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Abstract: This paper presents a new way to view the key equation for decoding Reed–Solomon
codes that unites the two algorithms used in solving it—the Berlekamp–Massey algorithm and the
Euclidean algorithm. A new key equation for Reed–Solomon codes is derived for simultaneous
errors and erasures decoding using the symmetry between polynomials and their reciprocals as
well as the symmetries between dual and primal codes. The new key equation is simpler since it
involves only degree bounds rather than modular computations. We show how to solve it using the
Euclidean algorithm. We then show that by reorganizing the Euclidean algorithm applied to the new
key equation we obtain the Berlekamp–Massey algorithm.

Keywords: Reed–Solomon codes; key equation; Berlekamp–Massey algorithm; Sugiyama et al.
algorithm; euclidean algorithm

1. Introduction

Reed–Solomon codes are the basis of many applications such as secret sharing [1], distributed
storage [2,3], private information retrieval [4] and the analysis of cryptographic hardness [5]. The most
used tool for decoding Reed–Solomon codes is the key equation by Berlekamp [6] and the milestone
algorithms that solve it are the Berlekamp–Massey algorithm [7] and the Sugiyama et al. adaptation
of the Euclidean algorithm [8]. Their connections are analyzed in [9–12]. This paper is meant to
bring a new unified presentation of the key equation, the Sugiyama-Euclidean algorithm and the
Berlekamp–Massey algorithm for correcting errors and erasures for Reed–Solomon codes.

Section 2 presents a revisited key equation for both erasures and errors using the symmetry
between polynomials and their reciprocals as well as the symmetries between dual and primal codes.
In the new key equation, as opposed to the classical equation, there is no need to reference computations
modulo a power of the indeterminate, and the correction polynomials reveal error locations rather
than their inverses. Section 3 gives a way to solve the new key equation using the Euclidean algorithm.
We show how the Berlekamp–Massey algorithm can be obtained by reorganizing the Euclidean
algorithm. Hence, the whole paper is, in fact, a simple presentation of the Berlekamp–Massey algorithm
as a restructured Euclidean algorithm.
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2. Symmetric Key Equation

2.1. Reed–Solomon Codes

Suppose that F is a finite field of q elements and suppose that α is a primitive element of F.
Let n = q − 1. Each vector u = (u0, . . . , un−1) ∈ Fn is identified with the polynomial u(x) =

u0 + u1x + · · ·+ un−1xn−1. The evaluation of u(x) at a is then denoted u(a). The cyclic code C∗(k)
of length n generated by the polynomial (x− α)(x− α2) · · · (x− αn−k) is classically referred to as a
(primal) Reed–Solomon code. Its dimension is k. On the other hand, the cyclic code C(k) of lenth n
generated by the polynomial (x− αn−(k+1))(x− αn−(k+2)) · · · (x− α)(x− 1) is referred to as a dual
Reed–Solomon code. Its dimension is k as well. The minimum distance of both codes is d = n− k + 1.
The codes are related by the equality C(k)⊥ = C∗(n− k).

The vector space Fn is naturally bijected to itself through a map c 7→ c∗ taking C(k)
to C∗(k). For a vector c = (c0, c1, . . . , cn−1) ∈ Fn the vector c∗ is defined componentwise
as c∗ = (c0, α−1c1, α−2c2, . . . , αcn−1). Symmetrically, if c∗ = (c∗0 , c∗1 , . . . , c∗n−1), then c =

(c∗0 , αc∗1 , α2c∗2 , . . . , αn−1c∗n−1). In particular, c(αi) = c∗0 + αc∗1αi + α2c∗2α2i + · · · + αn−1c∗n−1α(n−1)i =

c∗(αi+1).
Due to this bijective map, algorithms for correcting errors and erasures for primal Reed–Solomon

code are also applicable for dual Reed–Solomon codes and vice versa. Indeed, if the codeword c ∈ C(k)
at minimum distance of a received vector u differs from u by a vector of errors e, then the codeword
c∗ ∈ C∗(k) at minimum distance of a received vector u∗ differs from u∗ by a vector of errors e∗.

2.2. Decoding for Errors and Erasures

Suppose that a noisy channel adds t errors and erases s other components of a transmitted
codeword c ∈ C(k) with 2t + s < d. Let u be the received word after replacing the erased positions by
0 and let e = u− c. The erasure locator polynomial is defined as Λr = ∏i:ciwas erased(x− αi) while the error
locator polynomial is defined as Λe = ∏i:ei 6=0,cinot erased(x− αi). The product ΛrΛe is called Λ. We remark
that while Λr is known driectly from the received word, the Λe is not a priori known. The error evaluator

polynomial is defined as Ω = ∑ i:ei 6=0
or ci erased

ei ∏j:ej 6=0 or cj erased,

and j 6=i
(x− αi) = ∑n−1

i=0 ei
Λ

x− αi The error positions can

be identified by Λe(αi) = 0 while the error values can be derived, as well as the erased values, from
the analogue of the Forney formula [13]

ei =
Ω(αi)

Λ′(αi)
.

Notice that in the traditional setting, the roots of the locator polynomial are not related to the error
positions but to their inverses. Hence, in the new setting we take the reciprocals of the polynomials of
the traditional setting thus establishing a symmetry between the different versions. Also, the classical
Forney formula involves the evaluator polynomial and the derivative of the locator polynomial
evaluated at the inverses of the error positions, while with the new settings we use directly the
error positions.

Finally, the polynomial S = e(αn−1) + e(αn−2)x + · · ·+ e(α)xn−2 + e(1)xn−1 is called the syndrome
polynomial of e.

Lemma 1. Ω(xn − 1) = ΛS.
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Proof. We can compute directly,

Ω(xn − 1) = (xn − 1)
n−1

∑
i=0

ei
Λ

x− αi

= Λ
n−1

∑
i=0

ei
xn − 1
x− αi

= Λ
n−1

∑
i=0

ei

n−1

∑
j=0

xn−1−j(αi)j

= Λ
n−1

∑
j=0

xn−1−j
n−1

∑
i=0

ei(α
j)i

= Λ
n−1

∑
j=0

xn−1−je(αj)

= ΛS

The general term of S is e(αn−1−i)xi, but we only know from a received word the values e(1) =
u(1), . . . , e(αn−k−1) = u(αn−k−1). For this reason we use the truncated syndrome polynomial defined as
S̄ = e(αn−k−1)xk + e(αn−k−2)xk+1 + · · ·+ e(1)xn−1. The degree of the polynomial Ω(xn − 1)−ΛS̄ =

Λ(S− S̄) is at most t+ s+ k− 1 < d−s
2 + s+ n− d = n− d−s

2 . One consequence of this bound is that the
reciprocal polynomials Ω∗ = xt+s−1Ω(1/x), Λ∗ = xt+sΛ(1/x) and the polynomial S̄∗ = xn−1S̄(1/x)
satisfy the well known Berlekamp key equation Λ∗S̄∗ = Ω∗ mod xn−s−k. Theorem 1 uses the bound
on the degree of Ω(xn − 1)−ΛS̄ to derive a symmetric key equation for dual Reed–Solomon codes.
To prove it, we first need the next two lemmas.

Lemma 2. Suppose that f is a polynomial of F[x] with deg( f ) < n. Suppose that for a given α ∈ F∗ the
polynomial f (x) xn−1

x−α has no term of degree n− 1. Then α is a root of f .

Proof. The Euclidean division of f by x− α gives a polynomial g ∈ F[x] of degree smaller than n− 1
that satisfies f (x) = f (α) + g(x)(x − α). Then f (x) xn−1

x−α = f (α) xn−1
x−α + g(x)(xn − 1). On one hand,

the product g(x)(xn − 1) has no term of degree n− 1. On the other hand, the coefficient of f (α) xn−1
x−α

of degree n − 1 is exactly f (α). Hence, if f (x) xn−1
x−α has no term of degree n − 1, then necessarily

f (α) = 0.

Lemma 3. Suppose that f is a polynomial of F[x] with deg( f ) ≤ n − s − t such that the terms of degree
n− t, . . . , n− 1 of f ΛrS are all zero. Then Λe is a divisor of f .
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Proof. Suppose that the terms of degree n − t, . . . , n − 1 of f ΛrS are all zero. Suppose cj was not
erased and ej 6= 0. Consider g(x) = Λe/(x− αj). We have deg(g) = t− 1 and consequently the term
of degree n− 1 of f gΛrS is 0. Then,

f gΛrS = f (x)g(x)Λr(x)
Ω(x)(xn − 1)

Λ(x)

= ∑
k:ek 6=0

ek f (x)g(x)Λr(x)
xn − 1
x− αk

= ej f (x)g(x)Λr(x)
xn − 1
x− αj

+ ∑
k:ek 6=0,

cknot erased

k 6=j

ek f (x)
g(x)

x− αk
Λr(x)(xn − 1)

+ ∑
k:ckerased

ek f (x)g(x)
Λr(x)
x− αk

(xn − 1).

Because of the restriction on the degree of f , none of the last two summands has term of degree
n− 1. Since the term of degree n− 1 of f gΛrS is 0, so is the term of degree n− 1 of f (x)g(x)Λr(x) xn−1

x−αj
.

By Lemma 2, x− αj must be a divisor of f . Since j was chosen arbitrarily such that ej 6= 0 and cj was
not erased, we conclude that Λe must divide f .

Theorem 1 (Symmetric key equation). Suppose that a number s of erasures occurred together with a number
of at most b d−s−1

2 c errors. Then the polynomials Λe and Ω are uniquely determined by the conditions

1. f is monic
2. f , ϕ are coprime
3. deg( f ) ≤ d−s

2
4. deg( f ΛrS̄− ϕ(xn − 1)) < n− d−s

2

Proof. It is easy to see that Λe and Ω satisfy conditions 1, 2, 3. It follows from the previous lemmas
that Λe and Ω satisfy condition 4. Conversely, suppose that f , ϕ satisfy the conditions 3 and 4. We will
prove that the terms of degrees n− t, . . . , n− 1 of f ΛrS are all zero. Then, by Lemma 3, and because
deg( f ) ≤ d−s

2 ≤ n − d+s
2 = n − s − d−s

2 < n − s − t, it can be deduced that Λe is a divisor of f .
Indeed, write

f ΛrS = ( f ΛrS̄− ϕ(xn − 1)) + f Λr(S− S̄) + ϕ(xn − 1).

By consition 4, the degree of the first term in this sum is less than n− d−s
2 < n− t. By condition 3,

deg( f Λr(S− S̄)) ≤ d−s
2 + s+ k− 1 = n− d−s

2 < n− t. By condition 4, deg(ϕ) + n ≤ deg( f ) + s+ n−
1. Consequently deg(ϕ) < deg( f ) + s and by condition 3, deg(ϕ) < d−s

2 + s = d+s
2 ≤ n− d−s

2 < n− t.
So, the terms of degrees n− t, . . . , n− 1 of ϕ(xn− 1) are all zero. Suppose now that there exists g ∈ F[x]
such that f = gΛe. Then

f ΛrS̄− ϕ(xn − 1) = f Λr(S̄− S) + f ΛrS− ϕ(xn − 1)

= f Λr(S̄− S) + gΛS− ϕ(xn − 1)

= f Λr(S̄− S) + gΩ(xn − 1)− ϕ(xn − 1)

= f Λr(S̄− S) + (gΩ− ϕ)(xn − 1).

By condition 4, deg( f ΛrS̄− ϕ(xn − 1)) < n− d−s
2 and as just seen, deg( f Λr(S̄− S)) < n− t.

Consequently, ϕ = gΩ. Now condition 1 and condition 2 imply g = 1 and so ϕ = Ω and f = Λe.
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3. Solving the Symmetric Key Equation

We first approach the case in which only erasures occurred. In this case Λ = Λr, Λe = 1, and Ω
can be directly derived from the key equation of Theorem 1. Indeed, the polynomial Ω is exactly the
sum of those monomials of ΛrS̄ of degree at least n− d−s

2 , divided by the monomial xn− d−s
2 .

Suppose now the case in which errors and erasures occured simultaneously. The extended
Euclidean algorithm applied to the quotient polynomial ΛrS̄ and the divisor polynomial −(xn −
1) gives gcd(ΛrS̄, xn − 1) and two polynomials λ(x) and η(x) satisfying that λΛrS̄ − η(xn − 1) =

gcd(ΛrS̄, xn − 1). A new remainder ri and two polynomials λi(x) and ηi(x) such that λiΛrS̄− ηi(xn −
1) = ri are computed at each intermediate step of the Euclidean algorithm, in a way such that the
degree of ri decreases at each step. Truncating at a proper point the Euclidean algorithm we can obtain
two polynomials λi and ηi satisfying that the degree of λiΛrS̄− ηi(xn − 1) is smaller than n− d−s

2 .
The next algorithm is a truncated version of the Euclidean algorithm. It satisfies that, for all i ≥ 0,
deg(ri) ≤ deg(ri−1) and deg( fi) ≥ deg( fi−1).

Algorithm 1: Euclidean Algorithm
Initialize:

r−2 = ΛrS̄, f−2 = 1, ϕ−2 = 0,
r−1 = −(xn − 1), f−1 = 0, ϕ−1 = 1,

while deg(ri) ≥ n− d−s
2 :

qi = Quotient(ri−2, ri−1)

ri = Remainder(ri−2, ri−1)

fi = fi−2 − qi fi−1
ϕi = ϕi−2 − qi ϕi−1

end while
Return fi/LC( fi), ϕi/LC( fi)

or, equivalently, in matrix form,

Initialize:(
r−1 f−1 ϕ−1

r−2 f−2 ϕ−2

)
=

(
−(xn − 1) 0 1

ΛrS̄ 1 0

)
while deg(ri) ≥ n− d−s

2 :

qi = Quotient(ri−2, ri−1)(
ri fi ϕi

ri−1 fi−1 ϕi−1

)
=

(
−qi 1

1 0

)(
ri−1 fi−1 ϕi−1
ri−2 fi−2 ϕi−2

)
end while
Return fi/LC( fi), ϕi/LC( fi)

For every integer i larger than or equal to −1 consider the matrix
( ◦

Ri
◦
Fi

◦
Φi

◦
R̃i

◦
F̃i

◦
Φ̃i

)
=(

1/LC(ri) 0
0 −LC(ri)

)(
ri fi ϕi

ri−1 fi−1 ϕi−1

)
It is easy to check that the polynomial

◦
Ri is monic. In the

algorithm one can replace the update step by the next multiplication.( ◦
Ri

◦
Fi

◦
Φi

◦
R̃i

◦
F̃i

◦
Φ̃i

)
=

 1

LC(
◦
R̃i−1−Qi

◦
Ri−1)

0

0 −LC(
◦
R̃i−1 −Qi

◦
Ri−1)

( −Qi 1
1 0

)( ◦
Ri−1

◦
Fi−1

◦
Φi−1

◦
R̃i−1

◦
F̃i−1

◦
Φ̃i−1

)
,

where the polynomial Qi is the quotient of the division of
◦
R̃i−1

by
◦
Ri−1. Furthermore, if Qi = Q(0)

i + Q(1)
i x + · · · + Q(li)

i xli , then
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(
−Qi 1
1 0

)
=

(
1 −Q(0)

i
0 1

)(
1 −Q(1)

i x
0 1

)
. . .

(
1 −Q(l)

i xl

0 1

)(
0 1
1 0

)
and the update

step becomes( ◦
Ri

◦
Fi

◦
Φi

◦
R̃i

◦
F̃i

◦
Φ̃i

)
=

 1

LC(
◦
R̃i−1−Qi

◦
Ri−1)

0

0 −LC(
◦
R̃i−1 −Qi

◦
Ri−1)

( 1 −Q(0)
i

0 1

)(
1 −Q(1)

i x
0 1

)
. . .

. . .

(
1 −Q(l)

i xl

0 1

)(
0 1
1 0

)( ◦
Ri−1

◦
Fi−1

◦
Φi−1

◦
R̃i−1

◦
F̃i−1

◦
Φ̃i−1

)
,

One can see that LC(
◦
R̃i−1 − Qi

◦
Ri−1) and the Q(j)

i ’s are the leading coefficients of the left-most,
top-most polynomials in the previous product of all the previous matrices. This follows from the fact
that

◦
Ri is monic. Define µ as the (changing) leading coefficients of the left-most, top-most element in

the product of all the previous matrices. It follows that

( ◦
Ri

◦
Fi

◦
Φi

◦
R̃i

◦
F̃i

◦
Φ̃i

)
=

(
1
µ 0
0 −µ

)(
1 −µ

0 1

)(
1 −µx
0 1

)
. . .
(

1 −µxli

0 1

)(
0 1
1 0

)( ◦
Ri−1

◦
Fi−1

◦
Φi−1

◦
R̃i−1

◦
F̃i−1

◦
Φ̃i−1

)

=

(
1
µ 0
0 −µ

)(
1 −µ

0 1

)(
1 −µx
0 1

)
. . .
(

1 −µxli

0 1

)(
0 1
1 0

)
(

1
µ 0
0 −µ

)(
1 −µ

0 1

)(
1 −µx
0 1

)
. . .
(

1 −µxli−1

0 1

)(
0 1
1 0

)( ◦
Ri−2

◦
Fi−2

◦
Φi−2

◦
R̃i−2

◦
F̃i−2

◦
Φ̃i−2

)

=

(
1
µ 0
0 −µ

)(
1 −µ

0 1

)(
1 −µx
0 1

)
. . .
(

1 −µxli

0 1

)(
0 −µ

1/µ 0

)
(

1 −µ

0 1

)(
1 −µx
0 1

)
. . .
(

1 −µxli−1

0 1

)(
0 1
1 0

)( ◦
Ri−2

◦
Fi−2

◦
Φi−2

◦
R̃i−2

◦
F̃i−2

◦
Φ̃i−2

)

=

(
1
µ 0
0 −µ

)(
1 −µ

0 1

)(
1 −µx
0 1

)
. . .
(

1 −µxli

0 1

)(
0 −µ

1/µ 0

)
(

1 −µ

0 1

)(
1 −µx
0 1

)
. . .
(

1 −µxli−1

0 1

)(
0 −µ

1/µ 0

)
...

(
1 −µ

0 1

)(
1 −µx
0 1

)
. . .
(

1 −µxl0

0 1

)(
0 1
1 0

)( ◦
R−1

◦
F−1

◦
Φ−1

◦
R̃−1

◦
F̃−1

◦
Φ̃−1

)
,

Let us label the matrices in the previous product:

(
1
µ 0
0 −µ

) Mm︷ ︸︸ ︷(
1 −µ

0 1

) Mm−1︷ ︸︸ ︷(
1 −µx
0 1

)
. . .
(

1 −µxli−1

0 1

)(
1 −µxli

0 1

)(
0 −µ

1/µ 0

)
...

(
1 −µ

0 1

)(
1 −µx
0 1

)
. . .

Ml0+3︷ ︸︸ ︷(
1 −µxl1−1

0 1

) Ml0+2︷ ︸︸ ︷(
1 −µxl1

0 1

) Ml0+1︷ ︸︸ ︷(
0 −µ

1/µ 0

)
Ml0︷ ︸︸ ︷(

1 −µ

0 1

) Ml0−1︷ ︸︸ ︷(
1 −µx
0 1

)
. . .

M1︷ ︸︸ ︷(
1 −µxl0−1

0 1

) M0︷ ︸︸ ︷(
1 −µxl0

0 1

)(
0 1
1 0

)
.

( ◦
R−1

◦
F−1

◦
Φ−1

◦
R̃−1

◦
F̃−1

◦
Φ̃−1

)
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Now, we define(
R−1 F−1 Φ−1

R̃−1 F̃−1 Φ̃−1

)
=

(
0 1
1 0

)( ◦
R−1

◦
F−1

◦
Φ−1

◦
R̃−1

◦
F̃−1

◦
Φ̃−1

)
=

(
Λr S̄ 1 0

xn − 1 0 −1

)
(

Ri Fi Φi
R̃i F̃i Φ̃i

)
= Mi ·Mi−1 · · · · ·M0 ·

(
R−1 F−1 Φ−1

R̃−1 F̃−1 Φ̃−1

)

Lets us see now that, for all i ≤ m, the polynomials R̃i and Fi are monic. Indeed, R̃−1 = xn − 1
is monic, and it follows by induction and by the definition of the matrices Mi, that R̃i is monic for
all i. Now, all the matrices Mi have determinant equal to 1. This implies that Ri F̃i − FiR̃i is constant
for all i and it equals −(xn − 1). In particular, since LC(Ri F̃i − FiR̃i) = −LC(Fi)LC(R̃i) = −LC(Fi),
we deduce that for every i, the polynomial Fi is monic.

Algorithm 2 computes the matrices
(

Ri Fi Φi
R̃i F̃i Φ̃i

)
until deg(Ri) < n− d−s

2 .

Algorithm 2: Single Coefficient Euclidean Algorithm.
Initialize:(

R−1 F−1 Φ−1

R̃−1 F̃−1 Φ̃−1

)
=

(
ΛrS̄ 1 0
xn − 1 0 −1

)

while deg(Ri) ≥ n− d−s
2 :

µ = LC(Ri)

p = deg(Ri)− deg(R̃i)

if p ≥ 0 then(
Ri+1 Fi+1 Φi+1
R̃i+1 F̃i+1 Φ̃i+1

)
=

(
1 −µxp

0 1

)(
Ri Fi Φi
R̃i F̃i Φ̃i

)
else (

Ri+1 Fi+1 Φi+1
R̃i+1 F̃i+1 Φ̃i+1

)
=

(
0 −µ

1/µ 0

)(
Ri Fi Φi
R̃i F̃i Φ̃i

)
end if

end while
Return Fi, Φi

Due to the fact that the polynomials R̃i are monic, after each step with a negative value of p the
new updated value p coincides with the previous one but with opposite sign and so happens for µ.
Taking this into account we join each step with a negative value of p with the next step. We obtain(

Ri+1 Fi+1 Φi+1
R̃i+1 F̃i+1 Φ̃i+1

)
=

(
1 µx−p

0 1

)(
0 −µ

1/µ 0

)(
Ri Fi Φi
R̃i F̃i Φ̃i

)
This adjustment keeps Fi, Φi unaltered. It can be stated as follows
At this point we observe that we only need to keep the polynomials Ri (and R̃i) because we

need their leading coefficients (the µi’s). The next lemma proves that these leading coefficients can be
obtained independently of the polynomials Ri. This allows the computation of the polynomials Fi, Φi
iteratively while dispensing with the polynomials Ri.

Lemma 4. LC(Ri) = LC(FiΛrS̄)
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Proof. The result is obvious for i = −1. Since we joined two steps, before Algorithm 3, the degree
of the remainder Ri = FiΛrS̄ − Φi(xn − 1) = FiΛrS̄ − xnΦi + Φi is at most n − 1 for every i ≥ 1.
Consequently all terms of xnΦi cancel with terms of FiΛrS̄ and Ri must have leading term equal to
either a term of Φi or a term of FiΛrS̄ or a sum of a term of Φi and a term of FiΛrS̄.

On the other hand, the algorithm computes LC(Ri) only while deg(Ri) ≥ n− d−s
2 . In particular,

2deg(Ri) = 2n − d + s ≥ n + s. Leu us show that in this case the degree of the leading term of
Ri is strictly larger than the degree of Φi. Indeed, since all the matrices Mi in the algorithm have
determinant equal to 1, this implies that deg(Φi) = deg(ΛrS̄) − deg(R̃i) ≤ n + s − deg(R̃i) <

2deg(Ri)− deg(Ri) = deg(Ri).

Algorithm 3: Refactored Single Coefficient Euclidean Algorithm
Initialize:(

R−1 F−1 Φ−1

R̃−1 F̃−1 Φ̃−1

)
=

(
ΛrS̄ 1 0
xn − 1 0 −1

)

while deg(Ri) ≥ n− d−s
2 :

µ = LC(Ri)

p = deg(Ri)− deg(R̃i)

if p ≥ 0 or µ = 0 then(
Ri+1 Fi+1 Φi+1
R̃i+1 F̃i+1 Φ̃i+1

)
=

(
1 −µxp

0 1

)(
Ri Fi Φi
R̃i F̃i Φ̃i

)
else (

Ri+1 Fi+1 Φi+1
R̃i+1 F̃i+1 Φ̃i+1

)
=

(
x−p −µ

1/µ 0

)(
Ri Fi Φi
R̃i F̃i Φ̃i

)
end if

end while
Return Fi, Φi

We transform now Algorithm 3 in a way such that isntead of keeping the remainders we keep
their degrees. For this we use the values di, d̃i satisfying, at each step, that di ≥ deg(Ri), d̃i = deg(R̃i).

Algorithm 4 is exactly the Berlekamp–Massey algorithm applied to the recurrence
∑t

j=0 Λje(αi+j−1) = 0 for all i > 0. This linear recurrence is a consequence of the equality
S

xn−1 = 1
x

(
e(1) + e(α)

x + e(α2)
x2 + · · ·

)
and the fact that Λ S

xn−1 is a polynomial and, hence, its terms of
negative order in its expression as a Laurent series in 1/x are all zero.
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Algorithm 4: Berlekamp-Massey Algorithm
Initialize:

d−1 = s + deg(S̄)
d̃−1 = n(

F−1 Φ−1

F̃−1 Φ̃−1

)
=

(
1 0
0 −1

)

while di ≥ n− d−s
2 :

µ = Coefficient(FiΛrS̄, di)

p = di − d̃i

if p ≥ 0 or µ = 0 then(
Fi+1 Φi+1
F̃i+1 Φ̃i+1

)
=

(
1 −µxp

0 1

)(
Fi Φi
F̃i Φ̃i

)
di+1 = di − 1
d̃i+1 = d̃i

else (
Fi+1 Φi+1
F̃i+1 Φ̃i+1

)
=

(
x−p −µ

1/µ 0

)(
Fi Φi
F̃i Φ̃i

)
di+1 = d̃i − 1
d̃i+1 = di

end if

end while
Return Fi, Φi

4. Conclusions

By working with error/erasure locator polynomials whose roots correspond to the error positions
rather than to their inverses and with an evaluator polynomial that gives the error values when we
evaluate it at the error positions instead of evaluating it at the inverses of the error positions we get
to a symmetric key equation for Reed–Solomon codes. We showed that the symmetric key equation
can be solved by an adapted Euclidean algorithm whose steps can be refined leading naturally to the
Berlekamp–Massey algorithm.
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