data bits in block-size
pattern. Some additional data are embedded in the non-zero QTCs using odd–even LSB embedding
technique. This method yields acceptable distortion and payload capacity, but the authors have not

Symmetry 2019, 11, 1360 4 of 30

considered robustness in this work. Yang et al. [19] proposed a multilevel data hiding technique for
HEVC videos that is based on PU partition modes in P-frames. This technique work in two passes.
The first pass records the PU partition modes selected by the H.265 algorithm. The second pass is
the modification pass. This pass forces each PU mode into one of the encoding groups to reflect the
presence of the binary data bits. Finally, the modified PU partition modes are used in rest of the HEVC
encoding process. This technique achieves good payload capacity at acceptable level of bit-rate increase.
However, robustness of embedded data has not been evaluated by the authors. Apart from the above,
several techniques [20–22] have been proposed in the literature that use the motion vector feature of
HEVC as information hiding venue. In [20], the authors proposed a reversible data hiding method
that embeds data in pairs of MVs by reducing difference expansion coefficient. The actual embedding
is done by substituting the LSBs of the MVs. This technique yields good perceptual visual quality
and acceptable level of bit-rate increase, but robustness performance was not considered in the paper.
The authors of [22] proposed a data hiding technique that embeds in motion vector features of both
P-frames and B-frames in compressed video. To minimise perceptual distortion, a candidate subset
of MVs is selected based on prediction error. This approach yielded good distortion performance;
however, the authors did not consider robustness performance.

The research work in this paper is motivated by observations about the existing works in data
hiding in AVC and HEVC coded videos. Firstly, many data hiding methods have been developed
for the H.264/AVC and earlier video compression standards. The literature of methods developed
for H.264/AVC is very rich [3–10]. However, most of these existing methods cannot be applied to
H.265/HEVC due to many changes in coding structure and prediction algorithms, which are briefly
discussed in Section 3.1. Secondly, most of the aforementioned methods that use the QTCs as data
embedding venue, only embed data in the 4× 4 intra-predicted blocks and therefore suffer from low
payload capacity. Thirdly, many proposed techniques that utilise MV and block partitioning as data
embedding features do not consider robustness as a performance objective. The main objectives of
this research work are to increase payload capacity by embedding data in larger prediction (8× 8 and
16× 16 in addition to the 4× 4 blocks) unit in CTBs, to improve visual quality by minimising distortions
caused by data embedding and to increase robustness by using powerful error correcting codes.
The main contributions of the paper are as follows. Firstly, the Jensen-Shannon Divergence and Second
Moment based block coarseness measure (JSD-SM) is proposed. JSD-SM coarseness measure selects the
relatively more coarse blocks among all 8× 8 and 16× 16 luma TUs. Secondly, increased robustness is
achieved using Turbo coding . Multiple sets of parameters of Turbo coding are proposed, evaluated
and the results are compared to BCH codes. Thirdly, the Simplified Matrix Encoding, i.e., SME(1, 3, 7)
data embedding technique, is able to embed three data bits in a block of seven quantised transform
coefficients (QTCs) by modifying only one QTC. Hence, it reduces change density (i.e., number of
modification per embedded data bit) of the proposed method.

3. Overview of H.265/HEVC Video Coding Standard

The H.265/HEVC video coding takes a hybrid approach of intra- and inter-frame prediction,
motion compensation and 2-D discrete transform. The algorithm takes raw frames as input and divides
the sequence into groups of pictures (GOP). Each GOP contains a pre-defined number of frames.
The first frame of a GOP is coded using intra-picture prediction, i.e., using redundant spatial data
within the same frame. The rest of the frames in a GOP are coded using inter-picture prediction in
either of the two modes: (1) prediction mode, in which the ith frame is coded with taking advantage of
temporal redundancy with the (i− 1)th frame, resulting in P-frames; and (2) bi-directional prediction
mode, which takes in to account both (i− 1)th and (i+ 1)th frame while coding the ith frame and results
in B-frames. Therefore, each GOP contains one I-frame in the beginning and the rest of the frames are
either P-frames or B-frames. Inter-picture (P and B frames) encoding process involves finding motion
information, i.e., motion vectors associated to each block of the current picture with respect to the
reference frame, i.e., the previous I-frame. This process is known as motion compensation and is based

Symmetry 2019, 11, 1360 5 of 30

on the idea that in a video sequence, many blocks in the picture are expected to move with respect to
the I-frame, and therefore, to encode the next frames, it suffices to encode which blocks moved how
much and in which direction, rather than encoding all the blocks themselves. The residual signal,
i.e.,the difference between the original blocks and its predicted version, is mathematically transformed
using a spatial transform. The transform coefficients are then passed through a series of processes
involving scaling, quantisation and entropy coding. The final output is then stored or transmitted in a
format specified by the HEVC standard. Figure 1 shows the overall encoding process.

General Coder
Control

Transform, Scaling
& Quantization

Intra-picture
estimation

Intra-picture
prediction

Motion
estimation

Motion
compensation

Scaling and
Inverse transform

Filter control
analysis

Deblocking and
SAO filters

Header formatting
and

CABAC

-

-

General control
data

Quantized Transform
coefficients

Intra prediction
data

Filter control
data

Motion data

Coded
Bitstream

Decoded picture
buffer

Inter/Intra
selection

Figure 1. Overall HEVC encoding process.

3.1. Improvements in H.265/HEVC over H.264/AVC

3.1.1. Coding Unit

Each picture in RAW video sequence is partitioned into fixed sized blocks. In older standards (e.g.,
from H.261 to H.264/AVC), these blocks are called macroblocks (MBs). H.262 standard specified
fixed 16× 16 macroblocks. H.264/AVC macroblocks consist of 16× 16 block of luminance (henceforth
referred to as luma) samples and two corresponding blocks of chrominance (henceforth referred to as
chroma) samples of size 8× 8 in the typical 4:2:0 colour sampling arrangement. The sub-sampled 8× 8
blocks contain samples of Cb and Cr components of the YCbCr colour space. Figure 2 summarises the
macroblock sizes supported in H.264/AVC. MBs are the basic coding units in all video standards prior
to H.265/HEVC. HEVC supports larger than 16× 16 variable sized MBs and specifies a completely
different tree-like organisation of MBs. The data structure in HEVC that is analogous to MBs
in H.264, is the coding tree unit (CTU). The sizes of CTUs can be larger than the MBs of H.264.
HEVC CTUs contain luma and chroma coding tree blocks (CTB) whose size can be as large as 64× 64.
HEVC supports these blocks to be further divided and arranged in quad-tree structure, as shown in
Figure 3.

Symmetry 2019, 11, 1360 6 of 30

16x16 16x8 8x16 8x8

8x4 4x8 4x4

Figure 2. H.264/AVC macroblocks and their segmentation into smaller blocks.
1656 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

Fig. 4. Subdivision of a CTB into CBs [and transform block (TBs)].
Solid lines indicate CB boundaries and dotted lines indicate TB boundaries.
(a) CTB with its partitioning. (b) Corresponding quadtree.

further splitting is possible, as signaled by a maximum depth
of the residual quadtree indicated in the SPS, each quadrant
is assigned a flag that indicates whether it is split into four
quadrants. The leaf node blocks resulting from the residual
quadtree are the transform blocks that are further processed
by transform coding. The encoder indicates the maximum and
minimum luma TB sizes that it will use. Splitting is implicit
when the CB size is larger than the maximum TB size. Not
splitting is implicit when splitting would result in a luma TB
size smaller than the indicated minimum. The chroma TB size
is half the luma TB size in each dimension, except when the
luma TB size is 4×4, in which case a single 4×4 chroma TB
is used for the region covered by four 4×4 luma TBs. In the
case of intrapicture-predicted CUs, the decoded samples of the
nearest-neighboring TBs (within or outside the CB) are used
as reference data for intrapicture prediction.

In contrast to previous standards, the HEVC design allows
a TB to span across multiple PBs for interpicture-predicted
CUs to maximize the potential coding efficiency benefits of
the quadtree-structured TB partitioning.

F. Slices and Tiles

Slices are a sequence of CTUs that are processed in the
order of a raster scan. A picture may be split into one or
several slices as shown in Fig. 5(a) so that a picture is a
collection of one or more slices. Slices are self-contained in
the sense that, given the availability of the active sequence
and picture parameter sets, their syntax elements can be parsed
from the bitstream and the values of the samples in the area of
the picture that the slice represents can be correctly decoded
(except with regard to the effects of in-loop filtering near the
edges of the slice) without the use of any data from other slices
in the same picture. This means that prediction within the
picture (e.g., intrapicture spatial signal prediction or prediction
of motion vectors) is not performed across slice boundaries.
Some information from other slices may, however, be needed
to apply the in-loop filtering across slice boundaries. Each slice
can be coded using different coding types as follows.

1) I slice: A slice in which all CUs of the slice are coded
using only intrapicture prediction.

2) P slice: In addition to the coding types of an I slice,
some CUs of a P slice can also be coded using interpic-
ture prediction with at most one motion-compensated
prediction signal per PB (i.e., uniprediction). P slices
only use reference picture list 0.

3) B slice: In addition to the coding types available in a
P slice, some CUs of the B slice can also be coded

Fig. 5. Subdivision of a picture into (a) slices and (b) tiles. (c) Illustration
of wavefront parallel processing.

using interpicture prediction with at most two motion-
compensated prediction signals per PB (i.e., bipredic-
tion). B slices use both reference picture list 0 and list 1.

The main purpose of slices is resynchronization after data
losses. Furthermore, slices are often restricted to use a maxi-
mum number of bits, e.g., for packetized transmission. There-
fore, slices may often contain a highly varying number of
CTUs per slice in a manner dependent on the activity in the
video scene. In addition to slices, HEVC also defines tiles,
which are self-contained and independently decodable rectan-
gular regions of the picture. The main purpose of tiles is to
enable the use of parallel processing architectures for encoding
and decoding. Multiple tiles may share header information by
being contained in the same slice. Alternatively, a single tile
may contain multiple slices. A tile consists of a rectangular
arranged group of CTUs (typically, but not necessarily, with
all of them containing about the same number of CTUs), as
shown in Fig. 5(b).

To assist with the granularity of data packetization, de-
pendent slices are additionally defined. Finally, with WPP, a
slice is divided into rows of CTUs. The decoding of each
row can be begun as soon a few decisions that are needed
for prediction and adaptation of the entropy coder have been
made in the preceding row. This supports parallel processing
of rows of CTUs by using several processing threads in
the encoder or decoder (or both). An example is shown in
Fig. 5(c). For design simplicity, WPP is not allowed to be
used in combination with tiles (although these features could,
in principle, work properly together).

G. Intrapicture Prediction

Intrapicture prediction operates according to the TB size,
and previously decoded boundary samples from spatially
neighboring TBs are used to form the prediction signal.
Directional prediction with 33 different directional orientations
is defined for (square) TB sizes from 4×4 up to 32×32. The

Figure 3. (Left) HEVC coding tree unit (CTU) and its division into smaller coding blocks (CB) and
transform blocks (TB); and (Right) the CTU quad-tree.

3.1.2. Motion Estimation

Motion estimation is the process of finding matching blocks of pixels in inter-frame coding.
In intra-frame coding, although there is no motion involved as the blocks are matched within
a single frame, the objective is same: to take advantage of data redundancy. Intra prediction
finds spatial redundancy, whereas inter-frame prediction estimates motion of pixel blocks to find
temporal redundancy between two consecutive frames. In intra-prediction, i.e., when utilising
spatial redundancy for compression within a I-frame, the H.264/AVC supports nine prediction
modes. These modes are shown in Figure 4. For large 16× 16 luma blocks, four4 prediction modes
are supported. H.265/HEVC significantly improved intra-prediction by introducing much finer
angles of supported directions. HEVC specifies 33 non-uniform angular prediction modes (Figure 5).
The angles are finer at near-horizontal and near-vertical angles and more coarse at diagonal angles.
This arrangement provides better statistical matches of blocks of pixels across frames.

568 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

of intra prediction modes, intra-frame sample prediction,
deblocking filtering, and context modeling in entropy coding
are modified to account for this mixture. The main idea is to
preserve as much spatial consistency as possible. It should be
noted that the specification of spatial neighbors in MBAFF
frames is rather complicated (please refer to [1]) and that
in Sections IV-G–L spatial neighbors are only described for
non-MBAFF frames.

Another important distinction between MBAFF and PAFF is
that in MBAFF, one field cannot use the macroblocks in the
other field of the same frame as a reference for motion prediction
(because some regions of each field are not yet available when
a field macroblock of the other field is coded). Thus, sometimes
PAFF coding can be more efficient than MBAFF coding (partic-
ularly in the case of rapid global motion, scene change, or intra
picture refresh), although the reverse is usually true.

During the development of the standard, MBAFF was re-
ported to reduce bit rates in the range of 14 to 16% over PAFF
for ITU-R 601 resolution sequences like “Mobile and Calendar”
and “MPEG-4 World News”.

G. Intra-Frame Prediction

Each macroblock can be transmitted in one of several coding
types depending on the slice-coding type. In all slice-coding
types, the following types of intra coding are supported, which
are denoted as Intra_4 4 or Intra_16 16 together with chroma
prediction and I_PCM prediction modes.

The Intra_4 4 mode is based on predicting each 4 4 luma
block separately and is well suited for coding of parts of a
picture with significant detail. The Intra_16 16 mode, on the
other hand, performs prediction of the whole 16 16 luma
block and is more suited for coding very smooth areas of a
picture. In addition to these two types of luma prediction, a
separate chroma prediction is conducted. As an alternative to
Intra_4 4 and Intra_16 16, the I_PCM coding type allows the
encoder to simply bypass the prediction and transform coding
processes and instead directly send the values of the encoded
samples. The I_PCM mode serves the following purposes.

1) It allows the encoder to precisely represent the values of
the samples.

2) It provides a way to accurately represent the values of
anomalous picture content without significant data expan-
sion

3) It enables placing a hard limit on the number of bits a
decoder must handle for a macroblock without harm to
coding efficiency

In contrast to some previous video coding standards (namely
H.263 and MPEG-4 Visual), where intra prediction has
been conducted in the transform domain intra prediction in
H.264/AVC is always conducted in the spatial domain, by
referring to neighboring samples of previously-coded blocks
which are to the left and/or above the block to be predicted.
This may incur error propagation in environments with trans-
mission errors that propagate due to motion compensation
into inter-coded macroblocks. Therefore, a constrained intra
coding mode can be signaled that allows prediction only from
intra-coded neighboring macroblocks.

(a) (b)

Fig. 10. (a) Intra_4�4 prediction is conducted for samples a-p of a block using
samples A-Q. (b) Eight “prediction directions” for Intra_4�4 prediction.

Fig. 11. Five of the nine Intra_4�4 prediction modes.

When using the Intra_4 4 mode, each 4 4 block is pre-
dicted from spatially neighboring samples as illustrated on the
left-hand side of Fig. 10. The 16 samples of the 4 4 block which
are labeled as a-p are predicted using prior decoded samples in
adjacent blocks labeled as A-Q. For each 4 4 block, one of nine
prediction modes can be utilized. In addition to “DC” prediction
(where one value is used to predict the entire 4 4 block), eight
directional prediction modes are specified as illustrated on the
right-hand side of Fig. 10. Those modes are suitable to predict
directional structures in a picture such as edges at various an-
gles.

Fig. 11 shows five of the nine Intra_4 4 prediction modes.
For mode 0 (vertical prediction), the samples above the 4 4
block are copied into the block as indicated by the arrows. Mode
1 (horizontal prediction) operates in a manner similar to vertical
prediction except that the samples to the left of the 4 4 block
are copied. For mode 2 (DC prediction), the adjacent samples
are averaged as indicated in Fig. 11. The remaining six modes
are diagonal prediction modes which are called diagonal-down-
left, diagonal-down-right, vertical-right, horizontal-down, ver-
tical-left, and horizontal-up prediction. As their names indicate,
they are suited to predict textures with structures in the specified
direction. The first two diagonal prediction modes are also illus-
trated in Fig. 11. When samples E-H (Fig. 10) that are used for
the diagonal-down-left prediction mode are not available (be-
cause they have not yet been decoded or they are outside of
the slice or not in an intra-coded macroblock in the constrained
intra-mode), these samples are replaced by sample D. Note that
in earlier draft versions of the Intra_4 4 prediction mode the
four samples below sample L were also used for some predic-
tion modes. However, due to the need to reduce memory access,

Figure 4. The nine intra-prediction modes for 4× 4 luma blocks in H.264/AVC.

Symmetry 2019, 11, 1360 7 of 30
SULLIVAN et al.: OVERVIEW OF THE HEVC STANDARD 1657

Fig. 6. Modes and directional orientations for intrapicture prediction.

possible prediction directions are shown in Fig. 6. Alterna-
tively, planar prediction (assuming an amplitude surface with a
horizontal and vertical slope derived from the boundaries) and
DC prediction (a flat surface with a value matching the mean
value of the boundary samples) can also be used. For chroma,
the horizontal, vertical, planar, and DC prediction modes can
be explicitly signaled, or the chroma prediction mode can be
indicated to be the same as the luma prediction mode (and, as a
special case to avoid redundant signaling, when one of the first
four choices is indicated and is the same as the luma prediction
mode, the Intra−Angular[34] mode is applied instead).

Each CB can be coded by one of several coding types,
depending on the slice type. Similar to H.264/MPEG-4 AVC,
intrapicture predictive coding is supported in all slice types.
HEVC supports various intrapicture predictive coding methods
referred to as Intra−Angular, Intra−Planar, and Intra−DC. The
following subsections present a brief further explanation of
these and several techniques to be applied in common.

1) PB Partitioning: An intrapicture-predicted CB of size
M×M may have one of two types of PB partitions referred
to as PART−2N×2N and PART−N×N, the first of which
indicates that the CB is not split and the second indicates that
the CB is split into four equal-sized PBs. (Conceptually, in this
notation, N = M/2.) However, it is possible to represent the
same regions that would be specified by four PBs by using
four smaller CBs when the size of the current CB is larger
than the minimum CU size. Thus, the HEVC design only
allows the partitioning type PART−N×N to be used when the
current CB size is equal to the minimum CU size. This means
that the PB size is always equal to the CB size when the
CB is coded using an intrapicture prediction mode and the
CB size is not equal to the minimum CU size. Although the
intrapicture prediction mode is established at the PB level, the
actual prediction process operates separately for each TB.

2) Intra−Angular Prediction: Spatial-domain intrapic-
ture prediction has previously been successfully used in
H.264/MPEG-4 AVC. The intrapicture prediction of HEVC
similarly operates in the spatial domain, but is extended
significantly—mainly due to the increased size of the TB
and an increased number of selectable prediction directions.
Compared to the eight prediction directions of H.264/MPEG-
4 AVC, HEVC supports a total of 33 prediction directions,
denoted as Intra−Angular[k], where k is a mode number from

2 to 34. The angles are intentionally designed to provide
denser coverage for near-horizontal and near-vertical angles
and coarser coverage for near-diagonal angles to reflect the
observed statistical prevalence of the angles and the effective-
ness of the signal prediction processing.

When using an Intra−Angular mode, each TB is predicted
directionally from spatially neighboring samples that are re-
constructed (but not yet filtered by the in-loop filters) before
being used for this prediction. For a TB of size N×N, a total
of 4N+1 spatially neighboring samples may be used for the
prediction, as shown in Fig. 6. When available from preceding
decoding operations, samples from lower left TBs can be used
for prediction in HEVC in addition to samples from TBs at
the left, above, and above right of the current TB.

The prediction process of the Intra−Angular modes can
involve extrapolating samples from the projected reference
sample location according to a given directionality. To remove
the need for sample-by-sample switching between reference
row and column buffers, for Intra−Angular[k] with k in the
range of 2–17, the samples located in the above row are
projected as additional samples located in the left column;
and with k in the range of 18–34, the samples located at the
left column are projected as samples located in the above row.

To improve the intrapicture prediction accuracy, the pro-
jected reference sample location is computed with 1/32 sample
accuracy. Bilinear interpolation is used to obtain the value
of the projected reference sample using two closest reference
samples located at integer positions.

The prediction process of the Intra−Angular modes is con-
sistent across all block sizes and prediction directions, whereas
H.264/MPEG-4 AVC uses different methods for its supported
block sizes of 4×4, 8×8, and 16×16. This design consistency
is especially desirable since HEVC supports a greater variety
of TB sizes and a significantly increased number of prediction
directions compared to H.264/MPEG-4 AVC.

3) Intra−Planar and Intra−DC Prediction: In addition
to Intra−Angular prediction that targets regions with strong
directional edges, HEVC supports two alternative prediction
methods, Intra−Planar and Intra−DC, for which similar modes
were specified in H.264/MPEG-4 AVC. While Intra−DC pre-
diction uses an average value of reference samples for the
prediction, average values of two linear predictions using four
corner reference samples are used in Intra−Planar prediction

Figure 5. The 33 angular intra-prediction modes in H.265/HEVC.

3.1.3. Transform Coding and Quantisation

Two types of transforms have been specified in the H.265/HEVC standard [23]: core transform
and an alternative transform [24,25]. The core transform is the discrete cosine transform (DCT) that
is performed on 4× 4, 8× 8, 16× 16 and 32× 32 transform blocks (TB). However, H.265 standard
specifies only one transform matrix of size 32× 32 [23]. The rest of the transform matrices for smaller
TBs (4× 4, 8× 8 and 16× 16) are computed by sub-sampling the 32× 32 transform matrix [24,26].
The alternative transform, which is used only for 4× 4 luma residual TBs in the intra-picture prediction
mode, is derived from discrete sine transform (DST). The 4× 4 DST is computationally not too much
more demanding than DCT of same dimension. However, on average, DST results in approximately
1% savings in terms of bit rate. The sub-sampled 8× 8 core transform matrix and the 4× 4 alternative
transform matrices are shown in Equations (1) and (2)

Dinter_8×8_DCT =



64 64 64 64 64 64 64 64
89 50 −18 −75 −89 −50 18 75
83 −36 −83 36 83 −36 −83 36
75 −89 50 18 −75 89 −50 −18
64 −64 64 −64 64 −64 64 −64
50 18 −75 89 −50 −18 75 −89
36 83 −36 −83 36 83 −36 −83
18 75 89 50 −18 −75 −89 −50


(1)

Dintra_4×4_DST =


29 55 74 84
74 74 0 −74
84 −29 −74 55
55 −84 74 −29

 (2)

3.1.4. Entropy Coding

The MPEG-1 and MPEG-2 standards employed Huffman coding as their entropy coding
model. H.264/AVC specifies two entropy coding models: context-adaptive binary arithmetic
coding (CABAC) and context-adaptive variable length coding (CAVLC) for its baseline and main
profiles respectively [27]. H.265/HEVC specifies only CABAC for all profiles [23]. CABAC is a lossless
entropy coding model that employs different probability models for different contexts. This allows
better modelling of distribution as local data are generally well-correlated. Although CABAC is more
complex and computationally intensive than CAVLC and Huffman coding, it is 10% more efficient
than CAVLC in terms of bitrate savings [28].

Symmetry 2019, 11, 1360 8 of 30

4. Overview of Error Correcting Techniques

Several researchers [14,29–32] have shown that error correcting codes (linear block and
convolutional codes) such as CRC, Reed–Muller codes, and Bose–Chaudhury–Hocquenghem (BCH)
codes can significantly reduce embedding distortion and increase robustness in noisy and unreliable
transmission scenario and also against video re-quantisation attacks. In this paper, we use a carefully
designed set of BCH codes and Turbo codes [33]. In the following sections, we briefly discuss the
theories of BCH and Turbo codes.

4.1. BCH Syndrome Error Correcting Codes

Bose–Chaudhury–Hocquenghem (BCH) is a powerful class of random error correcting codes that
is capable of correcting multiple errors. For any integers m ≥ 3 and t ≤ (2m − 1)/2, BCH codes are
characterized by the following parameters:

n = 2m − 1 (3)

k ≥ n−mt (4)

dmin ≥ 2t + 1 (5)

where n is the code block length, (n− k) is the number of parity check bits and dmin is the minimum
distance. This system of code is capable of correcting t-errors and referred to as BCH(n, k, t). If α is
a primitive element of the Galois Field GF(2m), m being the order of the field, n being the length of
the codeword, and k being the dimension of the code, the error correction matrix H for BCH(n, k, t) is
as follows:

H =


1 α α2 . . . αn−1

1 α3 (α3)2 . . . (α3)n−1

...
...

...
. . .

...
1 α2t−1 (α2t−1)2 . . . (α2t−1)n−1

 (6)

Given the original data are D = {d0, d1, d2, . . . , dk−1}, the BCH codeword V =

{v0, v1, v2, . . . , vn−1} for D is calculated as follows:

V = DH (7)

An unreliable, noisy channel may introduce multiple errors in the data. If V′ ={
v′0, v′1, v′2, . . . , v′n−1

}
is the erroneous data received at the receiver end and if E is the error pattern, then

V = V′ + E (8)

The syndrome S is given by the 2t-tuple:

S = {s0, s1, s2, . . . , s2t−1} (9)

Let si = v′(αi) = v′0 + v′1αi + . . . + v′n−1(α
i)n−1 for 1 ≤ i ≤ 2t. If φ(x) is the minimal polynomial

of αi, for binary polynomial, it holds that,

r(x) = ai(x)φi(x) + bi(x) (10)

Symmetry 2019, 11, 1360 9 of 30

Hence, si can be evaluated as si = bi(αi). Since v′(αi) = 0 for 1 ≤ i ≤ 2t, si = r(αi) = e(αi) where
e(x) = xj1 + xj2 + . . . + xjk is the error pattern, such that 0 ≤ j1 ≤ j2 ≤ . . . ≤ n− 1. Therefore,

s1 = αj1 + αj2 + . . . + αjk

s2 = (αj1)2 + (αj2)2 + . . . + (αjk)2

...

s2t = (αj1)2t + (αj2)2t + . . . + (αjk)2t

(11)

where αj1 , αj2 , . . . , αjk are unknown. To decode BCH code, we must solve Equation (11). In this paper,
we use Berelkamp’s iterative algorithm [34] as BCH decoding algorithm.

4.2. Turbo Codes

To increase coding efficiency of the traditional codes, and to approach the Shannon limit [35],
the code-word length of the linear block codes (or constraint length, in the case of convolutional
code) should be increased. However, increasing the code-word length causes the complexity of the
decoder to increase exponentially and the decoder takes proportionately longer time. Turbo codes were
proposed to address these issues. Turbo code [35] is an approach that simulates larger coding blocks
by splitting and interleaving it, such that decoding can be done in a number of manageable steps.
An interleaver is a component that temporally permutes (with the help of a memory buffer) a sequence
of symbols in a totally deterministic manner. An added benefit of interleaving is that burst errors in
data can be converted to statistically independent short errors when the data are de-interleaved at
the decoder side. This enables code designed for statistically independent errors to be used as the
constituent codes (for encoder 1 and 2). Figure 6 depicts the basic building blocks of a Turbo encoder.
The interleaver permutes (in periodic or pseudo-random manner) the input bits such that the two
encoders operate on the same set of input bits, but in different order. The constituent encoders may
use different or same convolution or linear block codes. Figure 7 shows the general structure of a
Turbo decoder.

Interleaver Encoder 2

Encoder 1
Message

bits X

Systematic
Bits X

Parity check
bits Z

1

Parity check
bits Z

2

Figure 6. Basic building blocks of a Turbo encoder.

Decoder 1 Interleaver

Interleaver Decoder 2

De-interleaver

De-interleaver

Z
2

Z
1

Received
Systematic

bits
X Decoded

message
bits X

Figure 7. Block diagram of a general Turbo decoder.

Symmetry 2019, 11, 1360 10 of 30

5. Proposed Method of Data Hiding

As discussed in Section 2, the proposed method focuses on improving three main aspects of data
hiding methods: payload capacity, robustness against transmission errors or re-quantisation attacks
and distortion performance. As discussed in Section 2, most of the existing works in the literature
embed data in only the 4× 4 blocks as these are the most irregular blocks. Human Visual System
is not very sensitive to little changes in rough areas, therefore embedding in 4× 4 blocks does not
cause noticeable visual degradation. However, this severely limits payload capacity. To increase
payload capacity, in this paper, we embed data in selected 8× 8 and 16× 16 TU blocks in addition to
all 4× 4 blocks. To keep visual distortion under control, we embed data only in the most irregular
8× 8 and 16× 16 blocks. These blocks are selected using the proposed JSD-SM block coarseness
measure. In addition, most existing methods in the literature [2–13] embed data by directly modifying
the LSBs of the QTC values. In these methods, the LSB of one QTC is modified to embed one bit of data.
The SME(1,3,7) technique presented in this paper, is able to embed three bits of data by modifying one
QTC in a block of seven QTCs. Therefore, in a 4× 4 block, SME(1,3,7) is able to embed 6 data-bits by
modifying only 2 QTCs. The change density is the density of data embedding, which is defined as
the number of modifications per embedded data bit. In most existing literature [2–13], change density
is 1 modification per 1 embedded data bit. The SME(1,3,7) technique is able to embed 3 data bits by
modifying only 1 coefficient. Therefore, change density of SME(1,3,7) is 1/3, which is one-third of the
existing methods. Reduced change density allows us to embed data in larger than 4× 4 blocks without
causing any significant visual distortion. However, we only select the relatively rough 8× 8 and
16× 16 blocks based on the proposed JSD-SM coarseness measure. The video stream with embedded
data would most likely be transmitted over the network or streamed in publicly shared channels.
Most transmission channels (e.g., WiFi and mobile broadband networks) are prone to error. This error
may cause some coefficients of the compressed video to change. Moreover, an attacker may deliberately
introduce perturbation in the QTCs or recompress (i.e., re-quantise) the video to foil correct recovery
of embedded secret data by the intended receiver. To attain a high degree of robustness against these
attacks, in this paper, we use BCH and Turbo error correcting codes. The BCH code has been used in
some existing literature [3,4,30,31]. However, its effectiveness is expected to increase when used in
conjunction with the SME(1,3,7) whose change density is one-third of most of the existing LSB based
embedding techniques. In addition to BCH codes, we also use Turbo error correcting codes. The BCH
codes are able to correct random single bit errors but are less effective against burst errors, i.e., when
more than one consecutive bits are changed due to error. Turbo codes are a family of powerful errors
correcting codes that have been developed to correct such burst errors in addition to random single
bit errors. In the following subsections, we present the proposed JSD-SM block coarseness measure,
the SME(1,3,7) data embedding and extraction technique and design, and parameters of the BCH and
Turbo error correcting codes. In Section 5.4, we present the overall embedding and extraction process.

5.1. Block Selection Using JSD-SM Coarseness Measure

As discussed in Section 3.1.1, the H.265/HEVC compression algorithm partitions the frames
in transform units (TU) of size from 4 × 4 to 32 × 32 which are organised in CTB structures.
HEVC partitions the picture frame in different TU sizes based on smoothness or coarseness of a
region. If a region in a picture is coarse, i.e., contains high variation of pixel values, it is subdivided
in many 4× 4 blocks to retain maximum detail. Larger blocks such as 8× 8, 16× 16 and 32× 32 are
allocated for relatively less coarse regions. In the proposed work, message bits are embedded in all
4× 4 blocks since these are the most coarse blocks. However, to achieve higher payload capacity, it is
necessary to embed data not only in 4×, but in larger 8× 8 and 16× 16 blocks too. As the HEVC
algorithm allocates larger blocks to the relatively less coarse regions, the 8× 8 and 16× 16 blocks are
relatively less coarse than the 4× 4 blocks. Embedding data in these blocks may introduce visual
artefacts as the human visual system is sensitive to small changes in smooth (i.e., low frequency)

Symmetry 2019, 11, 1360 11 of 30

regions. To minimise embedding distortions in these blocks, we embed data in the relatively most
coarse blocks among all 8× 8 and 16× 16 blocks.

To select the coarser blocks, we propose a method that is based on Jensen–Shannon
divergence (JS-divergence) [36] measure and second moment of the pixel values. We call the proposed
method block selection using Jensen–Shannon Divergence and Second Moment (JSD-SM). Jensen–Shannon
divergence is a symmetric adaptation of Kullback–Leibler divergence (KL-divergence). Given two
probability distributions P and Q in the same probability space, the KL-divergence is defined as,

DKL(P‖Q) = ∑
x∈X

P(x) log
P(x)
Q(x)

(12)

Jensen–Shannon divergence is then defined as,

DJS(P‖Q) =
1
2

DKL(P‖M) +
1
2

DKL(Q‖M) (13)

where M = 1
2 (P + Q). Unlike KL-divergence, Jensen–Shannon divergence is finite, i.e., 0 ≤ DJS ≤ 1,

and symmetric, i.e., DJS(P‖Q) = DJS(Q‖P). These properties make it more suitable for our purpose.
The first and second moments of a block are defined as follows. Given a block B of dimension

m× n, its set of pixel values can be imagined as a one dimensional vector P = {x1, x2, x3, . . . , xN},
where N = mn. The probability of a pixel value xi appearing in B is pi = k/N, where k is the
number of times the xi occurs in B. It is clear that 0 ≤ pi ≤ 1 and ∑ pi = 1. Hence, this is a valid
probability distribution. The mean or the expectation of this distribution is µ = E[x] = ∑N

i=1 xi pi =

x1 p1 + x2 p2 + . . . + xN pN . The central second moment or the variance is,

Var(X) =
N

∑
i=1

pi (xi − µ)2 (14)

Given the above definitions of Jensen–Shannon Divergence and second moment of probability
distribution, we propose the JSD-SM block coarseness measure as follows (Algorithm 1).

Algorithm 1: JSD-SM block coarseness algorithm
Data: An 8× 8 or 16× 16 TU block denoted as B
Result: CJSD−SM, the JSD-SM coarseness measure of the block

1 Initialise SDB = spatial domain block corresponding to B;
2 Initialise number of pixels N = |SDB|;
3 Divide SDB in n number of 4× 4 blocks bi, i = 1, . . . , n;
4 while there is a 4× 4 block remaining do
5 read next block;
6 measure pixel value variance of bi, vari = Var(bi);
7 end
8 Let avgVarB = mean(vari);
9 Let pi = k/N, where k is the number of times a pixel value occurs in SDB;

10 Clearly, 0 ≤ pi ≤ 1 and ∑ pi = 1. Denote this distribution as P;
11 Let U be a uniform distribution with equal number of observations as P;
12 Find DJS(P||U) using (13);
13 Output CJSD−SM = avgVarB × (1− DJS)

5.2. Data Embedding and Extraction

The process of representing message bits by altering the carrier file features is called data
embedding and the process of recovering embedded data from the cover medium is called data

Symmetry 2019, 11, 1360 12 of 30

extraction. In the literature, many data embedding techniques have been proposed for steganography,
watermarking and data hiding algorithms in general. The earliest and simplest data embedding
technique is the Least Significant Bit (LSB) substitution [37] method and its derivatives. In LSB
substitution based methods, one or more LSBs of embedding feature (e.g., pixel value, transform
coefficient, motion vector, etc.) are substituted with the secret data bits. Equation (15) mathematically
represents the basic LSB substitution based data embedding operation.

Yi = 2
⌊

Xi
2

⌋
+ mi (15)

where mi is the ith message bit, Xi is the value of the ith selected pixel before embedding and
Yi is the value of the ith pixel after embedding [38]. LSB based techniques are simple, fast and
generally have very good payload capacity. However, these techniques suffer from high distortion
and lack of robustness against re-compression attacks and also suffers in presence of transmission
errors. Several derivatives of LSB technique, namely LPAP [37], OPAP [39], SLSB [40] and PVD [41],
improved the distortion performance, however these methods are not suitable for data embedding
in video features due to following reasons: (1) low embedding efficiency [42]; (2) high distortion;
(3) lack of robustness in erroneous transmission scenario; and (4) not robust against re-quantisation
attacks. Lack of robustness of simple LSB substitution based techniques motivates us to use error
correcting codes.

In this paper, for data embedding in the selected quantised transform coefficients (QTCs), we
propose a Simplified Matrix Embedding (SME) technique. Matrix embedding techniques were
discussed by Fridrich and Soukul [43]. SME technique embeds k data bits in a block of n = 2k − 1
QTCs by modifying at most 1 QTC value. Specifically, in our case, we use a SME(1, k = 3, n = 7)
scheme. This scheme embeds three message bits in a block of seven QTCs. The embedding scheme
works as follows.

1. Let a 3-bit message block be M = (m1m2m3) and the destination block of seven QTCs is QB =

(Q1, Q2, Q3, Q3, Q4, Q5, Q6, Q7). Only one of the Qis is modified to encode the message block in
QTC block.

2. Define three parity values P1, P2 and P3 as follows.

P1 = (Q1 + Q3 + Q5 + Q7) mod 2 (16)

P2 = (Q2 + Q3 + Q6 + Q7) mod 2 (17)

P3 = (Q4 + Q5 + Q6 + Q7) mod 2 (18)

3. To encode binary message bits (m1m2m3), modify the QTC values according to the following rules:

Case 1. If (m1 = P1) ∧ (m2 = P2) ∧ (m3 = P3), modify no QTC

Case 2. If (m1 6= P1) ∧ (m2 = P2) ∧ (m3 = P3), modify Q1 as follows. If |Q1| = Qmax,
|Q1| = |Q1 − 1|. Else, Q1 = Q1 + 1

Case 3. If (m1 = P1) ∧ (m2 6= P2) ∧ (m3 = P3), modify Q2 as follows. If |Q2| = Qmax,
|Q2| = |Q2 − 1|. Else, Q2 = Q2 + 1

Case 4. If (m1 6= P1) ∧ (m2 6= P2) ∧ (m3 = P3), modify Q3 as follows. If |Q3| = Qmax,
|Q3| = |Q3 − 1|. Else, Q3 = Q3 + 1

Symmetry 2019, 11, 1360 13 of 30

Case 5. If (m1 = P1) ∧ (m2 = P2) ∧ (m3 6= P3), modify Q4 as follows. If |Q4| = Qmax,
|Q4| = |Q4 − 1|. Else, Q4 = Q4 + 1

Case 6. If (m1 6= P1) ∧ (m2 = P2) ∧ (m3 6= P3), modify Q5 as follows. If |Q5| = Qmax,
|Q5| = |Q5 − 1|. Else, Q5 = Q5 + 1

Case 7. If (m1 = P1) ∧ (m2 6= P2) ∧ (m3 6= P3), modify Q6 as follows. If |Q6| = Qmax,
|Q6| = |Q6 − 1|. Else, Q6 = Q6 + 1

Case 8. If (m1 6= P1) ∧ (m2 6= P2) ∧ (m3 6= P3), modify Q7 as follows. If |Q7| = Qmax,
|Q7| = |Q7 − 1|. Else, Q7 = Q7 + 1

At the receiver end, data are extracted from the cover medium as follows.

1. Let a modified block of QTCs be QB′ = (Q′1, Q′2, Q′3, Q′3, Q′4, Q′5, Q′6, Q′7).
2. The parity conditions of the modified QTCs of the received cover medium are calculated

with Equations (16)–(18) as follows:

P′1 = (Q′1 + Q′3 + Q′5 + Q′7) mod 2 (19)

P′2 = (Q′2 + Q′3 + Q′6 + Q′7) mod 2 (20)

P′3 = (Q′4 + Q′5 + Q′6 + Q′7) mod 2 (21)

3. Three message bits (m′1, m′2, m′3) are extracted from QB′ as follows.

m′1 = P′1, m′2 = P′2, m′3 = P′3

Illustration

Let the first seven coefficients in a 4 × 4 block of DST QTCs be QB1 =

(Q1, Q2, Q3, Q3, Q4, Q5, Q6, Q7) = (5, 21, 12, 9, 0, 7, 18). The three bits message to be embedded are
m1m2m3 = 011. The parities are calculated with Equations (16)–(18) as,

P1 = (5 + 12 + 0 + 18) mod 2 = 1

P2 = (21 + 12 + 7 + 18) mod 2 = 0

P3 = (9 + 0 + 7 + 18) mod 2 = 0

In this case, m1 6= P1, m2 6= P2 and m3 6= P3. Hence, Case 8 is satisfied. Therefore,
Q7 is modified to Q′7 = (Q7 + 1). Therefore, the modified block of QTCs becomes QB′1 =

(Q1, Q2, Q3, Q3, Q4, Q5, Q6, Q7) = (5, 21, 12, 9, 0, 7, 19). Note that the three-bit message m1m2m3 = 011
has been embedded by modifying only one QTC value.

At the receiver end, QB′1 = (5, 21, 12, 9, 0, 7, 19) is received and the modified parities P′1, P′2 and P′3
are evaluated using Equations (19)–(21).

P′1 = (5 + 12 + 0 + 19) mod 2 = 0

P′2 = (21 + 12 + 7 + 19) mod 2 = 1

P′3 = (9 + 0 + 7 + 19) mod 2 = 1

Thus, the recovered three bit message is 011, which matches the originally embedded message bits.
The next block of seven QTCs is QB2 = (Q1, Q2, Q3, Q3, Q4, Q5, Q6, Q7) = (10, 88, 12, 13, 9, 1, 6).

Here, parities are P1 = 1, P2 = 1 and P3 = 1. The message bits to be embedded are m1m2m3 = 100.

Symmetry 2019, 11, 1360 14 of 30

In this case, m1 = P1, m2 6= P2 and m3 6= P3; therefore, Case 7 is satisfied. Hence, Q6 is modified.
The modified QTC block is QB′2 = (10, 88, 12, 13, 9, 2, 6). At the receiver end, the modified parities
are evaluated to find P′1 = 1, P′2 = 0 and P′3 = 0. Therefore, the received three-bit message is
m′1m′2m′3 = P′1P′2P′3 = 100, which matches the originally embedded message. These two cases of
embedding using SME(1,3,7) technique are illustrated in Figure 8 by taking a 4× 4 HEVC/H.265 TU.

5 21 12 9

0 7 18 10

88 12 13 9

1 6 15 7

5 21 12 9

0 7 19 10

88 12 13 9

2 6 15 7

Message m
1
m

2
m

3
= 0 1 1

Message m
1
m

2
m

3
= 1 0 0

Parities P
1
P

2
P

3
 = 100.

Case 8 applies, therefore
Q

7
 is modified

Parities P
1
P

2
P

3
 = 111.

Case 7 applies, therefore
Q

6
 is modified

Figure 8. Embedding two groups of three bits of messages in blocks of seven QTCs by modifying
only two QTCs using the SME(1,3,7) technique. The original 4× 4 block is on the left. On the right,
the modified QTCs are shown in circles.

5.3. Design of the BCH and Turbo Error Correcting Codes

We use two different data encoding algorithms for error correction codes: BCH and Turbo codes.
These error correcting codes introduce redundancies that help correct errors in video stream that is
transmitted through an error-prone channel or the errors that may be introduced due to re-quantisation
attacks. This increases robustness or survivability of the embedded data. As discussed in Section 4.1,
BCH coding schemes are described as BCH(n, k, t) where n is the code block length, k is the number of
message bits and t is the number of error bits that the code is capable of correcting. We propose the
following three set of parameters and corresponding generating polynomials of BCH(n, k, t) coding
given in Table 1. In this paper, we use Berelkamp iterative algorithm [44] to decode BCH coded data.

Table 1. BCH coding schemes with three different sets of values of parameters n, k and t used in the
proposed work.

Name n k t Generator Polynomial

BCH(7, 4, 1) 7 4 1 1 011
BCH(31, 16, 3) 31 16 3 1 000 111 110 101 111
BCH(31, 11, 5) 31 11 5 101 100 010 011 011 010 101

For Turbo coding, we employ two identical parallel concatenated convolution encoders (PCCE) as
the constituent encoders in conjunction with a pseudo-random intervealer. The proposed structure of
the constituent encoder is as shown in Figure 9. The constraint length of the Turbo code is determined
by the pseudo-random interleaver. The decoder is the Soft-Output Viterbi algorithm (SOVA) [45] that
decodes received codes by estimating logarithm of likelihood ratio (LLR) as in Equation (22).

Λ = log
p(X = 1|R)
p(X = 0|R) (22)

where R is the received bit. For constituent convolutional encoders, we propose a recursive
convolutional code (RSC) that is used for both for CE1 and CE2. The structure of the constituent
RSC is as shown in Figure 9. The proposed RSC has 23 = 8 states and has constraint length of 4.
The transfer function is as follows.

G(D) =

[
1,

g1(D)

g0(D)

]
(23)

Symmetry 2019, 11, 1360 15 of 30

where g0(D) = 1 + D2 + D3 and g1(D) = 1 + D + D3. The initial values of the three shift registers are
kept all zeros when starting the encoding process. The constraint length of Turbo encoders depend on
the interleaver used. In this paper, we use a pseudo-random interleaver. The proposed interleaver is a
linear congruential generator (LCG) given by Equation (24).

Xn+1 = (aXn + c) mod m (24)

where X is the output sequence of pseudo-random numbers, m (> 0) is the modulus, a ∈ (0, m) is a
constant multiplier, c ∈ [0, m) is the increment and X0 ∈ [0, m) is the seed or the start value. The set of
of these values and the corresponding constraint lengths Kt that are used in this paper are summarised
in Table 2. The block diagram of the proposed Turbo encoder and decoder is illustrated in Figure 10 in
which the convolutional encoders CE1 and CE2 are having the same structure as shown in Figure 9.

Shift
Register

1

Shift
Register

2

Shift
Register

3

+ +

+

+

Input

Output 1

Output 2

Figure 9. Block diagram of the half-rate, 8-state constituent recursive convolution encoder CE1 and
CE2 with constraint length 4.

Channel/
Medium

Convolutional
Encoder (CE1)

Convolutional
Encoder (CE2)

Pseudo-random
Interleaver

Decoder
(Viterbi Algo)

De-interleaver

Combiner

Decoder
(Viterbi Algo)

Data
Data

Figure 10. Block diagram of the proposed Turbo coding/decoding system.

Table 2. Turbo coding schemes with two different sets of values of parameters n, k and t and constraint
length used in the proposed work.

Name Seed (X0) m a c Sequence Constraint Length Kt

Turbo-16 3 5 3 2 {3, 1, 0, 2} 16
Turbo-24 2 7 3 0 {2, 6, 4, 5, 1, 3} 24

5.4. Overall Architecture of the Proposed Method

The proposed method embeds message bits into the H.265/HEVC quantised transform coefficients
of the intra-coded frames. The embedding process is described in Algorithm 2 and illustrated in
Figure 11. Once data are embedded in a video sequence, it is transmitted to one or more receiver over a
public channel. At the receiver end, the receiver extracts the embedded data using the key. The receiver
starts decoding the H.265/HEVC compressed video. After entropy decoding, all 4× 4, 8× 8 and
16× 16 TU blocks in the luminance channel are copied and stored separately. Then, the usual HEVC
inverse quantisation and inverse transform processes continues. Inverse transform generates the

Symmetry 2019, 11, 1360 16 of 30

spatial domain blocks corresponding to each DST (4× 4) and DCT (8× 8 and 16× 16) domain blocks.
The JSD-SM coarseness of these spatial domain blocks are evaluated. Next, κ % most coarse blocks
are selected. Data are the extracted from the quantised DST and DCT coefficients the corresponding
transform domain blocks (that were save separately) using the SME(1,3,7) extraction process described
in Section 5.2. After extraction, data is decoded and output to the receiver. The whole process is
described in Algorithm 3 and illustrated in Figure 12.

Original YUV
video sequence

H.265/HEVC
DST/DCT

Quantization

Select 4x4 Intra-
predicted blocks

H.265/HEVC
Entropy coding

(CABAC)
+

H.265/HEVC
video stream with
payload message

Binary payload
data

Select 8x8, 16x16
blocks based on
JSD-SM criteria

SME(1,3,7) data
embedding BCH/Turbo coding

Figure 11. Overall structure of the proposed data embedding method.

Algorithm 2: Embedding
Data: Video sequence, input message, parameter κ

Result: HEVC/H.265 compressed video with embedded message
1 Convert input message to binary data matrix D (e.g., using ASCII values if it is text) ;
2 Encode data matrix D with either BCH (Table 1) or Turbo coding scheme (Table 2). Let encoded

data be De ;
3 Start encoding YUV video to H.265/HEVC;
4 For each I-frame select the 4× 4, 8× 8 and 16× 16 TU blocks ;
5 Evaluate coarseness CJSD−SM of each 8× 8 and 16× 16 blocks using Algorithm 1 ;
6 Sort two groups of 8× 8 and 16× 16 blocks based on their CJSD−SM values ;
7 Select top κ % most coarse blocks in each group of 8× 8 and 16× 16 TUs ;
8 Embed encoded data De sequentially in quantised DST coefficients of all 4× 4 TUs using

SME(1, 3, 7) embedding technique as described in Section 5.2 ;
9 Embed rest of the data in quantised DCT coefficients of selected 8× 8 and 16× 16 blocks using

SME(1, 3, 7) embedding technique as described in Section 5.2 ;
10 Continue HEVC compression process and the modified TU blocks are entropy coded (CABAC) ;
11 HEVC/H.265 compressed video stream with embedded payload data is output for storage or

transmission ;
12 Output the key KBCH = {n, k, t, κ}, if BCH error correcting code is used, where n, k, t are

parameters of BCH coding OR if Turbo coding is used, output key KTurbo = {seq, kt, κ}, where
seq = {3, 1, 0, 3} or seq = {2, 6, 4, 5, 1, 3} (See Section 5.3) ;

Symmetry 2019, 11, 1360 17 of 30

Algorithm 3: Extraction
Data: H.265/HEVC compressed video with embedded data, key
Result: Extracted payload data

1 Begin entropy decoding of the compressed video ;
2 Extract all 4× 4, 8× 8 and 16× 16 luma TUs from I-frames ;
3 Measure JSD-SM block coarseness CJSD−SM of all 8× 8 and 16× 16 luma blocks using

Algorithm 1 in spatial domain ;
4 Sort the two groups of 8× 8 and 16× 16 blocks on the basis of CJSD−SM value ;
5 Select κ % most coarse blocks in each group of 8× 8 and 16× 16 luma TUs ;
6 Extract embedded bits from all 4× 4 and selected 8× 8 and 16× 16 luma TU blocks using

SME(1,3,7) extraction process as described in Section 5.2 ;
7 Combine all data to get the BCH or Turbo encoded data D′e that possibly contains some errors

due to unreliable transmission or re-compression attack ;
8 If D′e is BCH encoded, decode using Berelkamp’s iterative algorithm [44] ;
9 If D′e is Turbo encoded, decode with Soft-Output Viterbi algorithm (SOVA) [45] ;

10 Decoded data D′ is output as the extracted data ;

H.265 video with
embedded data

Entropy decode
(CABAC)

Select 4x4 Intra-
predicted blocks

Inverse DST/DCT
and quantization+ Decoded H.265

Video stream

BCH/Turbo
decoding

Select 8x8, 16x16
blocks based on
JSD-SM criteria

Extracted data
SME(1,3,7) data

extraction

Figure 12. Overall structure of the proposed data extraction method.

6. Experimental Results and Discussion

The proposed method was implemented in the H.265/HEVC reference coding software
HM (version 16.20) released by Fraunhofer HH Institute. All experiments were run in a GNU/Linux
based operating system on a computer with Intel i7-3770 CPU and 16GB RAM. Six test video sequences
were used as the carrier videos. The names and specifications of these video sequences are given
the Table 3. These videos were chosen because these are widely used by researchers in data hiding,
video compression and allied fields and facilitate objective comparison of performances with other
state-of-the-art data hiding methods proposed in the literature [14–16].

Table 3. List of test video sequences and their specifications.

Name Resolution RAW Format HEVC GOP Length GOP Conguration

Container 352× 288 (CIF) YUV 10 IBPBPBPBPB
News 352× 288 (CIF) YUV 10 IBPBPBPBPB
Mobile 352× 288 (CIF) YUV 10 IBPBPBPBPB
Akiyo 352× 288 (CIF) YUV 10 IBPBPBPBPB
Coastguard 352× 288 (CIF) YUV 10 IBPBPBPBPB
Foreman 352× 288 (CIF) YUV 10 IBPBPBPBPB

For objective comparison with the above mentioned research works, we used the main profile of
the H.265/HEVC standard for video encoding purpose.

Symmetry 2019, 11, 1360 18 of 30

6.1. Visual Quality and Payload Capacity

For measuring and comparing the distortion characteristics of the proposed method, we used
Peak Signal to Noise Ratio (PSNR).PSNR is defined in terms of mean squared error (MSE). Given a
m× n original image or video frame I and its corresponding stego-frame K, MSE is defined as:

MSE =
1

m n

m−1

∑
i=0

n−1

∑
j=0

[
I(i, j)− K(i, j)

]2 (25)

Then, PSNR (in dB) is defined as:

PSNR = 10 · log10

(
MAX2

I
MSE

)
(26)

where MAX is the maximum pixel value of the image/video. In our case, as the bit depth of the YUV
test videos is 8, MAX = 28 − 1 = 255.

For objective comparison of our results with state-of-the-art in the literature, we selected the
works discussed in [4,14]. These papers were selected as they are recent state-of-the-art and reported
much better results than earlier works in the literature. Moreover, the researchers in these papers used
the same set of test video sequences at the same resolution as in our work. For comparison of capacity
and distortion performances, test video sequences must be same. These observations motivated us to
compare our results with the results in these papers. We kept the quantisation parameter value (QP)
fixed at 30. As in these studies, we encoded 300 frames of each test video sequences with a frame rate
of 30 frames per second. We used the main profile of the H.265/HEVC encoder. Table 4 summarises
the visual quality performances of all the proposed schemes in terms of PSNR values. In this table,
PSNR1 is the visual quality difference between the original YUV videos and the re-quantised video
with QP = 30, but without embedded data. PSNR2 values denote the visual quality difference between
the original YUV videos and the re-quantised video (with QP = 30) with data embedded using the
proposed method. Therefore, the quantity (PSNR1 − PSNR2) denotes the loss in visual quality due
to embedding. It is seen in the table that the maximum difference between PSNR1 and PSNR2 is less
than 2 for all video sequences and proposed schemes. This indicates that visual distortion due to
data embedding is hardly noticeable in naked human eye. This can be observed visually in Figure 13.
Figure 13a,d,g,j shows the original frames from the original YUV video sequences container, news,
mobile and akiyo, from top to bottom. The frames in the middle column are the corresponding frames
from HEVC video sequences, compressed with QP = 30, but with no embedded data. The rightmost
column shows the frames from the HEVC compressed video sequences with data embedded with
the proposed method. It is seen that these frames are visually almost indistinguishable from the
middle and leftmost frames. For closer inspection, we present enlarged segments of I-frames of video
sequences in Figure 14. The left column shows the first HEVC compressed (with QP = 30) I-frames of
Container, News, Mobile and Akiyo datasets from top to bottom, with no data embedded. The middle
column shows the corresponding segments with data embedded. The right hand side column shows
the matrices of absolute value differences between the pixels of segments with and without embedded
data. It is seen that the difference matrices are almost black, indicating pixel value differences very
close to zero. This vindicates the efficacy of the proposed method in preserving good visual quality.

Symmetry 2019, 11, 1360 19 of 30

Table 4. The PSNR values attained at with different coding schemes of the proposed method.
PSNR1 denotes the measured quality difference between the original YUV video sequences and
the HEVC encoded video sequences with QP = 30, but no data are embedded. PSNR2 values represent
the attained quality when data are embedded in HEVC compressed video with QP = 30.

Video PSNR 1(QP = 30) PSNR 2(QP = 30) and SME(1, 3, 7) and Following Error Codes

B(7,4,1) B(31,16,3) B(31,11,5) T (Kt = 16) T (Kt = 24)

Container 39.41 38.25 38.37 38.28 38.06 38.22
News 38.96 38.00 37.81 37.93 37.90 37.94
Mobile 39.82 38.99 38.98 38.76 38.53 38.71
Akiyo 39.75 38.05 37.99 38.20 38.02 38.18
Coastguard 39.83 38.31 38.26 38.33 37.97 38.01
Foreman 39.47 38.73 38.28 38.36 38.53 38.24

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1: Pictures of animals

1

Figure 13. Frames on the leftmost column, i.e., (a,d,g,j) are the original frames from the original
YUV video sequences container, news, mobile and akiyo, from top to bottom. The frames in the
middle column (b,e,h,k) are the corresponding frames from HEVC video sequences, compressed with
QP = 30, but with no embedded data. The rightmost column (c,f,i,l) shows the frames from the HEVC
compressed video sequences with data embedded with the proposed method.

Symmetry 2019, 11, 1360 20 of 30

0 15 31

0

15

31
0 15 31

0

15

31
0 15 31

0

15

31

0 15 31

0

15

31
0 15 31

0

15

31
0 15 31

0

15

31

0 15 31

0

15

31
0 15 31

0

15

31
0 15 31

0

15

31

0 15 31

0

15

31
0 15 31

0

15

31
0 15 31

0

15

31

Figure 14. Enlarged 32× 32 segments on the left column are from the first I-frames of the HEVC
compressed (with QP = 30) video sequences Container, News, Mobile and Akiyo, from top to
bottom. The middle column shows the corresponding enlarged frames with embedded data. The right
hand column shows the absolute value difference matrices between the segments with and without
embedded data.

Table 5 presents the comparison of PSNR values and attained payload capacity between the
proposed method and the aforementioned state-of-the-art methods in teh literature. Table 5 shows
that the proposed method attains much greater payload capacity than the methods of Liu et al. [4]
and Liu et al. [14]. Liu et al. [4] proposed multiple schemes of embedding. Among those, the highest
performing scheme was compared. In the proposed method, the SME(1,3,7) embedding scheme
together with the BCH(7,4,1) error correcting code yields PSNR more than 38 and capacity of over
400 bits on the average per I-frame for all the test video sequences. Therefore, average payload capacity

Symmetry 2019, 11, 1360 21 of 30

is three times than that of the method in [14] and more than 2.5 times the capacity offered by the
method in [4]. In the proposed method, when SME(1,3,7) embedding together with Turbo(Kt = 24)
error correcting scheme is used, the embedding capacity is more than twice the capacity of the method
in [4] and almost two times the method in [14]. Despite drastic increase of capacity, the proposed
method does not compromise with visual quality. In all cases, the proposed schemes attain slightly
better PSNR values than the methods of both Liu et al. [4] and Liu et al. [14]. Early methods in the
literature selected only the 4× 4 TU blocks in order to keep the visual quality degradation under
control. This, however, yielded low payload capacity. In the proposed method, in addition to all 4× 4
TU blocks, some 8× 8 and 16× 16 TU blocks that pass the proposed JSD-SM coarseness criteria, are also
used for data embedding venue. This drastically increases payload capacity. Moreover, the SME(1, 3, 7)
data modulation technique used in this paper is able to embed 3 bits of data in a block of 7 QTCs
by changing only 1 of the QTC values. Thus, SME(1,3,7) results in less change density, i.e., fewer
modifications per embedded bit. Fewer changes of QTCs gives more headroom to embed data in
blocks larger than 4× 4. Hence, the proposed method is able to embed data in 8× 8 and 16× 16 blocks
without negatively affecting visual quality of stego-video.

Table 5. Comparison of visual quality (PSNR) and payload capacity between various schemes of the
proposed method and in [4,14]. PSNR is in dB and Capacity is given in bits. As Liu et al. [4] proposed
many error correcting schemes, only the best performing scheme was compared.

Video
Liu et al. [4] Liu et al. [14] SME(1,3,7) + BCH(7,4,1) SME(1,3,7) + Turbo(Kt = 24)

PSNR Capacity PSNR Capacity PSNR Capacity PSNR Capacity

Container 36.50 171 36.44 120 38.25 412 38.22 338
News 36.50 171 36.95 132 38.00 434 37.94 346
Mobile 36.50 171 34.24 172 38.99 518 38.71 392
Akiyo 36.50 171 38.63 124 38.05 446 38.18 354
Coastguard 36.50 171 – – 38.31 438 39.01 348
Foreman 36.50 171 – – 38.73 422 38.24 336

6.2. Robustness Performance

For robustness analysis of the proposed framework, we adopted the following methodology.
First, we embeded data in the video sequences using different error correcting coding schemes
proposed in Section 5.3. Next, the video sequences with embedded data were re-quantised with
different values of quantisation parameter (QP). Then, the payload data were extracted from the
re-quantised video sequences. Recovered payload data were then compared to the original data and
bit-by-bit similarity was evaluated. The higher is the similarity, the higher is the survivability or
robustness. For the the purpose of objective comparison with the methods of Swati et al. [15] and
Liu et al. [14], the QP values are taken same as in those methods, i.e., from QP = 29 to QP = 35 with
increment step of 1.

The results are summarised in Table 6. As seen in the table, in case of the Container video, survival
rate attained by proposed BCH(7, 4, 1) error correcting code is better than both Swati et al. [15] and
Liu et al. [14] at all QP values. As expected, BCH(31, 11, 5) scheme performs much better than both
the literature at all QP values in the range 29–35. The proposed Turbo error correcting schemes
gives interesting results. As seen is the table, the coding scheme with block length Kt = 16 performs
much better than both Swati et al. [15] and Liu et al. [14]. In addition, its performance is similar to
BCH(31,11,5). This means that, in the proposed method, Turbo code with block length 16 is almost as
powerful as BCH(31,11,5). The fact that Turbo code is able to correct similar number of errors with
smaller block size can be attributed to its superior burst error correcting capability with the help of the
parallel concatenated recursive convolution codes and the pseudo-random interleaver (Section 4.2).
In the case of the News and Mobile video sequences, similar superior performance of Turbo code
is noticed.

Symmetry 2019, 11, 1360 22 of 30

Table 6. Survival rate of the proposed method at different QP values when BCH(7,4,1),
BCH(31,16,3), BCH(31,11,5), Turbo(Kt = 16) and Turbo(Kt = 124) error correcting codes are used.
Performances of these codes have been compared to the performance of the methods of Swati et al. [15]
and Liu et al. [14].

Video QP [15] [14] BCH(7,4,1) BCH(31,16,3) BCH(31,11,5) Turbo(16) Turbo(24)

Container

29 63% 61% 74.22% 81.01% 95.10% 96.00% 96.10%
30 65% 78% 89.04% 97.07% 99.02% 98.56% 99.72%
31 78% 80% 91.17% 98.99% 100% 100% 100%
32 87% 83% 92.50% 100% 100% 100% 100%
33 61% 85% 94.50% 99% 100% 100% 100%
34 61% 54% 76.66% 88.45% 94.05% 95.44% 98.29%
35 42% 22% 64.53% 79.10% 83.87% 89.39% 91.44%

News

29 60% 59% 82.41% 92.15% 94.61% 96.20% 96.35%
30 63% 82% 88.23% 97.82% 99.98% 99.99% 99.99%
31 56% 80% 90.84% 99.95% 100% 100% 100%
32 70% 81% 89.90% 100% 100% 100% 100%
33 46% 85% 91.92% 99.98% 100% 100% 100%
34 44% 38% 76.61% 91.40% 93.00% 95.16% 96.60%
35 42% 31% 63.96% 84.35% 88.55% 91.25% 92.91%

Mobile

29 59% 60% 80.95% 92.18% 94.61% 97.01% 98.77%
30 63% 77% 85.77% 97.83% 99.24% 99.89% 99.98%
31 65% 82% 90.50% 98.59% 100% 100% 100%
32 71% 85% 92.94% 100% 100% 100% 100%
33 67% 68% 91.97% 98.00% 100% 100% 100%
34 59% 59% 77.90% 92.49% 93.28% 95.10% 96.62%
35 51% 44% 69.09% 87.35% 88.94% 92.56% 92.99%

Robustness performance of the proposed method was also evaluated in terms of similarity (SIM)
and bit error error rate (BER). For original embedded data D(i, j) and recovered data D̂(i, j) of size
m× n, SIM and BER are defined as follows.

SIM =

m

∑
i=1

n

∑
j=1

[
D(i, j)× D̂(i, j)

]
√√√√ m

∑
i=1

n

∑
j=1

D(i, j)2 ×

√√√√ m

∑
i=1

n

∑
j=1

D̂(i, j)2

(27)

BER =

m

∑
i=1

n

∑
j=1

[
D(i, j)⊕ D̂(i, j)

]
m× n

(28)

The results are compared and summarised in Table 7. In the table, it can be seen that
the average similarity values achieved by the proposed framework are much higher than those
of Swati et al. [15] and Liu et al. [14] and is slightly better than those of Liu et al. [16] at all QP
values. Here, it is to be noted that Liu et al. [14] used same set of test video sequences as used in this
work. However, both Swati et al. [15] and Liu et al. [16] used High resolution video sequences such
as ParkScene (1920× 1080), BQMall (832× 480), PeopleOnStreet (2560× 1600), etc. which used to be
available from University of Hannover [46], but are no longer accessible, and therefore could not be
evaluated in our work. The main difference between these videos and the videos used in our work
is that these videos are very high resolution whereas our test sequences are of resolution 352× 288.
Therefore, comparison of our results with these works is not perfect, but since both BER and SIM are
given in percentage (i.e., a dimensionless quantity), it gives a fair idea as to where our results stands in
comparison to Swati et al. [15] and Liu et al. [16].

Symmetry 2019, 11, 1360 23 of 30

Table 7. Comparison of average SIM and BER robustness values of the proposed method with that of
the methods proposed by Liu et al. [16], Swati et al. [15] and Liu et al. [14].

Attack Type Liu et al. [16] Swati et al. [15] Liu et al. [14] Proposed (avg)

SIM BER SIM BER SIM BER SIM BER

No attack 1 0 1 0 1 0 1 0

Re-
quantisation
attack

QP = 30 0.94 6 0.62 38.35 0.80 22.40 0.98 2
QP = 31 1 0 0.80 22.34 0.81 20.70 1 0
QP = 32 1 0 0.86 15.60 0.85 17.20 1 0
Qp = 33 0.96 4 0.58 42.50 0.85 16.30 0.98 2
QP = 34 0.80 22 0.58 42.20 0.50 45.98 0.88 11

6.3. Bit-Rate Increase

The bit-rate (and consequently total size of video sequence) tends to increase after data embedding.
The percentage of this increment should be as low as possible. Bit-rate increase due to data embedding
is measured as follows. First, the original YUV video sequences were compressed in HEVC with
QP = 30, but no data were embedded. Next, the YUV sequences were compressed in HEVC with
QP = 30 and data were embedded using the proposed method. The percentage of increase of size (in
bits) is the increase in bit-rate. For example, size of the HEVC compressed Container sequence (when
no data are embedded) is 9,299,832 bytes. When Turbo coded data (with Kt = 24) is embedded
using the proposed method, size increases to 9,671,825. This is a 0.04% increase of bit-rate. Table 8
summarises the results and compares to Liu et al. [14]. The table shows that the proposed method
causes some increase in bit-rate that is lower than that of Liu et al. [14]. In [14], Liu et al. used same
set of test video sequences as used in this work, making direct comparison possible. However, other
recent state-of-the-art techniques such as those of Liu et al. [16] and Li et al. [47] used a set of higher
resolution video sequences that makes these techniques incompatible for direct comparison with the
proposed method. Nevertheless, the average bit-rate increase in these works and our proposed work
are presented in Table 9 together with the specifications of the video dataset used.

Table 8. Comparison of video bit-rate increase due to data embedding. All values are percentages.

Video Liu et al. [14] Proposed Method (SME with Following Error Codes)

BCH(7,4,1) BCH(31,16,3) BCH(31,11,5) Turbo(16) Turbo(24)

Container 2.7 0.01 0.02 0.02 0.03 0.04
News 2.8 0.02 0.02 0.03 0.03 0.05
Mobile 4.0 0.02 0.03 0.02 0.04 0.05
Akiyo 1.4 0.02 0.03 0.02 0.04 0.05
Coastguard - 0.02 0.03 0.03 0.04 0.06
Foreman - 0.01 0.03 0.04 0.04 0.06

Table 9. Comparison of average bit-rate increment of the proposed work with that of recent state-of-art
techniques that used other video datasets.

Technique Video Dataset Bit Rate Increase (avg.)

Liu et al. [16]
ParkScene (1920 × 1080), FourPeople (1280 × 720),
KirstenAndSara (1280 × 720), etc. PartyScene (832 × 480),
BQMall (832× 480), RaceHorses (416× 240)

0.785%

Li et al. [47]
BasketBallDrive (1920 × 1080), ParkScene (1920 × 1080),
BQTerrace (1920× 1080), Kimono (1920× 1080), ChinaSpeed (1024×
768), Keiba (832× 480), etc.

0.014%

Proposed
Container (352 × 288), News (352 × 288), Mobile (352 × 288),
Akiyo (352× 288), Coastguard (352× 288) and Foreman (352× 288) 0.031%

Symmetry 2019, 11, 1360 24 of 30

6.4. JSD-SM Coarness Measure Analysis

In the proposed data hiding method, JSD-SM coarseness measure (Algorithm 1) plays a crucial
role. As the theory of Human Visual System (HVS) [48] suggests that the human vision is less sensitive
to changes in the luminosity in coarse regions, the aim is to embed data in relatively coarse TU blocks
of the luma channel of each I-frame in the video sequence. The HEVC compression algorithm allocates
4× 4 TU blocks to the most coarse areas. Therefore, in this paper, data are embedded in all 4× 4 blocks.
To achieve greater payload capacity, data should be embedded in larger TU blocks. However, this may
cause unacceptable visual distortion. Hence, only relatively coarser blocks among the 8× 8 and 16× 16
luma TU blocks are selected as embedding venues. The top κ% most uneven 8× 8 and 16× 16 luma
TU blocks are selected based on the proposed JSD-SM coarseness measure, as explained in Section 5.1.
Data are embedded in these selected blocks using the SME(1,3,7) technique. Figure 15 illustrates four
specimen 16× 16 luma TU blocks from the second I-frame of the Akiyo video sequence. The top
left block is a non selected block as it contains little variation of luminosity. Other three blocks were
selected as these has high coarseness as per JSD-SM coarseness measure. These show that the proposed
JSD-SM coarseness measure correctly captures the relatively more coarse blocks. The quantity κ works
as a parameter to the embedding algorithm. If κ = p, the top p% most coarse 8× 8 and 16× 16 TU
blocks are selected for data embedding. Thus, κ controls the balance between embedding capacity
and embedding distortion. If κ = 0, none of the 8× 8 and 16× 16 blocks are selected for embedding
and data are embedded only in the 4× 4 blocks. Similarly, if κ = 100, all 8× 8 and 16× 16 blocks are
selected as data embedding venues.

Figure 16 shows the variation of average embedding capacity in I-frames at different values of κ.
As the parameter κ specifies the percentage of most coarse blocks to be selected, both payload capacity
and embedding distortion are dependant on κ. In the figure, it can be seen that at κ = 0, i.e., when data
are embedded in only the 4× 4 blocks and in no 8× 8 or 16× 16 blocks, the average capacity varies
from 256 bits to 380 bits. The capacity of the Foreman video sequence is the least because among all
test sequences, it contains least number of 4× 4 blocks at QP = 30. On the other hand, the Mobile
test sequence contains more coarseness, and it is allocated more 4× 4 blocks at QP = 30. Hence, it has
the highest capacity among all test videos at QP = 30. At κ = 20, in addition to all the 4× 4 blocks,
data are embedded in the 20% most coarse 8× 8 and 16× 16 blocks that are selected based on the
proposed JSD-SM block coarseness measure. Consequently, payload capacity increases significantly
for all the test sequences. Similar to every increment of κ from 0 to 100, embedding capacity increases
as more and more 8× 8 and 16× 16 are selected as embedding venue. At κ = 100, the highest capacity
is achieved as data are embedded in all 8× 8 and 16× 16 blocks.

Figure 17 illustrates distortion performance in terms of PSNR at different values of κ at QP = 30.
At κ = 0, i.e., when data are embedded only in the 4× 4 blocks, highest PSNR values are achieved for
all the test video sequences and these values range from 38 to 39. At κ = 20, in addition to the 4× 4
blocks, 20% of the 8× 8 and 16× 16 blocks are used as data embedding venues and therefore, as more
QTCs are modified, PSNR value drops. At κ = 100, all 4× 4, 8× 8 and 16× 16 blocks in an I-frame
are used as data embedding venues. Consequently, PSNR values drop even further. However, even
at κ = 100, PSNR values stay above 35. These results prove the proposed method achieves good
distortion characteristics. Moreover, the proposed method provides great flexibility of attainable
payload capacity and distortion performance. It lets the user choose a value of κ that dictates the
balance between payload capacity and distortion.

Symmetry 2019, 11, 1360 25 of 30

0 5 10 15

0.0

2.5

5.0

7.5

10.0

12.5

15.0

JSD-SM = 0.887

0 5 10 15

0.0

2.5

5.0

7.5

10.0

12.5

15.0

JSD-SM = 43.685

0 5 10 15

0.0

2.5

5.0

7.5

10.0

12.5

15.0

JSD-SM = 64.218

0 5 10 15

0.0

2.5

5.0

7.5

10.0

12.5

15.0

JSD-SM = 86.512

0

50

100

150

200

250

Figure 15. Four specimen 16× 16 luma TU blocks from the second I-frame of the Akiyo video sequence.
The top left block is a unselected block as it contains little variation of luminosity. Other three blocks
were selected as these has high coarseness as per JSD-SM coarseness measure.

0 20 40 60 80 100

κ

300

400

500

600

700

ca
pa

ci
ty

in
bi

ts

SME(1,3,7), BCH(7,4,1) at QP = 30

container
news
mobile
akiyo
coastguard
foreman

Figure 16. Data embedding capacity of the six video sequences at QP = 30 with different values of κ.

Symmetry 2019, 11, 1360 26 of 30

0 20 40 60 80 100

κ

35.0

35.5

36.0

36.5

37.0

37.5

38.0

38.5

39.0

P
S

N
R

QP = 30

container
news
mobile
akiyo
coastguard
foreman

Figure 17. PSNR values attained with the six video sequences at different values of κ, when BCH(7,4,1)
error correcting scheme is used in conjunction with SME(1,3,7) data embedding technique

6.5. Computation Time

The proposed method was implemented in HM (version 16.20), which is the H.265/HEVC
reference coding software released by Fraunhofer HH Institute. All experiments were run in a
GNU/Linux based operating system on a computer with Intel i7-3770 CPU and 16GB RAM. The HM
software is a C++ a source-only package and researchers are supposed to modify the software as per
need and then compile to generate the executable encoder, decoder and other modules. We compiled
the software in GNU C++ compiler with optimiser switch “-O 2”. This is important to mention,
because an executable generated with different optimiser switch may give different execution time for
experiment. For the sake of consistency, CPU throttling was turned off and the clock speed was kept
fixed at 2.4 GHz. Multi-threading was also turned off as it may give dynamic behaviour in execution.
The computation time of the proposed embedding method can be divided in the following steps.

A. Average data pre-processing and data encoding time: in this step, the data to be embedded are
first converted to binary bit-stream from its original format. Then, they are encoded in one of
the schemes of BCH or Turbo coding described in Section 5.3. Different schemes of BCH and
Turbo encoding take slightly different time. The average time taken by all the proposed schemes
is considered.

B. block selection using proposed JSD-SM technique as described in Section 5.1
C. data embedding using SME(1,3,7) technique as described in Section 5.2
D. total time: The total time taken to complete the whole embedding process. This includes A,

B, C and rest of the usual HEVC process such as motion vector analysis, quantisation, entropy
coding, etc.

Similarly, computation time for the data extraction process can be divided into following steps:

M. Block selection using the proposed JSD-SM technique
N. Data extraction using SME(1,3,7) technique
O. Data decoding using one of the proposed schemes of Turbo/BCH coding and post processing
P. Total time that includes M, N, O and rest of the HEVC decoding steps, e.g. inverse DST/DCT,

quantisation, etc.

Symmetry 2019, 11, 1360 27 of 30

Tables 10 and 11 summarise the computation time of different steps and also the total time taken
by embedding and extraction processes for each test video sequences. The results shown are the times
taken to embed data in 300 frames of each video sequence.

Table 10. Computation time taken by the embedding process. All times are in seconds.

Name A B C D

Container 0.6 32.6 11.8 221.2
News 0.6 31.4 12.3 224.7
Mobile 0.6 33.8 11.9 229.0
Akiyo 0.6 33.7 12.1 219.8
Coastguard 0.6 32.2 12.3 224.2
Foreman 0.6 33.0 11.9 232.3

Table 11. Computation time of the extraction process. All times are in seconds.

Name M N O P

Container 31.4 13.2 1.3 102.8
News 32.6 12.8 1.4 105.1
Mobile 33.1 13.1 1.6 110.7
Akiyo 32.7 14.0 1.4 108.5
Coastguard 31.4 13.5 1.5 111.8
Foreman 32.3 13.2 1.6 118.0

7. Conclusions

In this paper, we propose a method of robust and secure data hiding in H.265/HEVC compressed
videos that is capable of higher payload capacity than the previous state-of-the-art methods in the
literature at similar or better visual distortion. Compared to the previous state-of-the-art works
in the literature, the proposed method achieves two to three times more payload capacity without
compromising the visual quality. Higher payload capacity has been achieved by embedding data in
larger transform blocks of H.265/HEVC and embedding distortion is kept under control by reducing
embedding change density with the help of SME(1, 3, 7) data embedding technique. SME(1, 3, 7) is
capable of embedding 3 bits of data in a block of seven QTCs by modifying only one QTC. Visual
distortion is also kept under control by avoiding data embedding in smoother 8× 8 and 16× 16 blocks.
The smooth blocks are filtered out and coarse blocks are selected as embedding venue with the help
of the proposed JSD-SM block coarseness measure that is based on Jensen–Shannon divergence and
second moment of pixel value distribution in image blocks. Moreover, the proposed method achieves
excellent robustness against re-quantisation attacks with the help of powerful BCH or Turbo error
correcting codes. We have compared a set of different parameters and generator polynomials of BCH
and Turbo codes. The results show that Turbo code can achieve superior robustness due to its burst
error correcting properties. However, there is room for more improvements. A potential way forward
is to increase payload capacity even more by embedding data in the inter-predicted frames (P and B)
and other HEVC compression features such as motion vectors.

Author Contributions: Conceptualisation, K.B.; methodology, K.B.; software, K.B.; validation, K.B.; formal
analysis, K.B.; investigation, K.B.; resources, K.B.; data curation, K.B.; writing–original draft preparation, K.B.;
writing–review and editing, K.B.; visualisation, K.B.; funding acquisition, K.B.

Funding: This research was partially funded by CSIR, India vide grant id. 09/263(1045)/2015-EMR-I, and by DST
PURSE, JNU.

Conflicts of Interest: The author declares no conflict of interest.

Symmetry 2019, 11, 1360 28 of 30

References

1. Ohm, J.R.; Sullivan, G.J.; Schwarz, H.; Tan, T.K.; Wiegand, T. Comparison of the coding efficiency of video
coding standards—Including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol.
2012, 22, 1669–1684. [CrossRef]

2. Chang, P.C.; Chung, K.L.; Chen, J.J.; Lin, C.H.; Lin, T.J. A DCT/DST-based error propagation-free data hiding
algorithm for HEVC intra-coded frames. J. Vis. Commun. Image Represent. 2014, 25, 239–253. [CrossRef]

3. Liu, Y.; Li, Z.; Ma, X.; Liu, J. A robust data hiding algorithm for H.264/AVC video streams. J. Syst. Softw.
2013, 86, 2174–2183. [CrossRef]

4. Liu, Y.; Hu, M.; Ma, X.; Zhao, H. A new robust data hiding method for H.264/AVC without intra-frame
distortion drift. Neurocomputing 2015, 151, 1076–1085. [CrossRef]

5. Ma, X.; Li, Z.; Tu, H.; Zhang, B. A data hiding algorithm for H. 264/AVC video streams without intra-frame
distortion drift. IEEE Trans. Circuits Syst. Video Technol. 2010, 20, 1320–1330. [CrossRef]

6. Xu, D.; Wang, R.; Shi, Y.Q. Data hiding in encrypted H. 264/AVC video streams by codeword substitution.
IEEE Trans. Inf. Forensics Secur. 2014, 9, 596–606. [CrossRef]

7. Niu, K.; Yang, X.; Zhang, Y. A novel video reversible data hiding algorithm using motion vector for H.
264/AVC. Tsinghua Sci. Technol. 2017, 22, 489–498. [CrossRef]

8. Ma, Z.; Huang, J.; Jiang, M.; Niu, X. A video watermarking DRM method based on H. 264 compressed
domain with low bit-rate increasement. Chin. J. Electron. 2016, 25, 641–647. [CrossRef]

9. Lin, T.J.; Chung, K.L.; Chang, P.C.; Huang, Y.H.; Liao, H.Y.M.; Fang, C.Y. An improved DCT-based
perturbation scheme for high capacity data hiding in H.264/AVC intra frames. J. Syst. Softw. 2013,
86, 604–614. [CrossRef]

10. Stutz, T.; Autrusseau, F.; Uhl, A. Non-blind structure-preserving substitution watermarking of H.
264/CAVLC inter-frames. IEEE Trans. Multimed. 2014, 16, 1337–1349. [CrossRef]

11. Ogawa, K.; Ohtake, G. Watermarking for HEVC/H.265 stream. In Proceedings of the 2015 IEEE International
Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 9–12 January 2015; pp. 102–103. [CrossRef]

12. Liu, Y.; Liu, S.; Zhao, H.; Liu, S. A new data hiding method for H.265/HEVC video streams without
intra-frame distortion drift. Multimed. Tools Appl. 2018. [CrossRef]

13. Dutta, T.; Gupta, H.P. A robust watermarking framework for High Efficiency Video Coding
(HEVC)—Encoded video with blind extraction process. J. Vis. Commun. Image Represent. 2016, 38, 29–44.
[CrossRef]

14. Liu, Y.; Chen, L.; Hu, M.; Jia, Z.; Jia, S.; Zhao, H. A reversible data hiding method for H. 264 with Shamir’s
(t, n)-threshold secret sharing. Neurocomputing 2016, 188, 63–70. [CrossRef]

15. Swati, S.; Hayat, K.; Shahid, Z. A watermarking scheme for high efficiency video coding (HEVC). PLoS ONE
2014, 9, e105613. [CrossRef]

16. Liu, Y.; Zhao, H.; Liu, S.; Feng, C.; Liu, S. A robust and improved visual quality data hiding method for
HEVC. IEEE Access 2018, 6, 53984–53997. [CrossRef]

17. Gaj, S.; Sur, A.; Bora, P.K. A robust watermarking scheme against re-compression attack for H. 265/HEVC.
In Proceedings of the 2015 Fifth National Conference on Computer Vision, Pattern Recognition, Image
Processing and Graphics (NCVPRIPG), Patna, India, 16–19 December 2015; pp. 1–4.

18. Tew, Y.; Wong, K. Information hiding in HEVC standard using adaptive coding block size decision.
In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30
October 2014; pp. 5502–5506.

19. Yang, Y.; Li, Z.; Xie, W.; Zhang, Z. High capacity and multilevel information hiding algorithm based on pu
partition modes for HEVC videos. Multimed. Tools Appl. 2019, 78, 8423–8446. [CrossRef]

20. Bo, P.; Jie, Y. A Reversible Information Hiding Method Based on HEVC. IFAC-PapersOnLine 2018, 51, 238–243.
[CrossRef]

21. Thiesse, J.M.; Jung, J.; Antonini, M. Rate distortion data hiding of motion vector competition information in
chroma and luma samples for video compression. IEEE Trans. Circuits Syst. Video Technol. 2011, 21, 729–741.
[CrossRef]

22. Aly, H.A. Data hiding in motion vectors of compressed video based on their associated prediction error.
IEEE Trans. Inf. Forensics Secur. 2010, 6, 14–18. [CrossRef]

http://dx.doi.org/10.1109/TCSVT.2012.2221192
http://dx.doi.org/10.1016/j.jvcir.2013.10.007
http://dx.doi.org/10.1016/j.jss.2013.03.101
http://dx.doi.org/10.1016/j.neucom.2014.03.089
http://dx.doi.org/10.1109/TCSVT.2010.2070950
http://dx.doi.org/10.1109/TIFS.2014.2302899
http://dx.doi.org/10.23919/TST.2017.8030538
http://dx.doi.org/10.1049/cje.2016.07.010
http://dx.doi.org/10.1016/j.jss.2012.10.922
http://dx.doi.org/10.1109/TMM.2014.2310595
http://dx.doi.org/10.1109/ICCE.2015.7066337
http://dx.doi.org/10.1007/s11042-018-6320-y
http://dx.doi.org/10.1016/j.jvcir.2015.12.007
http://dx.doi.org/10.1016/j.neucom.2014.10.109
http://dx.doi.org/10.1371/journal.pone.0105613
http://dx.doi.org/10.1109/ACCESS.2018.2869148
http://dx.doi.org/10.1007/s11042-018-6859-7
http://dx.doi.org/10.1016/j.ifacol.2018.08.160
http://dx.doi.org/10.1109/TCSVT.2011.2130330
http://dx.doi.org/10.1109/TIFS.2010.2090520

Symmetry 2019, 11, 1360 29 of 30

23. Sullivan, G.J.; Ohm, J.R.; Han, W.J.; Wiegand, T. Overview of the high efficiency video coding (HEVC)
standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1649–1668. [CrossRef]

24. Sole, J.; Joshi, R.; Nguyen, N.; Ji, T.; Karczewicz, M.; Clare, G.; Henry, F.; Duenas, A. Transform coefficient
coding in HEVC. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1765–1777. [CrossRef]

25. Sze, V.; Budagavi, M.; Sullivan, G.J. High efficiency video coding (HEVC). Integr. Circuit Syst. Algorithms
Archit. Springer 2014, 39, 40.

26. Pastuszak, G. Flexible architecture design for H. 265/HEVC inverse transform. Circuits Syst. Signal Process.
2015, 34, 1931–1945. [CrossRef]

27. Wiegand, T.; Sullivan, G.J.; Bjontegaard, G.; Luthra, A. Overview of the H. 264/AVC video coding standard.
IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 560–576. [CrossRef]

28. Marpe, D.; Schwarz, H.; Wiegand, T. Context-based adaptive binary arithmetic coding in the H. 264/AVC
video compression standard. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 620–636. [CrossRef]

29. Liu, Y.; Li, Z.; Ma, X.; Liu, J. A robust without intra-frame distortion drift data hiding algorithm based on H.
264/AVC. Multimed. Tools Appl. 2014, 72, 613–636. [CrossRef]

30. Mstafa, R.J.; Elleithy, K.M. A high payload video steganography algorithm in DWT domain based on BCH
codes (15, 11). In Proceedings of the 2015 Wireless Telecommunications Symposium (WTS), New York, NY,
USA, 15–17 April 2015; pp. 1–8.

31. Mstafa, R.J.; Elleithy, K.M. A DCT-based robust video steganographic method using BCH error correcting
codes. In Proceedings of the 2016 IEEE Long Island Systems, Applications and Technology Conference
(LISAT), Farmingdale, NY, USA, 29 April 2016; pp. 1–6.

32. Yoo, H.; Jung, J.; Jo, J.; Park, I.C. Area-efficient multimode encoding architecture for long BCH codes.
IEEE Trans. Circuits Syst. II Express Briefs 2013, 60, 872–876. [CrossRef]

33. Hagenauer, J.; Offer, E.; Papke, L. Iterative decoding of binary block and convolutional codes. IEEE Trans.
Inf. Theory 1996, 42, 429–445. [CrossRef]

34. Massey, J. Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 1969, 15, 122–127. [CrossRef]
35. Berrou, C.; Glavieux, A.; Thitimajshima, P. Near Shannon limit error-correcting coding and decoding:

Turbo-codes. 1. In Proceedings of the ICC’93—IEEE International Conference on Communications, Geneva,
Switzerland, 23–26 May 1993; Volume 2, pp. 1064–1070. [CrossRef]

36. Endres, D.M.; Schindelin, J.E. A new metric for probability distributions. IEEE Trans. Inf. Theory 2003, 49,
1858–1860 . [CrossRef]

37. Chan, C.K.; Cheng, L. Hiding data in images by simple {LSB} substitution. Pattern Recognit. 2004, 37, 469–474.
[CrossRef]

38. Li, B.; He, J.; Huang, J.; Shi, Y.Q. A survey on image steganography and steganalysis. J. Inf. Hiding Multimed.
Signal Process. 2011, 2, 142–172.

39. Wang, R.Z.; Lin, C.F.; Lin, J.C. Image hiding by optimal LSB substitution and genetic algorithm.
Pattern Recognit. 2001, 34, 671–683. [CrossRef]

40. Roque, J.J.; Minguet, J.M. SLSB: Improving the Steganographic Algorithm LSB. In Proceedings of the
Workshop on Security in Information Systems (WOSIS 2009), Milan, Italy, 6–7 May 2009; pp. 57–66.

41. Gutub, A.A.A. Pixel indicator technique for RGB image steganography. J. Emerg. Technol. Web Intell. 2010,
2, 56–64. [CrossRef]

42. Fridrich, J.; Lisoněk, P.; Soukal, D. On steganographic embedding efficiency. In Proceedings of
the International Workshop on Information Hiding, Alexandria, VA, USA, 10–12 July 2006; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 282–296.

43. Fridrich, J.; Soukal, D. Matrix embedding for large payloads. IEEE Trans. Inf. Forensics Secur. 2006, 1, 390–395.
[CrossRef]

44. Berlekamp, E.R. Non-Binary BCH Decoding; Technical Report; Department of Statistics, North Carolina State
University: Raleigh, NC, USA, 1966.

45. Hagenauer, J.; Hoeher, P. A Viterbi algorithm with soft-decision outputs and its applications. In Proceedings
of the 1989 IEEE Global Telecommunications Conference and Exhibition’Communications Technology for
the 1990s and Beyond’, Dallas, TX, USA, 27–30 November 1989; pp. 1680–1686.

46. University of Hannover. High Resolution Video Datasets. 2013. Available online: http://ftp.tnt.uni-
hannover.de/testsequences (accessed on 7 July 2019).

http://dx.doi.org/10.1109/TCSVT.2012.2221191
http://dx.doi.org/10.1109/TCSVT.2012.2223055
http://dx.doi.org/10.1007/s00034-014-9933-z
http://dx.doi.org/10.1109/TCSVT.2003.815165
http://dx.doi.org/10.1109/TCSVT.2003.815173
http://dx.doi.org/10.1007/s11042-013-1393-0
http://dx.doi.org/10.1109/TCSII.2013.2281941
http://dx.doi.org/10.1109/18.485714
http://dx.doi.org/10.1109/TIT.1969.1054260
http://dx.doi.org/10.1109/ICC.1993.397441
http://dx.doi.org/10.1109/TIT.2003.813506
http://dx.doi.org/10.1016/j.patcog.2003.08.007
http://dx.doi.org/10.1016/S0031-3203(00)00015-7
http://dx.doi.org/10.4304/jetwi.2.1.56-64
http://dx.doi.org/10.1109/TIFS.2006.879281
http://ftp.tnt.uni-hannover.de/testsequences
http://ftp.tnt.uni-hannover.de/testsequences

Symmetry 2019, 11, 1360 30 of 30

47. Li, Z.; Meng, L.; Jiang, X.; Li, Z. High Capacity HEVC Video Hiding Algorithm Based on EMD Coded PU
Partition Modes. Symmetry 2019, 11, 1015. [CrossRef]

48. Richardson, I.E. H. 264 and MPEG-4 Video Compression: Video Coding for Next-Generation Multimedia; John
Wiley & Sons: Hoboken, NJ, USA, 2004.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/sym11081015
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works and Motivation
	Overview of H.265/HEVC Video Coding Standard
	Improvements in H.265/HEVC over H.264/AVC
	Coding Unit
	Motion Estimation
	Transform Coding and Quantisation
	Entropy Coding

	Overview of Error Correcting Techniques
	BCH Syndrome Error Correcting Codes
	Turbo Codes

	Proposed Method of Data Hiding
	Block Selection Using JSD-SM Coarseness Measure
	Data Embedding and Extraction
	Design of the BCH and Turbo Error Correcting Codes
	Overall Architecture of the Proposed Method

	Experimental Results and Discussion
	Visual Quality and Payload Capacity
	Robustness Performance
	Bit-Rate Increase
	JSD-SM Coarness Measure Analysis
	Computation Time

	Conclusions
	References

