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Abstract: This paper introduces two new contractive conditions in the setting of non-Archimedean
modular spaces, via a C-class function, an altering distance function, and a control function.
A non-Archimedean metric modular is shaped as a parameterized family of classical metrics; therefore,
for each value of the parameter, the positivity, the symmetry, the triangle inequality, or the continuity
is ensured. The main outcomes provide sufficient conditions for the existence of common fixed points
for four mappings. Examples are provided in order to prove the usability of the theoretical approach.
Moreover, these examples use a non-Archimedean metric modular, which is not convex, making the
study of nonconvex modulars more appealing.
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1. Introduction

Lately, various modular structures, viewed as alternatives to classical normed or metric spaces,
have been intensely studied in connection with the fixed point theory. Many modular related research
papers adopted the setting of a modular vector space (see [1–5]), while others used the more general
framework of a metric modular space (see [6–11]). The notion of a metric modular, together with its
stronger convex version, was firstly introduced and studied by Chistyakov in [6–9]. Although the
convexity of a modular metric brings considerable advantages, the absence of the triangle inequality
generates major difficulties when trying to expand some results to the modular setting. A possible
solution was provided by Paknazar in [12,13] by defining the so-called non-Archimedean metric
modular. In fact, the new modular proves to be a parameterized family of classical metrics; therefore,
for each value of the parameter, the triangle inequality or the continuity is ensured. This makes the
newly defined object a very good instrument for analyzing various contractive conditions or for using
non-standard iterative procedures.

This paper uses the setting of a non-Archimedean metric modular space and defines and studies
new nonlinear contractive conditions. The source for this approach is the work of Shatanawi et al. [14],
who developed a similar theory, but in the framework of a complete metric space. Their work
considered the almost generalized (S, T)-contractive condition introduced by Shobkolaei et al. [15]
on partial metric spaces and the almost nonlinear contractive condition (via some control functions)
on metric spaces introduced by Shatanawi and Postolache [16] and expanded them by means of a
C-class function (see [17]). The result was a new contractive condition, called the almost nonlinear
(S, T, L, F, ψ, φ)-convex contractive condition. In this context, this paper aims to provide an upgrade
for the work of Shatanawi et al. [14]. In fact, it does not just substitute the framework of ordered
metric spaces with ordered non-Archimedean metric modular spaces; it also provides two possible
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modular extensions for the almost nonlinear (S, T, L, F, ψ, φ)-convex contractive condition. Moreover,
by properly including concepts as weakly compatible mappings (see Jungck [18]) or dominating and
weak annihilators (see Abbas et al. [19]), several new outcomes regarding the existence of common
fixed points are obtained.

2. Preliminaries

We start by recalling basic facts about metric modular spaces.

Definition 1. [6] A function ω : (0, ∞)× X× X → [0, ∞], written as ω(λ, x, y) = ωλ(x, y), is known as a
metric modular on X if the following axioms hold:

(i) ωλ(x, y) = 0, ∀λ > 0 if and only if x = y;
(ii) for each x, y ∈ X, ωλ(x, y) = ωλ(y, x), ∀λ > 0;
(iii) for each x, y, z ∈ X, ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y), ∀λ, µ > 0.

If (iii) is replaced with:

(iii′) ωλ+µ(x, y) ≤ λ

λ + µ
ωλ(x, z) +

µ

λ + µ
ωµ(y, z), ∀λ, µ > 0, ∀x, y, z ∈ X,

then the metric modular is called convex, while if (iii) is replaced with:

(iii′′) ωmax{λ,µ}(x, y) ≤ ωλ(x, z) + ωµ(z, y), ∀λ, µ > 0, ∀x, y, z ∈ X,

the metric modular is called non-Archimedean (see [12,13]).

Remark 1. Note that the function λ → ωλ(x, y) is nonincreasing on (0, ∞), for each x, y ∈ X. In fact,
Chistyakov called this “the essential property” of a metric modular (see [8]). Indeed, if 0 < µ < λ, then, by
using the triangle property, we have:

ωλ(x, z) ≤ ωλ−µ(x, x) + ωµ(x, z) = ωµ(x, z).

In addition, if ω is a convex modular, then the function λ→ λωλ(x, y) is also nonincreasing on (0, ∞)

(“the main property of a convex modular”; see [7]).

Remark 2. If ω is a non-Archimedean metric modular, we notice that:

ωλ(x, y) = ωmax{λ,λ}(x, y) ≤ ωλ(x, z) + ωλ(z, y), ∀x, y, z ∈ X, ∀λ > 0. (1)

Basically, Paknazar’s definition includes the metric modulars for which the triangle inequality is
valid. Moreover, the triangle inequality makes the metric modular continuous in the following sense: if
lim

n→∞
ω1(xn, x) = 0, then lim

n→∞
ω1(xn, y) = ω1(x, y), ∀y ∈ X.

In addition, given a metric modular on X and a point x0 ∈ X, the following two sets can be defined:

Xω(x0) = {x ∈ X : ωλ(x0, x)→ 0 as λ→ ∞}

and
X∗ω(x0) = {x ∈ X : ∃λ = λ(x) > 0 such that ωλ(x0, x) < ∞}.

They both are known as metric modular spaces (around x0), although in general, they just satisfy
the inclusion Xω(x0) ⊂ X∗ω(x0). In particular, when ω is a convex metric (pseudo)modular, the two
sets are equal. Throughout this paper, we shall fix a point x0, and we shall simply denote by Xω and
X∗ω the metric modular spaces around x0.
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The metric modular can be used to define concepts as convergence, completeness, and so on,
properly.

Definition 2. [20] Let ω be a metric modular on a set X.

(i) A sequence {xn} ⊂ Xω (or X∗ω if ω is convex) is called ω-convergent to a point x ∈ Xω (x ∈ X∗ω,
respectively) if lim

n→∞
ω1(xn, x) = 0.

(ii) A sequence {xn} ⊂ Xω (or X∗ω) is called ω-Cauchy if lim
n,m→∞

ω1(xn, xm) = 0.

(iii) The modular space Xω (or X∗(ω) when ω is convex) is called ω-complete if each ω-Cauchy sequence
{xn} is ω-convergent.

(iv) A subset C ⊂ Xω is said to be ω-closed if the ω-limit of an ω-convergent sequence of C is in C.

The following lemma proves to be a very useful tool when dealing with non-standard contractive
conditions.

Lemma 1. Suppose that Xω is a non-Archimedean metric modular space. Let {xn} be a sequence in Xω such
that ω1(xn, xn+1) → 0 as n → +∞. If {xn} is not a Cauchy sequence, then there exist an ε > 0 and two
subsequences {xmi} and {xni} of {xn} such that:

1. i ≤ mi < ni;
2. ω1(xmi , xni ) ≥ ε;
3. ω1(xmi , xni−1) < ε;
4. lim

i→+∞
ω1(xmi , xni ) = lim

i→+∞
ω1(xmi−1, xni−1) = lim

i→+∞
ω1(xmi−1, xmi )

= lim
i→+∞

ω1(xmi , xni−1) = ε.

In addition to the above framework description, we also recall some mapping related properties.
Let f and g be self-mappings of a set X. If w = f x = gx for some x ∈ X, then x is called a coincidence
point of f and g, and w is called a point of coincidence of f and g. Two self-mappings f and g are
said to be weakly compatible if they commute at their coincidence point, that is f gx = g f x whenever
f x = gx. For details, please see Jungck [18].

Now, consider (X,�) a partially ordered set. According to Abbas et al. [19], a mapping f is called
a weak annihilator of g if f gx � x, for all x ∈ X, and f is called dominating if x � f x, for all x ∈ X.

Let us also consider the following classes of functions (see [14,16,17,21]):

• the class of altering distance functions Ψ contains all functions ψ : [0,+∞)→ [0,+∞) such that:

(1) ψ is continuous and nondecreasing;
(2) ψ(t) = 0 if and only if t = 0.

• Φu denotes all functions ϕ : [0,+∞)→ [0,+∞) that satisfy the following conditions:

(1) ϕ is continuous on [0,+∞);
(2) ϕ(t) > 0, for each t > 0.

• the class of control functions Φ denotes all functions φ : [0,+∞)× [0,+∞)× [0,+∞)→ [0,+∞)

such that:

(1) φ is continuous;
(2) φ(t, s, u) = 0 if and only if u = s = t = 0.

• Φ1 denotes all functions φ : [0,+∞)× [0,+∞)× [0,+∞)→ [0,+∞) such that:

(1) φ is continuous;
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(2) φ(u, s, t) > 0, ∀(u, s, t) 6= (0, 0, 0).

• C denotes the set of all C-class functions (see [17]), i.e., those functions F : [0, ∞)2 → R with the
following properties:

(1) F(s, t) ≤ s;
(2) F(s, t) = s implies that either s = 0 or t = 0;
(3) F is continuous.

By combining Ψ, Φ1 and C, a general nonlinear contractive condition was defined in [14],
as follows.

Definition 3. [14] Let f , g, S, and T be self-mappings on a metric space (X, d). Then, f and g are said to
satisfy the almost nonlinear (S, T, L, F, ψ, φ)-convex contractive condition if there exist ψ ∈ Ψ, ϕ ∈ Φ1, F ∈ C,
and L ∈ [0,+∞) such that:

ψ(d( f x, gy)) ≤ F
(

ψ
( 1

a + b + c + 2e
[ad(Sx, Ty) + bd( f x, Sx) + cd(gy, Ty)

+ed(Sx, gy) + ed( f x, Ty)]
)

, φ (d(Sx, Ty), d(Sx, gy), d( f x, Ty))
)

(2)

+L min {d(Sx, Ty), d(Sx, gy), d( f x, Ty)} ,

for all x, y ∈ X, where a, b, c, e ≥ 0, with a + b + c + 2e > 0.

The main outcome obtained in connection with the above contractive property consists of
sufficiency conditions for the existence of common fixed points.

Theorem 1. [14] Let (X, d,�) be a complete ordered metric space. Let f , g, T, S be self-mappings of X such that
for any two comparable elements x, y ∈ X, the mappings f and g satisfy the nonlinear (S, T, L, F, ψ, φ)-convex
contractive condition (3). Assume also the following assertions:

1. f X ⊆ TX;
2. gX ⊆ SX;
3. F(ψ(a), φ(a, a, a)) + La < ψ(a) for all a > 0;
4. f is dominating and a weak annihilator of T;
5. g is dominating and a weak annihilator of S;
6. { f , S} and {g, T} are weakly compatible;
7. one of f X, gX, SX, and TX is a closed subspace of X; and
8. X has the property (π).

Then, f , g, S, and T have a common fixed point.

3. First Extension to Partially Ordered Non-Archimedean Metric Modular Spaces

Since for each metric d(x, y), there exists a natural extension to a non-Archimedean metric modular

ωλ(x, y) =
d(x, y)

λ
(which means that d(x, y) = ω1(x, y)), the definition introduced in [14] inspires us

to provide the following natural extension to non-Archimedean metric modular spaces.

Definition 4. Let f , g, S, and T be self-mappings on a non-Archimedean modular metric space Xω. Then, f
and g are said to satisfy the almost nonlinear (S, T, L, F, ψ, φ)-convex contractive condition of type I if there
exist ψ ∈ Ψ, φ ∈ Φ1, F ∈ C, and L ∈ [0,+∞) such that:
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ψ(ω1( f x, gy)) ≤ F
(

ψ
(

αω1(Sx, Ty) + βω1( f x, Sx) + γω1(gy, Ty)

+δω1(Sx, gy) + δω1( f x, Ty)
)

, φ (ω1(Sx, Ty), ω1(Sx, gy), ω1( f x, Ty))
)

(3)

+L min {ω1(Sx, Ty), ω1(Sx, gy), ω1( f x, Ty)} ,

for all x, y ∈ X, where α, β, γ, δ ≥ 0, with α + β + γ + 2δ = 1.

Furthermore, it is opportune to define a modular version of property (π): Let (Xω,�) be an
ordered non-Archimedean metric modular space. We say that Xω satisfies the property (πω) if the
following statement holds true:

(πω): If {xn} is a nondecreasing sequence in Xω and {yn} is a sequence in Xω such that xn � yn

for all n, but finitely many, and yn is ω-convergent to u, then xn � u for all n, but finitely many. We
mention that the ω-convergence considered here is in the sense of Definition 2.

In the following, we combine the data defined above in order to state and prove our first common
fixed point result.

Theorem 2. Let (Xω,�) be an ω-complete (in the sense of Definition 2) ordered non-Archimedean metric
modular space. Let f , g, T, S be self-mappings of Xω such that for any two comparable elements x, y ∈ Xω , the
mappings f and g satisfy the nonlinear (S, T, L, F, ψ, φ)-convex contractive condition of type I (4). In addition,
assume that the following assertions hold true:

(1) f Xω ⊆ TXω;
(2) gXω ⊆ SXω;
(3) F(ψ(β), φ(α, α, α)) + Lα < ψ(α) for all α, β > 0 with β ≤ α;
(4) f is dominating and a weak annihilator of T;
(5) g is dominating and a weak annihilator of S;
(6) { f , S} and {g, T} are weakly compatible;
(7) one of f Xω, gXω, SXω, and TXω is an ω-closed subspace of Xω;
(8) Xω has the property (πω).

Then, f , g, S, and T have a common fixed point.

Proof. Let us start with an arbitrary element x0 ∈ Xω. By using Hypotheses (1) and (2), we generate
two sequences {xn}, {yn} ∈ Xω in such a way that y2t := f x2t = Tx2t+1 and y2t+1 := gx2t+1 = Sx2t+2.
Using (4) and (5), we have:

x2t � f x2t = Tx2t+1 � f Tx2t+1 � x2t+1 � gx2t+1 = Sx2t+2 � gSx2t+2 � x2t+2,

which means that xn � xn+1 for any nonnegative integer n; therefore, they are comparable.
Step 1. In the following, we shall focus on proving that {yn} is convergent.
Case I. Let us assume that there exists n0 ∈ N such that yn0 = yn0+1.

• If n0 is even, that is n0 = 2t, we have y2t = y2t+1. Using the fact that x2t+1 and x2t+2 are
comparable and Condition (4), we have:
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ψ(ω1(y2t+2, y2t+1)) = ψ(ω1( f x2t+2, gx2t+1))

≤ F
(

ψ
(

αω1(Sx2t+2, Tx2t+1) + βω1( f x2t+2, Sx2t+2)

+γω1(gx2t+1, Tx2t+1) + δω1(Sx2t+2, gx2t+1) + δω1( f x2t+2, Tx2t+1)
)

,

φ(ω1(Sx2t+2, Tx2t+1), ω1(Sx2t+2, gx2t+1), ω1( f x2t+2, Tx2t+1))
)

+L min{ω1(Sx2t+2, Tx2t+1), ω1(Sx2t+2, gx2t+1), ω1( f x2t+2, Tx2t+1)} (4)

= F
(

ψ
(

αω1(y2t+1, y2t) + βω1(y2t+2, y2t+1) + γω1(y2t+1, y2t)

+δω1(y2t+1, y2t+1) + δω1(y2t+2, y2t)
)

,

φ(ω1(y2t+1, y2t), ω1(y2t+1, y2t+1), ω1(y2t+2, y2t))
)

+L min{ω1(y2t+1, y2t), ω1(y2t+1, y2t+1), ω1(y2t+2, y2t)}

= F
(

ψ
(

βω1(y2t+2, y2t+1) + δω1(y2t+2, y2t)
)

, φ(0, 0, ω1(y2t+2, y2t+1))
)

.

Using the properties of F, we have:

ψ(ω1(y2t+2, y2t+1) ≤ ψ
(

βω1(y2t+2, y2t+1) + δω1(y2t+2, y2t)
)

.

Since ψ is nondecreasing, then the last inequality holds only if:

ω1(y2t+2, y2t+1) ≤ βω1(y2t+2, y2t+1) + δω1(y2t+2, y2t),

which, using the triangle inequality (1), leads to:

ω1(y2t+2, y2t+1) ≤ βω1(y2t+2, y2t+1) + δω1(y2t+2, y2t+1) + δω1(y2t+1, y2t)

= βω1(y2t+2, y2t+1) + δω1(y2t+2, y2t+1) (5)

= (β + δ)ω1(y2t+2, y2t+1).

Moreover, the conditions α, β, γ, δ ≥ 0, and α + β + γ + 2δ = 1 lead either to β + δ < 1 or to
β = 1 and α = γ = δ = 0. In the first case, we find from (5) that ω1(y2t+2, y2t+1) = 0; hence,
y2t+2 = y2t+1. In the other case, by taking a step back into the chain of inequalities (4), we find:

ψ(ω1(y2t+2, y2t+1)) ≤ F
(

ψ
(

ω1(y2t+2, y2t+1)
)

, φ(0, 0, ω1(y2t+2, y2t+1))
)

.

This tells us, in fact, that F
(

ψ
(

ω1(y2t+2, y2t+1)
)

, φ(0, 0, ω1(y2t+2, y2t+1))
)

is actually equal to

ψ(ω1(y2t+2, y2t+1)). By considering the properties of F, this gives us ultimately the same
conclusion as above, namely y2t+2 = y2t+1.

• If n0 is odd, that is n0 = 2t + 1, by using the same technique, we find that y2t+3 = y2t+2.

Combining these two items, we may conclude that, starting with n0, the sequence {yn} is a
constant sequence in Xω, and hence, it is convergent.

Case II. Let us assume now that yn 6= yn+1 for all n ∈ N. We analyze again, separately, the
situation of n being even and the opposite of this.

• If n is even, then n = 2t for some t ∈ N. Using the comparability property of x2t and x2t+1,
we have:
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ψ(ω1(yn, yn+1)) = ψ(ω1(y2t, y2t+1)) = ψ(ω1( f x2t, gx2t+1))

≤ F
(

ψ
(

αω1(Sx2t, Tx2t+1) + βω1( f x2t, Sx2t)

+γω1(gx2t+1, Tx2t+1) + δω1(Sx2t, gx2t+1) + δω1( f x2t, Tx2t+1)
)

,

φ(ω1(Sx2t, Tx2t+1), ω1(Sx2t, gx2t+1), ω1( f x2t, Tx2t+1))
)

+L min{ω1(Sx2t, Tx2t+1), ω1(Sx2t, gx2t+1), ω1( f x2t, Tx2t+1)}

= F
(

ψ
(

αω1(y2t−1, y2t) + βω1(y2t, y2t−1) + γω1(y2t+1, y2t)

+δω1(y2t−1, y2t+1)
)

, φ(ω1(y2t−1, y2t), ω1(y2t−1, y2t+1), 0)
)

+L min{ω1(y2t−1, y2t), ω1(y2t−1, y2t+1), 0}

≤ F
(

ψ
(

αω1(y2t−1, y2t) + βω1(y2t, y2t−1) + γω1(y2t+1, y2t)

+δω1(y2t−1, y2t+1)
)

, φ(ω1(y2t−1, y2t), ω1(y2t−1, y2t+1), 0)
)

.

If ω1(y2t−1, y2t) ≤ ω1(y2t, y2t+1), then, using again the triangle inequality for the non-Archimedean
metric modular, together with the nondecreasing behavior of ψ, we find:

ψ(ω1(yn, yn+1)) = ψ(ω1(y2t, y2t+1))

≤ F
(

ψ
(

αω1(y2t−1, y2t) + βω1(y2t, y2t−1) + γω1(y2t+1, y2t)

+δω1(y2t−1, y2t+1)
)

, φ(ω1(y2t−1, y2t), ω1(y2t−1, y2t+1), 0)
)

≤ ψ
(

αω1(y2t−1, y2t) + βω1(y2t, y2t−1) + γω1(y2t+1, y2t)

+δω1(y2t−1, y2t+1)
)

≤ ψ
(

αω1(y2t−1, y2t) + βω1(y2t, y2t−1) + γω1(y2t+1, y2t)

+δω1(y2t−1, y2t) + δω1(y2t, y2t+1)
)

≤ ψ
(
(α + β + δ)ω1(y2t−1, y2t) + (γ + δ)ω1(y2t, y2t+1)

)
≤ ψ

(
(α + β + γ + 2δ)ω1(y2t, y2t+1)

)
= ψ(ω1(y2t, y2t+1)) = ψ(ω1(yn, yn+1)).

Thus,

F
(

ψ
(

αω1(y2t−1, y2t) + βω1(y2t, y2t−1) + γω1(y2t+1, y2t)

+δω1(y2t−1, y2t+1)
)

, φ(ω1(y2t−1, y2t), ω1(y2t−1, y2t+1), 0)
)

= ψ
(

αω1(y2t−1, y2t) + βω1(y2t, y2t−1) + γω1(y2t+1, y2t) + δω1(y2t−1, y2t+1)
)

.

Using the properties of F, we conclude that either:

ψ
(

αω1(y2t−1, y2t) + βω1(y2t, y2t−1) + γω1(y2t+1, y2t) + δω1(y2t−1, y2t+1)
)
= 0

or
φ(ω1(y2t−1, y2t), ω1(y2t−1, y2t+1), 0) = 0.
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In both cases, we obtain that y2t−1 = y2t is necessary, leading to a contradiction. Thus,

ω1(y2t, y2t+1) < ω1(y2t−1, y2t), (6)

and:
ψ(ω1(y2t, y2t+1))

≤ F
(

ψ
(

αω1(y2t−1, y2t) + βω1(y2t, y2t−1) + γω1(y2t+1, y2t)

+δω1(y2t−1, y2t+1)
)

, φ(ω1(y2t−1, y2t), ω1(y2t−1, y2t+1), 0)
)

≤ ψ(ω1(y2t−1, y2t).

(7)

• If n is odd, then n = 2t + 1 for some t ∈ N. Using the same arguments as in the case of an even
number, we can prove that:

ω1(y2t+2, y2t+1) < ω1(y2t+1, y2t). (8)

From (6) and (8), we have:

ω1(yn, yn+1) < ω1(yn−1, yn), ∀n ∈ N.

Therefore, {ω1(yn+1, yn) : n ∈ N} is a nonincreasing sequence. Thus, there exists r ≥ 0 such that:

lim
n→+∞

ω1(yn, yn+1) = r.

By taking lim inf in (7), we find:

F
(

ψ

(
(α + β + γ)r + δ · lim inf

t→+∞
ω1(y2t−1, y2t+1)

)
, φ(r, lim inf

t→+∞
ω1(y2t−1, y2t+1), 0)

)
= ψ(r). (9)

Assuming that δ = 0, we find:

F
(

ψ(r), φ(r, lim inf
t→+∞

ω1(y2t−1, y2t+1), 0)
)
= ψ(r),

and since F ∈ C, it follows ψ(r) = 0 or φ(r, lim inft→+∞ ω1(y2t−1, y2t+1), 0) = 0; both relations
bring us to the conclusion that r = 0.

Assume now that δ > 0. Equation (9) leads to:

ψ(r) ≤ ψ

(
(α + β + γ)r + δ · lim inf

t→+∞
ω1(y2t−1, y2t+1)

)
,

that is
r ≤ (α + β + γ)r + δ · lim inf

t→+∞
ω1(y2t−1, y2t+1),

and even simpler, after dividing with δ,

2r ≤ lim inf
t→+∞

ω1(y2t−1, y2t+1).

On the other side, due to the triangle inequality, we also have:

ω1(y2t−1, y2t+1) ≤ ω1(y2t−1, y2t) + ω1(y2t, y2t+1),
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which gives:
lim inf
t→+∞

ω1(y2t−1, y2t+1) ≤ 2r.

Therefore, lim inft→+∞ ω1(y2t−1, y2t+1) = 2r. Substituting this in (9) brings us to:

F (ψ (r) , φ(r, 2r, 0)) = ψ(r),

which finally leads (due to the properties of F, ψ, and ϕ) to the conclusion r = 0. Hence:

lim
n→+∞

ω1(yn, yn+1) = 0. (10)

In the following, we take one more step closer to proving the convergence of the sequence {yn}.
For this, we show that {yn} is a Cauchy sequence in the complete non-Archimedean metric modular
space Xω. It is sufficient to show that {y2t} is a Cauchy sequence in Xω. Suppose on the contrary,
namely, that {y2t} is not a Cauchy sequence in Xω. According to Lemma 1, there exist ε > 0 and two
subsequences {y2mi} and {y2ni} of {y2n} such that:

1. ω1(y2mi , x2ni ) ≥ ε;
2. ω1(y2mi , y2ni−2) < ε;
3. lim

i→+∞
ω1(x2mi , x2ni ) = ε.

Using again the triangle inequality and Relation (10), we can easily prove that:

lim
i→+∞

ω1(y2mi , y2ni−1) = lim
i→+∞

ω1(y2mi+1, y2ni−1) = lim
i→+∞

ω1(y2mi+1, y2ni )

= lim
i→+∞

ω1(y2mi , y2ni ) = ε.

Since x2ni and x2mi+1 are comparable, we have:

ψ(ω1(y2ni , y2mi+1)) = ψ(ω1( f x2ni , gx2mi+1)

≤ F
(

ψ
(

αω1(Sx2ni , Tx2mi+1) + βω1( f x2ni , Sx2ni )

+γω1(gx2mi+1, Tx2mi+1) + δω1(Sx2ni , gx2mi+1) + δω1( f x2ni , Tx2mi+1)
)

,

φ(ω1(Sx2ni , Tx2mi+1), ω1(Sx2ni , gx2mi+1), ω1( f x2ni , Tx2mi+1))
)

+L min{ω1(Sx2ni , Tx2mi+1), ω1(Sx2ni , gx2mi+1), ω1( f x2ni , Tx2mi+1)}

= F
(

ψ
(

αω1(y2ni−1, y2mi ) + βω1(y2ni , y2ni−1)

+γω1(y2mi+1, y2mi ), δω1(y2ni , y2mi ) + δω1(y2ni−1, y2mi+1)
)

,

φ(ω1(y2ni−1, y2mi ), ω1(y2ni , y2mi ), ω1(y2ni−1, y2mi+1))
)

+L min{ω1(y2ni−1, y2mi ), ω1(y2ni , y2mi ), ω1(y2ni−1, y2mi+1)}.

Letting i→ +∞ and using the continuity of F, ψ, and φ, we get that:

ψ(ε) ≤ F
(

ψ
(
(α + 2δ)ε

)
, φ(ε, ε, ε)

)
+ Lε.

By Condition (3), we also have:

F
(

ψ
(
(α + 2δ)ε

)
, φ(ε, ε, ε)

)
+ Lε < ψ(ε),
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which is impossible. Therefore, our assumption that y2n is not a Cauchy sequence does not hold.
Moreover, because of the triangle inequality, combined with Relation (10), we may conclude that {yn}
itself is a Cauchy sequence in Xω.

Ultimately, by the completeness of Xω, there exists y ∈ Xω such that:

lim
n→+∞

ω1(yn, y) = 0. (11)

Step 2. In the next section of the proof, we shall focus on proving that y is a common fixed point
of g and T.

For this, we turn our attention to Condition (7) in the hypotheses. Assume that TXω is closed.
Since {y2t = Tx2t+1} is a sequence in TXω ω-convergent to y, it follows that y ∈ TXω; hence, there
exists u ∈ Xω such that y = Tu. Therefore,

lim
n→+∞

ω1(yn, y) = lim
n→+∞

ω1(yn, Tu) = 0.

Now, we show that gu = y = Tu.
Since, as we checked at the beginning of our proof, {xn} is a nondecreasing sequence and xn � yn

with yn ω-convergent to y, it follows, from property (πω), that xn � y. Since the mapping f is
dominating and a weak annihilator of T, we obtain x2t � y = Tu � f Tu � u. Thus:

ψ(ω1(y2t, gu)) = ψ(ω1( f x2t, gu))

≤ F
(

ψ
(

αω1(Sx2t, Tu) + βω1( f x2t, Sx2t) + γω1(gu, Tu)

+δω1(Sx2t, gu) + δω1( f x2t, Tu)
)

, φ(ω1(Sx2t, Tu), ω1(Sx2t, gu), ω1( f x2t, Tu))
)

+L min{ω1(Sx2t, Tu), ω1(Sx2t, gu), ω1( f x2t, Tu)}

= F
(

ψ
(

αω1(y2t−1, y) + βω1(y2t, y2t−1) + γω1(gu, y)

+δω1(y2t−1, gu) + δω1(y2t, y)
)

, φ(ω1(y2t−1, y), ω1(y2t−1, gu), ω1(y2t, y))
)

+L min{ω1(y2t−1, y), ω1(y2t−1, gu), ω1(y2t, y)}.

Letting n→ +∞ in the above inequalities and using (10) and (11), as well as the continuity of the
metric modular stated in Remark 2, we get that:

ψ(ω1(y, gu)) ≤ F
(

ψ(γω1(gu, y) + δω1(gu, y)), φ(0, ω1(y, gu), 0)
)

.

If we are in the particular case when γ = 1 and α = β = δ = 0, the above inequality becomes:

ψ(ω1(y, gu)) ≤ F
(

ψ(ω1(gu, y)), φ(0, ω1(y, gu), 0)
)

,

and since F ∈ C, this ultimately leads to ω1(gu, y) = 0, that is gu = y.
Otherwise, γ + δ < 1 and:

ψ(ω1(y, gu)) ≤ ψ(γω1(gu, y) + δω1(gu, y)),

that is:
ω1(y, gu) ≤ γω1(gu, y) + δω1(gu, y) = (γ + δ)ω1(y, gu),

leading to the same conclusion. Hence, gu = y = Tu. Since g and T are weakly compatible, we
also have:

gy = gTu = Tgu = Ty.
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Now, by the comparability of x2t and y, we have:

ψ(ω1(y2t, gy)) = ψ(ω1( f x2t, gy))

≤ F
(

ψ
(

αω1(Sx2t, Ty) + βω1( f x2t, Sx2t) + γω1(gy, Ty)

+δω1(Sx2t, gy) + δω1( f x2t, Ty)
)

, φ(ω1(Sx2t, Ty), ω1(Sx2t, gy), ω1( f x2t, Ty))
)

+L min{ω1(Sx2t, Ty), ω1(Sx2t, gy), ω1( f x2t, Ty)}

= F
(

ψ
(

αω1(y2t−1, Ty) + βω1(y2t, y2t−1) + γω1(gy, Ty)

+δω1(y2t−1, gy) + δω1(y2t, Ty)
)

, φ(ω1(y2t−1, Ty), ω1(y2t−1, gy), ω1(y2t, Ty))
)

+L min{ω1(y2t−1, Ty), ω1(y2t−1, gy), ω1(y2t, Ty)}.

Letting n→ +∞ in the above inequalities and using again (10) and (11), we obtain:

ψ(ω1(y, gy))

≤ F
(

ψ
(

αω1(y, Ty) + δω1(y, Ty) + δω1(y, Ty)
)

, φ(ω1(y, Ty), ω1(y, Ty), ω1(y, Ty)
)

+Lω1(y, Ty)

≤ F
(

ψ
(

αω1(y, gy) + δω1(y, gy) + δω1(y, gy)
)

, φ(ω1(y, gy), ω1(y, gy), ω1(y, gy)
)

+Lω1(y, gy).

If assuming ω1(y, gy) > 0, we find, by considering again Condition (3) from the hypotheses,
ψ(ω1(y, gy)) < ψ(ω1(y, gy)), which is impossible. Thus, ω1(y, gy) = 0, and hence, gy = y = Ty.

Step 3. Finally, we shall prove that y is a common fixed point for f and S, as well.
As gXω ⊆ SXω, we have y = gy ∈ SXω, so there exists v ∈ Xω such that y = gy = Ty = Sv.

Since the mapping g is dominating and a weak annihilator of S, we have y = gy = Sv � gSv � v.
Thus, y and v are comparable, and hence:

ψ(ω1( f v, y)) = ψ(ω1( f v, gy))

≤ F
(

ψ
(

αω1(Sv, Ty) + βω1( f v, Sv) + γω1(gy, Ty)

+δω1(Sv, gy) + δω1( f v, Ty)
)

, φ(ω1(Sv, Ty), ω1(Sv, gy), ω1( f v, Ty))
)

+L min{ω1(Sv, Ty), ω1(Sv, gy), ω1( f v, Ty)}

= F
(

ψ
(

βω1( f v, y) + δω1( f v, y)
)

, φ(0, 0, ω1( f v, y))
)

≤ ψ
(

βω1( f v, y) + δω1( f v, y)
)

.

Analyzing again the cases β = 1 and β+ δ < 1, we find ω1( f v, y) = 0. Thus, y = gy = Ty = Sv = f v.
Since f and S are weakly compatible, we also have:

f y = f Sv = S f v = Sy.
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Finally, using the fact that y is comparable with itself, we find:

ψ(ω1( f y, y)) = ψ(ω1( f y, gy))

≤ F
(

ψ
(

αω1(Sy, Ty) + βω1( f y, Sy) + γω1(gy, Ty)

+δω1(Sy, gy) + δω1( f y, Ty)
)

, φ(ω1(Sy, Ty), ω1(Sy, gy), ω1( f y, Ty))
)

+L min{ω1(Sy, Ty), ω1(Sy, gy), ω1( f y, Ty)}

= F
(

ψ
(

αω1( f y, y) + δω1( f y, y) + δω1( f y, y)
)

, φ(ω1( f y, y), ω1( f y, y), ω1( f y, y))
)

+Lω1( f y, y).

Hence, according to Condition (3) in the hypotheses’ list, we have ω1( f y, y) = 0, that is
f y = y = Sy. Consequently, f , g, T, and S have a common fixed point. If f Xω is not closed, but
one of the other sets in Condition (7) is closed, we follow similar arguments as above to prove the
existence of a common fixed point.

The following apparently more general result is in fact a consequence of the previous theorem.

Corollary 1. Let (Xω,�) be an ω-complete ordered non-Archimedean metric modular space. Let f , g, T, S be
self-mappings of Xω such that for any two comparable elements x, y ∈ Xω, the mappings f and g satisfy the
following condition: there exist λ0 > 0, ψ ∈ Ψ, ϕ ∈ Φ1, F ∈ C, and L ∈ [0,+∞) such that:

ψ(λ0ω1( f x, gy)) ≤ F
(

ψ
(

αλ0ω1(Sx, Ty) + βλ0ω1( f x, Sx) + γλ0ω1(gy, Ty)

+δλ0ω1(Sx, gy) + δλ0ω1( f x, Ty)
)

, φ (ω1(Sx, Ty), ω1(Sx, gy), ω1( f x, Ty))
)

(12)

+L min {ω1(Sx, Ty), ω1(Sx, gy), ω1( f x, Ty)} ,

for all x, y ∈ X, where α, β, γ, δ ≥ 0, with α + β + γ + 2δ = 1. Assume also the following assertions:

(1) f Xω ⊆ TXω;
(2) gXω ⊆ SXω;
(3) F(ψ(βλ0), φ(α, α, α)) + Lα < ψ(αλ0) for all α, β > 0 with β ≤ α;
(4) f is dominating and a weak annihilator of T;
(5) g is dominating and a weak annihilator of S;
(6) { f , S} and {g, T} are weakly compatible;
(7) one of f Xω, gXω, SXω, and TXω is ω-closed;
(8) Xω has the property (πω).

Then, f , g, S, and T have a common fixed point.

Proof. By rewriting Condition (13) using the function ψ̄ ∈ Ψ, ψ̄(t) = ψ(λ0t), we arrive exactly at the
hypotheses of Theorem 2, hence the conclusion.

The following example shows the useability of our results.

Example 1. On X = [1,+∞), consider the metric modular:

ω : (0, ∞)× X× X → [0,+∞], ωλ(x, y) =
|x− y|√

λ
.

Let us also consider F : [0, ∞)2 → R, F(s, t) = 1
4 s; ψ : [0,+∞)→ [0,+∞), ψ(t) = t; φ ∈ Φ arbitrary,

and L = 0. Define a relation on X by x � y if and only if y ≤ x. Furthermore, define the mappings
f , g, S, T : X → X by the formulas f x = gx =

√
x, Tx = Sx = x2. Then:
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1. ω is a non-Archimedean metric modular, which is not convex;
2. Xω = X = [1, ∞); moreover, Xω is complete in the sense defined by Abdou (see Definition 2).
3. F ∈ C, ψ ∈ Ψ,
4. F(ψ(β), φ(α, α, α)) + Lα < ψ(α) for all α, β > 0 with β ≤ α;
5. f X ⊆ TX,
6. f is dominating and a weak annihilator of T,
7. The pair { f , S} is weakly compatible,
8. f X is a closed subset of Xω,
9. Xω satisfies the property (πω), and
10. f and g satisfy the nonlinear (S, T, L, F, ψ, φ)-convex contractive condition of type I, for α = 1 and

β = γ = δ = 0.

Proof. The positivity and the symmetry of ω are trivial properties. Let us focus on the last property.
Assume that λ ≥ µ. We notice that:

ωmax {λ,µ}(x, y) = ωλ(x, y)

=
|x− y|√

λ

≤ |x− z|√
λ

+
|z− y|√

λ

≤ |x− z|√
λ

+
|z− y|
√

µ

= ωλ(x, z) + ωµ(z, y),

hence ω is non-Archimedean. To prove that ω is not convex, we turn our attention to Remark 1. Indeed,
in our example, the function λ→ λωλ(x, y) =

√
λ|x− y| is nondecreasing, so “the main property of a

convex modular” is not satisfied.
The proofs of Parts (2) to (9) are clear. The condition stated on (10) is equivalent, for the selected

elements F, ψ, φ, and L with:

ω1( f x, gy) ≤ 1
4

ω1(Sx, Ty).

This holds true, since we have:

ω1( f x, gy) = |
√

x−√y|

=
|x− y|
|
√

x +
√

y|

=
|x2 − y2|

(
√

x +
√

y)(x + y)

≤ 1
4
|x2 − y2|

=
1
4

ω1(Sx, Ty).

Thus, Example 1 satisfies all the hypotheses of Theorem 2. Therefore, f , g, T, and S have a common
fixed point. Here, 1 is the common fixed point of f , g, T, and S.

Example 2. Let us consider now the same metric modular space as in the example above and the same mappings
f , g, S, T. In addition, take F : [0, ∞)2 → R, F(s, t) = s− t, ψ : [0,+∞) → [0,+∞), ψ(t) = t, the control
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function φ : [0, ∞)3 → [0, ∞), φ(t, s, u) =
1
4
(|t|+ |s|+ |u|), and L =

1
2

. Then, the conditions (1)–(3) and

(5)–(9) listed in the previous example are satisfied again. Let us now take a closer look at Condition (4). We have:

F(ψ(β), φ(α, α, α)) + Lα = β− 3α

4
+

α

2
= β− α

4
< α,

which holds true for all α, β > 0 with β ≤ α. Finally, let us also prove that f and g satisfy the nonlinear

(S, T, L, F, ψ, φ)-convex contractive condition of type I, for α =
1
2

, β = γ = 0, and δ =
1
4

. Indeed, for these
particular choices, Inequality (4) in Definition 4 becomes:

ω1( f x, gy) ≤ 1
2

ω1(Sx, Ty) +
1
4

ω1(Sx, gy) +
1
4

ω1( f x, Ty)

−1
4
(ω1(Sx, Ty) + ω1(Sx, gy) + ω1( f x, Ty))

+
1
2

min {ω1(Sx, Ty), ω1(Sx, gy), ω1( f x, Ty)} ,

that is
| f x− gy| ≤ 1

4
|Sx− Ty|+ 1

2
min {|Sx− Ty|, |Sx− gy|, | f x− Ty|} ,

or, after substituting f , g, S, T,

|
√

x−√y| ≤ 1
4
|x2 − y2|+ 1

2
min

{
|x2 − y2|, |x2 −√y|, |

√
x− y2|

}
.

This condition is satisfied, as seen before.

4. Second Extension to Partially Ordered Non-Archimedean Modular Spaces

Definition 5. Let f , g, S, and T be self-mappings on a non-Archimedean modular metric space Xω. Then, f
and g are said to satisfy the almost nonlinear (S, T, L, F, ψ, φ)-convex contractive condition of type II if there
exist ψ ∈ Ψ, φ ∈ Φ1, F ∈ C, and L ∈ [0,+∞) such that:

ψ(ω1( f x, gy)) ≤ F
(

ψ
(

ω 1
α
(Sx, Ty) + ω 1

β
( f x, Sx) + ω 1

γ
(gy, Ty)

+ω 1
δ
(Sx, gy) + ω 1

δ
( f x, Ty)

)
, φ (ω1(Sx, Ty), ω1(Sx, gy), ω1( f x, Ty))

)
(13)

+L min {ω1(Sx, Ty), ω1(Sx, gy), ω1( f x, Ty)} ,

for all x, y ∈ Xω, where α, β, γ, δ > 0, with α + β + γ + 2δ = 1.

Now, we present the main result of this section. We emphasize the fact that it needs some stronger
requirements regarding the modular than the outcome of the previous section. More precisely, we
shall consider the non-Archimedean metric modular, which is also convex. In fact, the convexity of
the modular interferes in our arguments, not directly, but through one of its immediate consequences,
namely the following inequality (resulting from the monotonicity of λ→ λωλ(x, y)):

ω 1
λ
(x, y) ≤ λω1(x, y), ∀λ ≤ 1. (14)

Theorem 3. Let (Xω,�) be a complete ordered non-Archimedean metric modular space, induced by a convex
modular. Let f , g, T, S be self-mappings of Xω such that for any two comparable elements x, y ∈ Xω, the
mappings f and g satisfy the nonlinear (S, T, L, F, ψ, φ)-convex contractive condition (14). Assume the
following assertions:
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(1) f Xω ⊆ TXω;
(2) gXω ⊆ SXω;
(3) F(ψ(β), φ(α, α, α)) + Lα < ψ(α) for all α, β > 0 with β ≤ α;
(4) f is dominating and a weak annihilator of T;
(5) g is dominating and a weak annihilator of S;
(6) { f , S} and {g, T} are weakly compatible;
(7) one of f Xω, gXω, SXω, and TXω is a closed subspace of Xω; and
(8) Xω has the property (πω).

Then, f , g, S, and T have a common fixed point.

Proof. Start with x0 ∈ Xω . By using Hypotheses (1) and (2), we generate two sequences {xn}, {yn} ∈
Xω in such a way that y2t := f x2t = Tx2t+1 and y2t+1 := gx2t+1 = Sx2t+2. Using (4) and (5), we have:

x2t � f x2t = Tx2t+1 � f Tx2t+1 � x2t+1 � gx2t+1 = Sx2t+2 � gSx2t+2 � x2t+2,

which means that xn � xn+1 for any nonnegative integer n; therefore, they are comparable.
Step 1. In the following, we shall focus on proving that {yn} is convergent.
Case I. Let us assume that there exists n0 ∈ N such that yn0 = yn0+1.

• If n0 is even, that is n0 = 2t, we have y2t = y2t+1. Using the fact that x2t+1 and x2t+2 are
comparable and Condition (14), we have:

ψ(ω1(y2t+2, y2t+1)) = ψ(ω1( f x2t+2, gx2t+1))

≤ F
(

ψ
(

ω 1
α
(Sx2t+2, Tx2t+1) + ω 1

β
( f x2t+2, Sx2t+2)

+ω 1
γ
(gx2t+1, Tx2t+1) + ω 1

δ
(Sx2t+2, gx2t+1) + ω 1

δ
( f x2t+2, Tx2t+1)

)
,

φ(ω1(Sx2t+2, Tx2t+1), ω1(Sx2t+2, gx2t+1), ω1( f x2t+2, Tx2t+1))
)

+L min{ω1(Sx2t+2, Tx2t+1), ω1(Sx2t+2, gx2t+1), ω1( f x2t+2, Tx2t+1)}

= F
(

ψ
(

ω 1
α
(y2t+1, y2t) + ω 1

β
(y2t+2, y2t+1) + ω 1

γ
(y2t+1, y2t)

+ω 1
δ
(y2t+1, y2t+1) + ω 1

δ
(y2t+2, y2t)

)
,

φ(ω1(y2t+1, y2t), ω1(y2t+1, y2t+1), ω1(y2t+2, y2t))
)

+L min{ω1(y2t+1, y2t), ω1(y2t+1, y2t+1), ω1(y2t+2, y2t)}

= F
(

ψ
(

ω 1
β
(y2t+2, y2t+1) + ω 1

δ
(y2t+2, y2t)

)
, φ(0, 0, ω1(y2t+2, y2t+1))

)
.
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Using the properties of F, we have:

ψ(ω1(y2t+2, y2t+1) ≤ ψ
(

ω 1
β
(y2t+2, y2t+1) + ω 1

δ
(y2t+2, y2t)

)
.

Since ψ is nondecreasing, then the last inequality holds only if:

ω1(y2t+2, y2t+1) ≤ ω 1
β
(y2t+2, y2t+1) + ω 1

δ
(y2t+2, y2t),

which, using the triangle inequality (1), leads to:

ω1(y2t+2, y2t+1) ≤ ω 1
β
(y2t+2, y2t+1) + ω 1

δ
(y2t+2, y2t+1) + ω 1

δ
(y2t+1, y2t)

= ω 1
β
(y2t+2, y2t+1) + ω 1

δ
(y2t+2, y2t+1).

Moreover, the conditions α, β, γ, δ > 0 and α + β + γ + 2δ = 1 lead to
1
β

,
1
δ

> 1, and

using Inequality (14), we find ω 1
β
(y2t+2, y2t+1) ≤ βω1(y2t+2, y2t+1) and ω 1

δ
(y2t+2, y2t+1) ≤

δω1(y2t+2, y2t+1); thus:

ω1(y2t+2, y2t+1) ≤ (β + γ)ω1(y2t+2, y2t+1),

which makes sense only if ω1(y2t+2, y2t+1) = 0 and, hence, y2t+2 = y2t+1.
• If n0 is odd, that is n0 = 2t + 1, by using the same technique, we find that y2t+3 = y2t+2.

Combining these two items, we may conclude that, starting with n0, the sequence {yn} is a
constant sequence in Xω, and hence, it is convergent.

Case II. Let us assume now that yn 6= yn+1 for all n ∈ N. We analyze again, separately, the
situation of n being even and the opposite of this.

• If n is even, then n = 2t for some t ∈ N. Using the comparability property of x2t and x2t+1,
we have:

ψ(ω1(yn, yn+1)) = ψ(ω1(y2t, y2t+1)) = ψ(ω1( f x2t, gx2t+1))

≤ F
(

ψ
(

ω 1
α
(Sx2t, Tx2t+1) + ω 1

β
( f x2t, Sx2t)

+ω 1
γ
(gx2t+1, Tx2t+1) + ω 1

δ
(Sx2t, gx2t+1) + ω 1

δ
( f x2t, Tx2t+1)

)
,

φ(ω1(Sx2t, Tx2t+1), ω1(Sx2t, gx2t+1), ω1( f x2t, Tx2t+1))
)

+L min{ω1(Sx2t, Tx2t+1), ω1(Sx2t, gx2t+1), ω1( f x2t, Tx2t+1)}

= F
(

ψ
(

ω 1
α
(y2t−1, y2t) + ω 1

β
(y2t, y2t−1) + ω 1

γ
(y2t+1, y2t)

+ω 1
δ
(y2t−1, y2t+1)

)
, φ(ω1(y2t−1, y2t), ω1(y2t−1, y2t+1), 0)

)
+L min{ω1(y2t−1, y2t), ω1(y2t−1, y2t+1), 0}

≤ F
(

ψ
(

ω 1
α
(y2t−1, y2t) + ω 1

β
(y2t, y2t−1) + ω 1

γ
(y2t+1, y2t)

+ω 1
δ
(y2t−1, y2t+1)

)
, φ(ω1(y2t−1, y2t), ω1(y2t−1, y2t+1), 0)

)
.
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If ω1(y2t−1, y2t) ≤ ω1(y2t, y2t+1), then using again the triangle inequality for the
non-Archimedean metric modular and Relation (14), together with the properties of ψ and
F, we find:

ψ(ω1(yn, yn+1)) = ψ(ω1(y2t, y2t+1))

≤ F
(

ψ
(

ω 1
α
(y2t−1, y2t) + ω 1

β
(y2t, y2t−1) + ω 1

γ
(y2t+1, y2t)

+ω 1
δ
(y2t−1, y2t+1)

)
, φ(ω1(y2t−1, y2t), ω1(y2t−1, y2t+1), 0)

)
≤ ψ

(
ω 1

α
(y2t−1, y2t) + ω 1

β
(y2t, y2t−1) + ω 1

γ
(y2t+1, y2t)

+ω 1
δ
(y2t−1, y2t+1)

)
≤ ψ

(
ω 1

α
(y2t−1, y2t) + ω 1

β
(y2t, y2t−1) + ω 1

γ
(y2t+1, y2t)

+ω 1
δ
(y2t−1, y2t) + ω 1

δ
(y2t, y2t+1)

)
≤ ψ

(
(α + β + δ)ω1(y2t−1, y2t) + (γ + δ)ω1(y2t, y2t+1)

)
≤ ψ

(
(α + β + γ + 2γ)ω1(y2t, y2t+1)

)
= ψ(ω1(y2t, y2t+1)) = ψ(ω1(yn, yn+1)).

Thus,

F
(

ψ
(

ω 1
α
(y2t−1, y2t) + ω 1

β
(y2t, y2t−1) + ω 1

γ
(y2t+1, y2t)

+ω 1
δ
(y2t−1, y2t+1)

)
, φ(ω1(y2t−1, y2t), ω1(y2t−1, y2t+1), 0)

)
= ψ

(
ω 1

α
(y2t−1, y2t) + ω 1

β
(y2t, y2t−1) + ω 1

γ
(y2t+1, y2t) + ω 1

δ
(y2t−1, y2t+1)

)
.

Using the properties of F, we conclude that either:

ψ
(

ω 1
α
(y2t−1, y2t) + ω 1

β
(y2t, y2t−1) + ω 1

γ
(y2t+1, y2t) + ω 1

δ
(y2t−1, y2t+1)

)
= 0

or
φ(ω1(y2t−1, y2t), ω1(y2t−1, y2t+1), 0) = 0.

In both cases, we have y2t−1 = y2t, a contradiction. Thus,

ω1(y2t, y2t+1) < ω1(y2t−1, y2t), (15)

and:

ψ(ω1(y2t, y2t+1))

≤ F
(

ψ
(

ω 1
α
(y2t−1, y2t) + ω 1

β
(y2t, y2t−1) + ω 1

γ
(y2t+1, y2t)

+ω 1
δ
(y2t−1, y2t+1)

)
, φ(ω1(y2t−1, y2t), ω1(y2t−1, y2t+1), 0)

)
≤ ψ(ω1(y2t−1, y2t). (16)
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• If n is odd, then n = 2t + 1 for some t ∈ N. Using the same arguments as in the case of an even
number, we can prove that:

ω1(y2t+2, y2t+1) < ω1(y2t+1, y2t). (17)

From (15) and (17), we have:
ω1(yn, yn+1) < ω1(yn−1, yn).

Therefore, {ω1(yn+1, yn) : n ∈ N} is a non-increasing sequence. Thus, there exists r ≥ 0 such that:

lim
n→+∞

ω1(yn, yn+1) = r.

Assume that λ ≤ 1, and denote r1
λ = lim infn→+∞ ω 1

λ
(yn, yn+1). Then, according to (14),

ω 1
λ
(yn, yn+1) ≤ λω1(yn, yn+1), leading to:

r1
λ ≤ λr.

In addition, ω 1
λ
(yn, yn+2) ≤ ω 1

λ
(yn, yn+1) + ω 1

λ
(yn+1, yn+2), leading to:

r2
λ = lim inf

n→+∞
ω 1

λ
(yn, yn+2) ≤ 2λr.

By taking lim inf in (16), we find:

F(ψ(r1
α + r1

β + r1
γ + r2

δ), φ(r, lim inf
t→+∞

ω1(y2t−1, y2t+1), 0)) = ψ(r).

This leads, on the one hand, to the following chain of inequalities:

ψ(r) ≤ ψ(r1
α + r1

β + r1
γ + r2

δ)⇒ r ≤ r1
α + r1

β + r1
γ + r2

δ ≤ [α + β + γ + 2δ] r = r,

and, consequently, by turning back into the equality relation, to

F(ψ(r), φ(r, lim inf
t→+∞

ω1(y2t−1, y2t+1), 0)) = ψ(r),

which ultimately means that either ψ(r) = 0 or φ(r, lim inft→+∞ ω1(y2t−1, y2t+1), 0) = 0. In both
cases, we find r = 0; hence:

lim
n→+∞

ω1(yn, yn+1) = 0. (18)

In the following, we take one more step closer to proving the convergence of the sequence {yn}.
For this, we show that {yn} is a Cauchy sequence in the complete strongly non-Archimedean metric
modular space Xω . It is sufficient to show that {y2t} is a Cauchy sequence in Xω . Suppose the contrary;
that is, {y2t} is not a Cauchy sequence in Xω. According to Lemma 1, there exist ε > 0 and two
subsequences {y2mi} and {y2ni} of {y2n} such that:

1. i ≤ 2mi < 2ni;
2. ω1(y2mi , x2ni ) ≥ ε;
3. ω1(y2mi , y2ni−2) < ε;
4. lim

i→+∞
ω1(x2mi , x2ni ) = ε.
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Using again the triangle inequality and Relation (18), we can easily prove that:

lim
i→+∞

ω1(y2mi , y2ni−1) = lim
i→+∞

ω1(y2mi+1, y2ni−1) = lim
i→+∞

ω1(y2mi+1, y2ni )

= lim
i→+∞

ω1(y2mi , y2ni ) = ε.

By denoting:
ε
(k,l)
λ = lim inf

i→∞
ω 1

λ
(y2mi+k, y2ni+l),

for two indices k ∈ {0, 1} and l ∈ {0,−1} and using again Inequality (14), we find:

ε
(0,0)
λ , ε

(1,0)
λ , ε

(0,−1)
λ , ε

(1,−1)
λ ≤ λε, ∀λ ≥ 1.

Since x2ni and x2mi+1 are comparable, we have:

ψ(ω1(y2ni , y2mi+1)) = ψ(ω1( f x2ni , gx2mi+1)

≤ F
(

ψ
(

ω 1
α
(Sx2ni , Tx2mi+1) + ω 1

β
( f x2ni , Sx2ni )

+ω 1
γ
(gx2mi+1, Tx2mi+1) + ω 1

δ
(Sx2ni , gx2mi+1) + ω 1

δ
( f x2ni , Tx2mi+1)

)
,

φ(ω1(Sx2ni , Tx2mi+1), ω1(Sx2ni , gx2mi+1), ω1( f x2ni , Tx2mi+1))
)

+L min{ω1(Sx2ni , Tx2mi+1), ω1(Sx2ni , gx2mi+1), ω1( f x2ni , Tx2mi+1)}

= F
(

ψ
(

ω 1
α
(y2ni−1, y2mi ) + ω 1

β
(y2ni , y2ni−1)

+ω 1
γ
(y2mi+1, y2mi ) + ω 1

δ
(y2ni , y2mi ) + ω 1

δ
(y2ni−1, y2mi+1)

)
,

φ(ω1(y2ni−1, y2mi ), ω1(y2ni , y2mi ), ω1(y2ni−1, y2mi+1))
)

+L min{ω1(y2ni−1, y2mi ), ω1(y2ni , y2mi ), ω1(y2ni−1, y2mi+1)}.

Letting i→ +∞ and using the continuity of F, ψ, φ, we get that:

ψ(ε) ≤ F
(

ψ
(

ε
(0,−1)
α + ε

(0,0)
δ + ε

(1,−1)
δ

)
, φ(ε, ε, ε)

)
+ Lε.

By Condition (3), since ε > 0 and ε
(0,−1)
α + ε

(0,0)
δ + ε

(1,−1)
δ ≤ (α + δ + δ) ε < ε, we get:

ψ(ε) ≤ F
(

ψ
(

ε
(0,−1)
α + ε

(0,0)
δ + ε

(1,−1)
δ

)
, φ(ε, ε, ε)

)
+ Lε < ψ(ε),

which is impossible. Therefore, our assumption that y2n is not a Cauchy sequence does not hold.
Moreover, because of the triangle inequality, combined with Relation (18), we may conclude that {yn}
itself is a Cauchy sequence in Xω.

Ultimately, by the completeness of Xω, there exists y ∈ Xω such that:

lim
n→+∞

ω1(yn, y) = 0. (19)

Step 2. In the next section of the proof, we shall focus on showing that y is a common fixed point
of g and T.

For this, we turn our attention to Condition (7) in the hypotheses. Assume that TXω is closed.
Since {y2t = Tx2t+1} is a sequence in TXω convergent to y it follows that y ∈ TXω ; hence, there exists
u ∈ Xω such that y = Tu. Therefore,

lim
t→+∞

ω1(y2t, Tu) = 0.
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Now, we show that gu = y = Tu.
Since, as we checked at the beginning of our proof, {x2t} and {y2t} are nondecreasing sequences

with x2t � y2t and y2t → y, it follows that x2t � y. Since the mapping f is dominating and a weak
annihilator of T, we obtain x2t � y = Tu � f Tu � u. Thus:

ψ(ω1(y2t, gu)) = ψ(ω1( f x2t, gu))

≤ F
(

ψ
(

ω 1
α
(Sx2t, Tu) + ω 1

β
( f x2t, Sx2t) + ω 1

γ
(gu, Tu)

+ω 1
δ
(Sx2t, gu) + ω 1

δ
( f x2t, Tu)

)
, φ(ω1(Sx2t, Tu), ω1(Sx2t, gu), ω1( f x2t, Tu))

)
+L min{ω1(Sx2t, Tu), ω1(Sx2t, gu), ω1( f x2t, Tu)}

= F
(

ψ
(

ω 1
α
(y2t−1, y) + ω 1

β
(y2t, y2t−1) + ω 1

γ
(gu, y)

+ω 1
δ
(y2t−1, gu) + ω 1

δ
(y2t, y)

)
, φ(ω1(y2t−1, y), ω1(y2t−1, gu), ω1(y2t, y))

)
+L min{ω1(y2t−1, y), ω1(y2t−1, gu), ω1(y2t, y)}.

Letting t→ +∞ in the above inequalities and using (18) and (19), we get that:

ψ(ω1(y, gu)) ≤ F
(

ψ(ω 1
γ
(gu, y) + ω 1

δ
(gu, y)), φ(0, ω1(y, gu), 0)

)
.

Therefore:
ψ(ω1(y, gu)) ≤ ψ(ω 1

γ
(gu, y) + ω 1

δ
(gu, y)),

that is:
ω1(y, gu) ≤ ω 1

γ
(gu, y) + ω 1

δ
(gu, y) ≤ (γ + δ)ω1(y, gu),

leading to the conclusion that ω1(gu, y) = 0, hence gu = y = Tu. Since g and T are weakly compatible,
we also have:

gy = gTu = Tgu = Ty.

Now, by the comparability of x2t and y, we have:

ψ(ω1(y2t, gy)) = ψ(ω1( f x2t, gy))

≤ F
(

ψ
(

ω 1
α
(Sx2t, Ty) + ω 1

β
( f x2t, Sx2t) + ω 1

γ
(gy, Ty)

+ω 1
δ
(Sx2t, gy) + ω 1

δ
( f x2t, Ty)

)
, φ(ω1(Sx2t, Ty), ω1(Sx2t, gy), ω1( f x2t, Ty))

)
+L min{ω1(Sx2t, Ty), ω1(Sx2t, gy), ω1( f x2t, Ty)}

= F
(

ψ
(

ω 1
α
(y2t−1, Ty) + ω 1

β
(y2t, y2t−1) + ω 1

γ
(gy, Ty)

+ω 1
δ
(y2t−1, gy) + ω 1

δ
(y2t, Ty)

)
, φ(ω1(y2t−1, Ty), ω1(y2t−1, gy), ω1(y2t, Ty))

)
+L min{ω1(y2t−1, Ty), ω1(y2t−1, gy), ω1(y2t, Ty)}.

Letting t→ +∞ in the above inequalities and using (18) and (19), we obtain:

ψ(ω1(y, gy))

≤ F
(

ψ
(

ω 1
α
(y, Ty) + ω 1

δ
(y, Ty) + ω 1

δ
(y, Ty)

)
, φ(ω1(y, Ty), ω1(y, Ty), ω1(y, Ty)

)
+ Lω1(y, Ty).

If assuming that ω1(y, gy) > 0, we find, by considering again Condition (3) in the hypotheses,
ψ(ω1(y, gy)) < ψ(ω1(y, gy)), which is impossible. Thus, ω1(y, gy) = 0, and hence, gy = y = Ty.

Step 3. Finally, we shall prove that y is a common fixed point for f and S, as well.
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As gXω ⊆ SXω, we have y = gy ∈ SXω, so there exists v ∈ Xω such that y = gy = Ty = Sv.
Since the mapping g is dominating and a weak annihilator of S, we have y = gy = Sv � gSv � v.
Thus, y and v are comparable, and hence:

ψ(ω1( f v, y)) = ψ(ω1( f v, gy))

≤ F
(

ψ
(

ω 1
α
(Sv, Ty) + ω 1

β
( f v, Sv) + ω 1

γ
(gy, Ty)

+ω 1
δ
(Sv, gy) + ω 1

δ
( f v, Ty)

)
, φ(ω1(Sv, Ty), ω1(Sv, gy), ω1( f v, Ty))

)
+L min{ω1(Sv, Ty), ω1(Sv, gy), ω1( f v, Ty)}

= F
(

ψ
(

ω 1
β
( f v, y) + ω 1

δ
( f v, y)

)
, φ(0, 0, ω1( f v, y))

)
≤ ψ

(
ω 1

β
( f v, y) + ω 1

δ
( f v, y)

)
,

which leads to:
ω1( f v, y) ≤ ω 1

β
( f v, y) + ω 1

δ
( f v, y) ≤ (β + δ)ω1( f v, y),

and makes sense only if ω1( f v, y) = 0. Thus, y = gy = Ty = Sv = f v. Since f and S are weakly
compatible, we also have:

f y = f Sv = S f v = Sy.

Finally, using the fact that y and y are comparable, we have:

ψ(ω1( f y, y)) = ψ(ω1( f y, gy))

≤ F
(

ψ
(

ω 1
α
(Sy, Ty) + ω 1

β
( f y, Sy) + ω 1

γ
(gy, Ty)

+ω 1
δ
(Sy, gy) + ω 1

δ
( f y, Ty)

)
, φ(ω1(Sy, Ty), ω1(Sy, gy), ω1( f y, Ty))

)
+L min{ω1(Sy, Ty), ω1(Sy, gy), ω1( f y, Ty)}

= F
(

ψ
(

ω 1
α
( f y, y) + ω 1

δ
( f y, y) + ω 1

δ
( f y, y)

)
, φ(ω1( f y, y), ω1( f y, y), ω1( f y, y))

)
+Lω1( f y, y).

Hence, according to Condition (3) in the hypotheses, we have ω1( f y, y) = 0, that is f y = y = Sy.
Consequently, f , g, T, and S have a common fixed point. If f Xω is not closed and one of the sets in
Condition (7) is closed, we follow the similar arguments as above to prove the common fixed point of
the four mappings f , g, T, S.

5. Conclusions

This papers defines the notions of the almost nonlinear (S, T, L, F, ψ, φ)-convex contractive
condition of type I and type II on a non-Archimedean modular space, as two distinct extensions
for a similar contractive condition defined on metric spaces. The key elements regarding these
definitions are the use of a C-class function, an altering distance function, a control function, and most
importantly, the use of a complete ordered non-Archimedean metric modular space.

The main results refer to the newly defined contractive conditions and additional properties
related to notions as the coincidence point, weakly compatible mappings, weak annihilator, or
dominating mapping, among others. They finally state the existence of a common fixed point of
four mappings.

Moreover, an example is provided to test the useability of the theoretical content. This example
uses a non-Archimedean metric modular, which is not convex; this way, it becomes clear that the class
of non-Archimedean modulars is not necessarily related to the class of convex modulars. While the
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second one was intensely studied, the former did not enjoy the same interest. Our results prove that is
worth taking more interest in modulars for which the convexity is replaced by other particularities.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Musielak, J.; Orlicz, W. On modular spaces. Studia Math. 1959, 18, 591–597. [CrossRef]
2. Musielak J. Orlicz spaces and Modular spaces. In Lecture Notes in Mathematics (1034); Springer: Berlin,

Germany, 1983.
3. Abdou A.A.N.; Khamsi M.A. Fixed point theorems in modular vector spaces. J. Nonlinear Sci. Appl. 2017, 10,

4046–4057. [CrossRef]
4. Bejenaru, A.; Postolache, M. On Suzuki mappings in modular spaces. Symmetry 2019, 11, 319. [CrossRef]
5. Bejenaru, A.; Postolache, M. Generalized Suzuki-type mappings in modular vector spaces. Optimization 2019.

[CrossRef]
6. Chistyakov, V.V. Metric modulars and their application. Doklady Math. 2006, 73, 32–35. [CrossRef]
7. Chistyakov, V.V. Modular metric spaces, I: Basic concepts. Nonlinear Anal. 2010, 72, 1–14. [CrossRef]
8. Chistyakov, V.V. Fixed points of modular contractive maps. Doklady Math. 2012, 86, 515–518. [CrossRef]
9. Chistyakov, V.V. Modular contractions and their application. In Models, Algorithms, and Technologies for

Network Analysis; Springer Proceedings in Mathematics & Statistics; Springer: New York, NY, USA, 2012;
Volume 32, pp. 65–92.

10. Abdou A.A.N.; Khamsi M.A. On the fixed points of nonexpansive mappings in Modular Metric Spaces.
Fixed Point Theory Appl. 2013, 2013, 229. [CrossRef]

11. Abobaker, H.; Ryan, R.A. Modular metric spaces. Irish Math. Soc. Bull. 2017, 80, 354.
12. Paknazar, M.; Kutbi, M.A.; Demma, M.; Salimi, P. On Non-Archimedean Modular Metric Space and

Some Nonlinear Contraction Mappings. Available online: https://pdfs.semanticscholar.org/ (accessed on
30 October 2019).

13. Paknazar, M.; De la Sen, M. Best Proximity Point Results in Non-Archimedean Modular Metric Space.
Mathematics 2017, 5, 23. [CrossRef]

14. Shatanawi, W.; Postolache, M.; Ansari, A.H.; Kassab, W. Common fixed points of dominating and weak
annihilators in ordered metric spaces via C-class functions. J. Math. Anal. 2017, 8, 54–68.

15. Shobkolaei, N.; Sedghi, S.; Roshan, J.R.; Altun, I. Common fixed point of mappings satisfying almost
generalized (S, T)-contractive condition in partially ordered partial metric spaces. Appl. Math. Comput. 2012,
219, 443–452. [CrossRef]

16. Shatanawi, W.; Postolache, M. Common fixed point theorems for dominating and weak annihilator mappings
in ordered metric spaces. Fixed Point Theory Appl. 2013, 2013, 271. [CrossRef]

17. Ansari, A.H. Note on “ϕ-ψ-contractive type mappings and related fixed point”. In Proceedings of the
2nd Regional Conference on Mathematics and Applications, Payame Noor University, Tehran, Iran,
18–19 September 2014; pp. 377–380.

18. Jungck, G. Common fixed points for noncontinuous nonself maps on nonmetric spaces. Far East J. Math. Sci.
1996, 4, 199–215.

19. Abbas, M.; Talat, N.; Radenović, S. Common fixed points of four maps in partially ordered metric spaces.
Appl. Math. Lett. 2011, 24, 1520–1526. [CrossRef]

20. Abdou, A.A.N. Some fixed point theorems in modular metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 4381–4387.
[CrossRef]

21. Khan, M.S.; Swaleh, M.; Sessa, S. Fixed point theorems by altering distances between the points. Bull. Aust.
Math. Soc. 1984, 30, 1–9. [CrossRef]

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4064/sm-18-1-49-65
http://dx.doi.org/10.22436/jnsa.010.08.01
http://dx.doi.org/10.3390/sym11030319
http://dx.doi.org/10.1080/02331934.2019.1647202
http://dx.doi.org/10.1134/S106456240601008X
http://dx.doi.org/10.1016/j.na.2009.04.057
http://dx.doi.org/10.1134/S1064562412040163
http://dx.doi.org/10.1186/1687-1812-2013-229
https://pdfs.semanticscholar.org/
http://dx.doi.org/10.3390/math5020023
http://dx.doi.org/10.1016/j.amc.2012.06.063
http://dx.doi.org/10.1186/1687-1812-2013-271
http://dx.doi.org/10.1016/j.aml.2011.03.038
http://dx.doi.org/10.22436/jnsa.009.06.78
http://dx.doi.org/10.1017/S0004972700001659
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	First Extension to Partially Ordered Non-Archimedean Metric Modular Spaces
	Second Extension to Partially Ordered Non-Archimedean Modular Spaces
	Conclusions
	References

