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Abstract: In this article, a pair of nondifferentiable second-order symmetric fractional primal-dual
model (G-Mond–Weir type model) in vector optimization problem is formulated over arbitrary cones.
In addition, we construct a nontrivial numerical example, which helps to understand the existence
of such type of functions. Finally, we prove weak, strong and converse duality theorems under
aforesaid assumptions.

Keywords: multiobjective; symmetric duality; second-order; nondifferentiable; fractional
programming; support function; G f -bonvexity/G f -pseudobonvexity

1. Introduction

In multiobjective programming problems, convexity plays an important role in deriving optimality
conditions and duality results. To relax convexity assumptions involved in sufficient optimality
conditions and duality theorems, various generalized convexity notions have been proposed.
Multiobjective type programming problem [1] is common in mathematical modeling of realistic
phenomenon with a wide spectrum of utilization. Symmetric duality in nonlinear programming
deals with the situation where dual of the dual is primal. Special dual problems of optimization are
applied to many types of optimization problems. They are used for the proof of optimality of solutions,
for designing and a theoretical justification of optimization algorithms, and for physical or economic
interpretation of received solutions. Quite often dual problems introduce new meaning to modeled
problems. For many interesting applications and developments of multiobjective optimization, we refer
to the work of A. Chinchuluun and P.M. Pardalos [2] and the references cited therein.

In economics, we often come across a case where we have to maximize the efficiency
of an economic system resulting optimization problems whose objective function is a ratio.
Mangasarian [3] proposed the idea of second-order duality for nonlinear optimization problems.
The perusal of second-order duality is important due to the computer simulation benefit over the
first-order duality since this one supplies narrow ranges for the cost of the objectives when estimations
are applied. Suneja et al. [1] and Kim et al. [4] extended the concept of symmetric duality to
arbitrary cones.
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Suneja et al. [5] considered a pair of multiobjective second order symmetric dual problems of
Mond–Weir type without non-negativity constraints and established duality results under η-bonvexity
and η-pseudobonvexity assumptions. Later, Khurana [6] defined cone-pseudoinvex and strongly
cone-pseudoinvex functions and proved duality theorems for a pair of Mond–Weir type symmetric
dual multiobjective programs over arbitrary cones. For more information on fractional programming,
readers are advised to see [7–13].

The purpose of the present work is to study second order multiobjective fractional
symmetric duality over arbitrary cones for nondifferentiable G-Mond–Weir type program under
G f -bonvexity/G f -pseudobonvexity assumptions. The paper is organized as follows. In Section 2,
we present some relevant preliminaries. In Section 3, we consider a pair of G-Mond–Weir
type nondifferentiable multiobjective second order fractional symmetric dual problems with cone
constraints and establish appropriate duality theorems under aforesaid assumptions followed
by conclusions.

2. Preliminaries and Definitions

Throughout this paper, Rn stands for the n-dimensional Euclidean space and Rn
+ for its

non-negative orthant. Consider the following vector minimization problem:

(MP) Minimize f (x) =
{

f1(x), f2(x), f3(x), ..., fk(x)
}T

Subject to X0 = {x ∈ X ⊂ Rn : gj(x) ≤ 0, j = 1, 2, ..., m}

where f = { f1, f2, ..., fk} : X → Rk and g = {g1, g2, ..., gm} : X → Rm are differentiable
functions defined on X.

Definition 1. A point x̄ ∈ X0 is said to be an efficient solution of (MP) if there exists no other x ∈ X0 such
that fr(x) < fr(x̄), for some r = 1, 2, ..., k and fi(x) ≤ fi(x̄), for all i = 1, 2, ..., k.

Definition 2. The positive polar cone S∗of a cone S ⊆ Rs is defined by

S∗ = {y ∈ Rs : xTy ≥ 0, for all x ∈ S}.

Let C1 ⊆ Rn and C2 ⊆ Rm be closed convex cones with non-empty interiors and S1 and S2 be non-empty
open sets in Rn and Rm, respectively, such that C1×C2 ⊆ S1× S2. Suppose f = ( f1, f2, ..., fk) : S1× S2 → Rk

is a vector- valued differentiable function.

Definition 3. The function f is said to be invex at u ∈ S1 (with respect to η, where η : S1 × S2 → Rn), if
∀ x ∈ S1 and for fixed v ∈ S2, we have

fi(x, v)− fi(u, v) ≥ ηT(x, u)∇x fi(u, v), for all i = 1, 2, ..., k,

If the above inequality sign changes to ≤, then f is called incave at u ∈ S1 with respect to η.

Definition 4. The function f is said to be pseudoinvex at u ∈ S1 (with respect to η, where η : S1 × S2 → Rn),
if ∀ x ∈ S1 and for fixed v ∈ S2, we have

ηT(x, u)∇x fi(u, v) ≥ 0⇒ fi(x, v)− fi(u, v) ≥ 0, for all i = 1, 2, ..., k.

If the above inequality sign changes to ≤, then f is called pseudoincave at u ∈ X with respect to η.
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Definition 5. The function f is said to be G f -invex at u ∈ S1 (with respect to η), if there exists a differentiable
function G f = (G f1 , G f2 , ..., G fk

) : R → Rk such that each component G fi
: I fi

(S1 × S2) → R, where
I fi
(S1 × S2), i = 1, 2, 3, ..., k is the range of fi, is strictly increasing on its domain and η : S1 × S2 → Rn, so

that ∀ x ∈ S1, for fixed v ∈ S2, we have

G fi
( fi(x, v))− G fi

( fi(u, v)) ≥ ηT(x, u)G′fi
( fi(u, v))∇x fi(u, v), for all i = 1, 2, ..., k,

If the above inequality sign changes to ≤, then f is called G f -incave at u ∈ S1 with respect to η.

Definition 6. The function f is said to be G f -pseudoinvex at u ∈ S1 (with respect to η), if there exists a
differentiable function G f = (G f1 , G f2 , ..., G fk

) : R→ Rk such that each component G fi
: I fi

(S1 × S2)→ R,
where I fi

(S1× S2), i = 1, 2, 3, ..., k is the range of fi, is strictly increasing on its domain and η : S1× S2 → Rn,
so that ∀ x ∈ S1, for fixed v ∈ S2, we have

ηT(x, u)G′fi
( fi(u, v))∇x fi(u, v) ≥ 0⇒ G fi

( fi(x, v))− G fi
( fi(u, v)) ≥ 0, for all i = 1, 2, ..., k.

If the above inequality sign changes to ≤, then f is called G f -pseudoincave at u ∈ X with respect to η.

Definition 7. The function f is said to be G f -bonvex at u ∈ S1 (with respect to η), if there exists a differentiable
function G f = (G f1 , G f2 , ..., G fk

) : R → Rk such that each component G fi
: I fi

(S1 × S2) → R, where
I fi
(S1 × S2), i = 1, 2, 3, ..., k is the range of fi, is strictly increasing on its domain and η : S1 × S2 → Rn, so

that ∀ x ∈ S1, for fixed v ∈ S2 and pi ∈ Rn, we have

G fi
( fi(x, v))− G fi

( fi(u, v)) ≥ ηT(x, u)[G′fi
( fi(u, v))∇x fi(u, v) + {G′′fi

( fi(u, v))∇x fi(u, v)(∇x fi(u, v))T

+ G′fi
( fi(u, v))∇x fi(u, v)}pi]−

1
2

pT
i [G

′′
fi
( fi(u, v))∇x fi(u, v)(∇x fi(u, v))T

+ G′fi
( fi(u, v))∇x fi(u, v)]pi, for all i = 1, 2, ..., k.

If the above inequality sign changes to ≤, then f is called G f -boncave at u ∈ S1 with respect to η.

Definition 8. The function f is said to be G f -pseudobonvex at u ∈ S1 (with respect to η), if there
exists a differentiable function G f = (G f1 , G f2 , ..., G fk

) : R → Rk such that each component
G fi

: I fi
(S1 × S2) → R, where I fi

(S1 × S2), i = 1, 2, 3, ..., k is the range of fi, is strictly increasing
on its domain and η : S1 × S2 → Rn, so that ∀ x ∈ S1, for fixed v ∈ S2 and pi ∈ Rn,
ηT(x, u)[G′fi

( fi(u, v))∇x fi(u, v) + {G′′fi
( fi(u, v))∇x fi(u, v)(∇x fi(u, v))T + G′fi

( fi(u, v))

∇xx fi(u, v)}pi] ≥ 0⇒ G fi
( fi(x, v))− G fi

( fi(u, v)) +
1
2

pT
i [G

′′
fi
( fi(u, v))∇x fi(u, v)(∇x fi(u, v))T

+ G′fi
( fi(u, v))∇xx fi(u, v)]pi ≥ 0, for all i = 1, 2, ..., k.

If the above inequality sign changes to ≤, then f is called G f -pseudoboncave at u ∈ S1 with respect to η.

We now give an example of G f -bonvexity with respect to η, but not η-bonvex.

Example 1. Let k = 4, n = 1, S1 = S2 =

[
− π

6
,

π

6

]
, C1 = C2 =

[
−π

6
,

π

6

]
.

Let f :
[
− π

6
,

π

6

]
×

[
− π

6
,

π

6

]
→ R4 be defined as

f (x, y) = { f1(x, y), f2(x, y), f3(x, y), f4(x, y)},
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where f1(x, y) = ey, f2(x, y) = xey, f3(x, y) = x2sin2y, f4(x, y) = y2 and G f = {G f1 , G f2 , G f3 , G f4} :
R→ R4 be defined as:

G f1(t) = t, G f2(t) = t4, G f3(t) = t, G f4(t) = t2.

Let η :
[
− π

6
,

π

6

]
×

[
− π

6
,

π

6

]
→ R be given as:

η(x, u) = xu.

To show that f is G f -bonvex at u = 0 with respect to η, we have to claim that

πi = G fi
( fi(x, v))− G fi

( fi(u, v))− ηT(x, u)[G′fi
( fi(u, v))∇x fi(u, v) + {G′′fi

( fi(u, v))∇x fi(u, v)

(∇x fi(u, v))T}+ G′fi
( fi(u, v))∇xx fi(u, v)}pi +

1
2

pT
i [G

′′
fi
( fi(u, v))∇x fi(u, v)

(∇x fi(u, v))T + G′fi
( fi(u, v))∇xx fi(u, v)]pi ≥ 0, i = 1, 2, 3, 4.

Putting the values of f1, f2, f3, f4, G f1 , G f2 , G f3 , G f4 and u = 0 in the above expressions, we have

π1 = 0, ∀ p, ∀ x, v ∈
[
− π

6
,

π

6

]
,

π2 = x4e4v, ∀ p, ∀ x, v ∈
[
− π

6
,

π

6

]
,

π3 = x2sin2v, ∀ p, ∀ x, v ∈
[
− π

6
,

π

6

]
,

and

π4 = 0, ∀ p, ∀ x, v ∈
[
− π

6
,

π

6

]
.

Hence, π1 ≥ 0, π2 ≥ 0 (from Figure 1), π3 ≥ 0 (in Figure 2) and π4 ≥ 0, ∀ x, v ∈
[
− π

6
,

π

6

]
and ∀ p.

Therefore, f is G f -bonvex at u = 0 with respect to η and p.
Next, we claim that function f is not η-bonvex. For this, it is sufficient to prove that at least one

f ′i s is not η-bonvex.
Let

ξ = f3(x)− f3(u)− ηT(x, u)[∇x f3(u)−∇xx f3(u)p3] +
1
2

pT
3 [∇xx f3(u)]p3

or

ξ = xev − uev − 0, ∀ p, ∀ x, v ∈
[
− π

6
,

π

6

]
,

ξ = xev at u = 0 ∈
[
− π

6
,

π

6

]
.
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Figure 1. The function π2 = x4e4v, ∀ p, ∀ x, v ∈
[
− π

6
,

π

6

]
is non-negative.

It follows that ξ � 0, u ∈
[
− π

6
,

π

6

]
and ∀ p (in Figure 3). Therefore, f3 is not η-bonvex at u = 0

with respect to p3. Hence, f = ( f1, f2, f3, f4) is not η-bonvex at u = 0 with respect to p.

Definition 9. Let C be a compact convex set in Rn. The support function of C is defined by

s (x|C) = max{xTy : y ∈ C}.

The subdifferential of s(x|C) is given by

∂s(x|C) = {z ∈ C : zTx = s(x|C)}.
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For any convex set S ⊂ Rn, the normal cone to S at a point x ∈ S is defined by

NS(x) = {y ∈ Rn : yT(z− x) ≤ 0 for all z ∈ S}.

It is readily verified that for a compact convex set S, y is in NS(x) if and only if

s(y|S) = xTy.

Suppose that S1 ⊆ Rn and S2 ⊆ Rm are open sets such that C1 × C2 ⊂ S1 × S2.

Figure 2. The function π3 = x2sin2v, ∀ p, ∀ x, v ∈
[
− π

6
,

π

6

]
is non-negative.
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Figure 3. The function ξ = xev becomes negative at some x, v ∈
[
− π

6
,

π

6

]
.

3. Second-Order Nondifferentiable Multiobjective Symmetric Fractional Programming Problem
Over Arbitrary Cones

Now, we consider the following pair of a nondifferentiable multiobjective second-order fractional
symmetric dual program over arbitrary cones

(GMFP) Minimize U(x, y, z, r, p) = (U1(x, y, z1, r1, p1), U2(x, y, z2, r2, p2), . . . , Uk(x, y, zk, rk, pk))
T

subject to

−
k

∑
i=1

λi[G
′
fi
( fi(x, y))5y fi(x, y)− zi + {G′′fi

( fi(x, y))5y fi(x, y)(5y fi(x, y))T + G
′
fi
( fi(x, y))
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5yy fi(x, y)}pi −Ui(x, y, pi){G
′
gi
(gi(x, y))5y gi(x, y) + ri + {G′′gi

(gi(x, y))5y gi(x, y)}

(5ygi(x, y))T + G
′
gi
(gi(x, y))5yy gi(x, y)}pi] ∈ C∗2 ,

yT
[ k

∑
i=1

λi

{
G
′
fi
( fi(x, y))5y fi(x, y)− zi + {G′′fi

( fi(x, y))5y fi(x, y)(5y fi(x, y))T + G
′
fi
( fi(x, y))

5yy fi(x, y)}pi −Ui(x, y, pi){G
′
gi
(gi(x, y))5y gi(x, y) + ri + {G′′gi

(gi(x, y))5y gi(x, y)}

(5ygi(x, y))T + G
′
gi
(gi(x, y))5yy gi(x, y)}pi

}]
≥ 0,

x ∈ C1, λ > 0, zi ∈ Di, ri ∈ Fi, i = 1, 2, ..., k.

(GMFD) Maximize T(u, v, w, t, q) = (T1(u, v, w1, t1, q1), (T2(u, v, w2, t2, q2), . . . , Tk(u, v, wk, tk, qk))
T

subject to
k

∑
i=1

λi[G
′
fi
( fi(u, v))5x fi(u, v) + wi + G′′fi

( fi(u, v))5x fi(u, v)(5x fi(u, v))T + G
′
fi
( fi(u, v))

5xx fi(u, v)]qi − Ti(u, v, qi)[G
′
gi
(gi(u, v))5x gi(u, v)− ti + {G′′gi

(gi(u, v))5x gi(u, v)

(5xgi(u, v))T + G
′
gi
(gi(u, v))5xx gi(u, v)}qi] ∈ C∗1 ,

uT
[ k

∑
i=1

λi

{
G
′
fi
( fi(u, v))5x fi(u, v)− wi + G′′fi

( fi(u, v))5x fi(u, v)(5x fi(u, v))T + G
′
fi
( fi(u, v))

5xx fi(u, v)]qi − Ti(u, v, qi)[G
′
gi
(gi(u, v))5x gi(u, v)− ti + {G′′gi

(gi(u, v))

5x gi(u, v)(5xgi(u, v))T + G
′
gi
(gi(u, v))5xx gi(u, v)}qi

}]
≤ 0,

v ∈ C1, λ > 0, wi ∈ Qi, ti ∈ Ei, i = 1, 2, ..., k.

where

Ui(x, y, zi, ri, pi) =
G fi

( fi(x, y)) + s(x|Qi)− yTzi − 1
2 pT

i [G
′′
fi
( fi(x, y))5y fi(x, y)(5y fi(x, y))T

Ggi (gi(x, y))− s(x|Ei) + yTri − 1
2 pT

i [G
′′
gi
(gi(x, y))5y gi(x, y)(5ygi(x, y))T

+G
′
fi
( fi(x, y))5yy fi(x, y)]pi

+G′gi
(gi(x, y))5yy gi(x, y)]pi

and

Ti(u, v, wi, ti, qi) =
G fi

( fi(u, v))− s(v|Di) + uTwi − 1
2 qT

i [G
′′
fi
( fi(u, v))5x fi(u, v)(5x fi(u, v))T

Ggi (gi(u, v)) + s(v|Fi)− uTti − 1
2 qT

i [G
′′
gi
(gi(u, v))5x gi(u, v)(5xgi(u, v))T

+G
′
fi
( fi(u, v))5xx fi(u, v)]qi

+G′gi
(gi(u, v))5xx gi(u, v)]qi

;

and

S1 ⊆ Rn and S2 ⊆ Rm; C1 and C2 are arbitrary cones in Rn and Rm, respectively, such that
C1 × C2 ⊆ S1 × S2; fi : S1 × S2 → R and gi : S1 × S2 → R are differentiable functions; G fi

: I fi
→ R

and Ggi : Igi → R are differentiable strictly increasing functions on their domains; Qi, Ei are compact
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convex sets in Rn; and Di, Fi are compact convex sets in Rm, i = 1, 2, 3, ..., k. C∗1 and C∗2 are positive
polar cones of C1 and C2, respectively. It is assumed that in the feasible regions, the numerators are
nonnegative and denominators are positive. pi and qi are vectors in Rm and Rn, respectively, λ ∈ Rk.

Equivalently, the above problem is reduced in the given form:
(EGMFP) Min R(x, y, z, r, p) = (R1(x, y, z1, r1, p1), R2(x, y, z2, r2, p2), . . . , Rk(x, y, zk, rk, pk))

subject to

G fi
( fi(x, y)) + s(x|Qi)− yTzi − 1

2 pT
i [G

′′
fi
( fi(x, y))5y fi(x, y)(5y fi(x, y))T + G

′
fi
( fi(x, y))

5yy fi(x, y)]pi − Ri(x, y, zi, ri, pi)[Ggi (gi(u, v))− s(x|Ei) + yTri −
1
2

qT
i [G

′′
gi
(gi(u, v))

5xgi(u, v)(5xgi(u, v))T + G
′
gi
(gi(u, v))5xx gi(u, v)]qi] = 0, i = 1, 2, . . . , k, (1)

−
k

∑
i=1

λi[G
′
fi
( fi(x, y))5y fi(x, y)− zi + [G′′fi

( fi(x, y))5y fi(x, y)(5y fi(x, y))T+

G
′
fi
( fi(x, y))5yy fi(x, y)]pi − Ri(x, y, zi, ri, pi){G

′
gi
(gi(x, y)) + ri5y gi(x, y) + (G′′gi

(gi(x, y))

5ygi(x, y)(5ygi(x, y))T + G
′
gi
(gi(x, y))5yy gi(x, y))pi}] ∈ C∗2 , (2)

yT
k

∑
i=1

λi[G
′
fi
( fi(x, y))5y fi(x, y)− zi + [G′′fi

( fi(x, y))5y fi(x, y)(5y fi(x, y))T+

G
′
fi
( fi(x, y))5yy fi(x, y)]pi − Ri(x, y, zi, ri, pi){G

′
gi
(gi(x, y))5y gi(x, y) + ri + (G′′gi

(gi(x, y))

5ygi(x, y)(5ygi(x, y))T + G
′
gi
(gi(x, y))5yy gi(x, y))pi}] ≥ 0, (3)

x ∈ C1, λ > 0, zi ∈ Di, ri ∈ Fi, i = 1, 2, ..., k. (4)

(EGMFD) Maximize S(u, v, w, t, q) = [S1(u, v, w1, t1, q1), S2(u, v, w2, t2, q2), . . . , Sk(u, v, wk, tk, qk)]

subject to

G
fi
′ ( fi(u, v))− s(v|Di) + uTwi − 1

2 qT
i {G′′fi

( fi(u, v))5x fi(u, v)(5x fi(u, v))T + G
′
fi
( fi(u, v))

5xx fi(u, v)}qi − Si(u, v, wi, ti, qi)[G
′
gi
(gi(u, v)) + s(v|Fi)− uTti − 1

2 qT
i {G”

gi
(gi(u, v))5x gi(u, v)

(5xgi(u, v))T + Ggi
′ (gi(u, v))5xx gi(u, v)qi}] = 0, i = 1, 2, . . . , k. (5)

k

∑
i=1

λi[G
′
fi
( fi(u, v))5x fi(u, v) + wi + {G′′fi

( fi(u, v))5x fi(u, v)(5x fi(u, v))T+

G
′
fi
( fi(u, v))5xx fi(u, v)}qi − Ti(u, v, wi, ti, qi){G

′
gi
(gi(u, v))5x gi(u, v)− ti + G′′gi

(gi(u, v))

5xgi(u, v)(5xgi(u, v))T + G
′
gi
(gi(u, v))5xx gi(u, v)}qi] ∈ C∗1 , (6)
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uT
k

∑
i=1

λi[G
′
fi
( fi(u, v))5x fi(u, v) + wi + {G′′fi

( fi(u, v))5x fi(u, v)(5x fi(u, v))T+

G
′
fi
( fi(u, v))5xx fi(u, v)}qi − Ti(u, v, wi, ti, qi){G

′
gi
(gi(u, v))5x gi(u, v)− ti + G′′gi

(gi(u, v))

5xgi(u, v)(5xgi(u, v))T + G
′
gi
(gi(u, v))5xx gi(u, v)}qi] ≤ 0, (7)

v ∈ C1, λ > 0, wi ∈ Bi, ti ∈ Ei, i = 1, 2, ..., k. (8)

Let Z0 and W0 be the sets of feasible solutions of (EGMFP) and (EGMFD), respectively. Next, we
prove duality theorems for (EGMFP) and (EGMFD), which equally apply to (GMFP) and (GMFD),
respectively. Let z = (z1, z2, ..., zk), r = (r1, r2, ..., rk), w = (w1, w2, ..., wk), t = (t1, t2, ..., tk) and
λ = (λ1, λ2, ..., λk).

Theorem 1. (Weak Duality). Let (x, y, R, z, r, λ, p) ∈ Z0 and (u, v, S, w, t, λ, q) ∈ W0. Assume that for
i = 1, 2, 3, . . . , k:

(i) fi(., v) is G fi
- bonvex and (.)Twi is invex at u for fixed v with respective to η1.

(ii) gi(., v) is a Ggi - boncave and (.)Tti is invex at u for fixed v with respective to η1.
(iii) fi(x, .) is a G fi

- boncave and (.)Tzi is invex at y for fixed x with respective to η2.
(iv) gi(x, .) is a Ggi - bonvex and (.)Tri is invex at y for fixed x with respective to η2.
(v) η1(x, u) + u ∈ C1 and η2(v, y) + y ∈ C2.
(vi) Ggi ((x, v)) + vTri − xTti > 0.

Then, the following can not hold simultaneously:

Ri ≤ Si, for all i = 1, 2, 3, ..., k and Rj < Sj, for some j = 1, 2, 3, ..., m.

Proof. From Assumption (v) and Equation (6), we get

(η1(x, u) + u)T
k

∑
i=1

λi[G
′
fi
( fi(u, v))5x fi(u, v) + wi + [G′′fi

( fi(u, v))5x fi(u, v)(5x fi(u, v))T

+G
′
fi
( fi(u, v))5xx fi(u, v)]qi − Ti(u, v, qi){G

′
gi
(gi(u, v))5x gi(u, v)− ti

+(G′′gi
(gi(u, v))5x gi(u, v)(5xgi(u, v))T + G

′
gi
(gi(u, v))5xx gi(u, v))qi}] ≥ 0. (9)

Using Equations (7) and (9), we obtain,

ηT
1 (x, u)

[ k

∑
i=1

λi(G
′
fi
( fi(u, v))5x fi(u, v) + wi + [G′′fi

( fi(u, v))5x fi(u, v)(5x fi(u, v))T

+G
′
fi
( fi(u, v))5xx fi(u, v)]qi − Ti(u, v, qi){G

′
gi
(gi(u, v))5x gi(u, v)− ti

+(G′′gi
(gi(u, v))5x gi(u, v)(5xgi(u, v))T + G

′
gi
(gi(u, v))5xx gi(u, v))qi})

]
≥ 0. (10)

From Assumption (i), we have

G fi
( fi(x, v))− G fi

( fi(u, v)) ≥ nT
1 (x, u)G

′
fi
( fi(u, v))5x fi(u, v) + [G′′fi

( fi(u, v))5x fi(u, v)

(5x fi(u, v))T + G
′
fi
( fi(u, v))5xx fi(u, v)]pi − 1

2 pi
T [G′′fi

( fi(u, v))5x fi(u, v)

(5x fi(u, v))T + G
′
fi
( fi(u, v))5xx fi(u, v)pi], i = 1, 2, ..., k. (11)
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and

xTwi − uTwi ≥ ηT
1 (x, u)wi, i = 1, 2, ..., k. (12)

Since λ > 0 and combining above inequalities, it follows that

k

∑
i=1

[G fi
( fi(x, v)) + xTwi − G fi

( fi(u, v))− uTwi] ≥ nT
1 (x, u)

k

∑
i=1

λi[G
′
fi
( fi(u, v))5x fi(u, v) + wi

+ [G′′fi
( fi(u, v))5x fi(u, v)(5x fi(u, v))T + G

′
fi
( fi(u, v))5xx fi(u, v)]pi

−1
2

pi
T{G′′fi

( fi(u, v))5x fi(u, v)(5x fi(u, v))T + G
′
fi
( fi(u, v))5xx fi(u, v)}pi]. (13)

Similarly, from Assumption (ii), we get

−Ggi (gi(x, v)) + Ggi (gi(u, v)) ≥ −ηT
1 (x, u)[G

′
gi
(gi(u, v))5x gi(u, v) + [G′′gi

(gi(u, v))

5xgi(u, v)(5xgi(u, v))T + G
′
gi
(gi(u, v))5xx gi(u, v)]pi +

1
2 pi

T{G′′gi
(gi(u, v))5x gi(u, v)

(5xgi(u, v))T + G
′
gi
(gi(u, v))5x gi(u, v)}pi], i = 1, 2, ..., k, (14)

and

xTti − uTti ≥ ηT
1 (x, u)ti, i = 1, 2, ..., k. (15)

Multiplying by λiTi in above inequalities and taking summation over i = 1, 2, 3, ..., k, it follows that

ˆk

∑
i=1

λiTi[−Ggi (gi(x, v)) + xTti + Ggi (gi(u, v))− uTti] ≥ −ηT
1 (x, u)

ˆk

∑
i=1

λiTi[[G
′
gi
(gi(u, v))− ti+

5xgi(u, v)[G′′gi
(gi(u, v))5x gi(u, v)(5xgi(u, v))T + G

′
gi
(gi(u, v))5xx gi(u, v)]pi

−1
2

p̄i
T{G′′gi

(gi(u, v))5x gi(u, v)(5xgi(u, v))T + G
′
gi
(gi(u, v))5x gi(u, v)pi}]. (16)

Adding the inequalities in Equations (13) and (16), we get

ˆk

∑
i=1

λi[G fi
( fi(x, v))− G fi

( fi(u, v))− Ti(Ggi (gi(x, v))− Ggi (gi(u, v)))]

≥ −
k

∑
i=1

λiqT
i

2
[G
′
fi
( fi(u, v))Oxx fi(u, v) + G′′fi

( fi(u, v))Ox fi(u, v)(Ox fi(u, v))T

−Ti{G
′
gi
(gi(u, v))Oxxgi(u, v) + G′′gi

(gi(u, v))Oxgi(u, v)(Oxgi(u, v))T}gi]. (17)

Since vTri ≤ s(v|Fi), from Equations (17) and (5), we get

k

∑
i=1

λi[G fi
( fi(x, v)) + xTwi − s(v|Di) + Ti(xTti − vTri − Ggi (gi(x, v)))] ≥ 0. (18)

Similarly, using Hypotheses (iii)–(v) and the primal constraints in Equations (1)–(4), we have

k

∑
i=1

λi[−G fi
( fi(x, v)) + vTzi − s(x|Qi) + Ri(−xTti + vTri + Ggi (gi(x, v)))] ≥ 0. (19)
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On adding the inequalities in Equations (18) and (19), we get

k

∑
i=1

λi[vTzi − s(v|Di) + xTwi − G fi
( fi(x, v))− s(x|Qi)

+(Ri − Si)(−xTti + vTri + Ggi (gi(x, v)))] ≥ 0. (20)

Since λi > 0, vTzi − s(v|Di) + xTwi − s(x|Ci) ≤ 0, i = 1, 2, 3, ..., k, it yields

k

∑
i=1

λi(Ri − Ti)(Ggi (gi(x, v)) + vTri − xTti) ≥ 0.

From Assumption (vi), we have, Ggi ((x, v)) + vTri − xTti >, i = 1, 2, 3, ..., k. Since λ > 0, it
follows that R � S, hence the result.

Remark 1. Since every convex function is pseudoconvex, the above weak duality theorem for the symmetric
dual pair (EGMFP) and (EGMFD) can also be obtained under pseudobonvexity assumptions.

Theorem 2. (Weak Duality). Let (x, y, R, z, r, λ, p) ∈ Z0 and (u, v, S, w, t, λ, q) ∈ W0. Assume that for
i = 1, 2, 3, . . . , k:

(i) fi(., v) is G fi
- pseudobonvex and (.)Twi is pseudoinvex at u for fixed v with respective to η1.

(ii) gi(., v) is a Ggi - pseudoboncave and (.)Tti is pseudoinvex at u for fixed v with respective to η1.
(iii) fi(x, .) is a G fi

- pseudoboncave and (.)Tzi is pseudoinvex at y for fixed x with respective to η2.
(iv) gi(x, .) is a Ggi - pseudobonvex and (.)Tri is pseudoinvex at y for fixed x with respective to η2.
(v) η1(x, u) + u ∈ C1 and η2(v, y) + y ∈ C2.
(vi) Ggi ((x, v)) + vTri − xTti > 0.

Then, the following cannot hold simultaneously:

Ri ≤ Si, for all i = 1, 2, 3, ..., k and Rj < Sj, for some j = 1, 2, 3, ..., m.

Proof. The proof follows on the lines of Theorem 1.

Theorem 3. (Strong Duality). Let (x̄, ȳ, R̄, z̄, r̄, λ̄, p̄) be an efficient solution to (EGMFP), fix λ = λ̄ in
(EGMFD). Further, assume that

(i)
{

G
′
fi
( fi(x̄, ȳ))5yy fi(x̄, ȳ) + G′′fi

( fi(x̄, ȳ))5y fi(x̄, y)(5y fi(x̄, ȳ))T − R̄i{G
′
gi
(gi(x̄, ȳ))5yy gi(x̄, ȳ)

+G′′gi
(gi(x̄, ȳ))5y gi(x̄, ȳ)(5ygi(x̄, ȳ))T}

]
is positive definite

and

pT
i [G

′
fi
( fi(x̄, ȳ))5yy fi(x̄, ȳ) + [G′′fi

( fi(x̄, ȳ))5y fi(x̄, y)(5y fi(x̄, ȳ))T − R̄i[G
′
gi
(gi(x̄, ȳ))

5yygi(x̄, ȳ) + G′′gi
(gi(x̄, ȳ))5y gi(x̄, ȳ)(5ygi(x̄, ȳ))T ≥ 0, for all i = 1, 2, 3, . . . , k.

(ii) The matrix
{

G
′
fi
( fi(x̄, ȳ))5yy fi(x̄, ȳ) + G′′fi

( fi(x̄, ȳ))5y fi(x̄, y)(5y fi(x̄, ȳ))T − R̄i[G
′
gi
(gi(x̄, ȳ))

5yygi(x̄, ȳ) + G′′gi
(gi(x̄, ȳ))5y gi(x̄, ȳ)(5ygi(x̄, ȳ))T

}
is positive definite for i = 1, 2, 3, . . . , k.

(iii) For β > 0 and p̄i ∈ Rm, p̄i 6= 0, i = 1, 2, . . . , k implies that
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k

∑
i=1

βi p̄i[G
′
fi
( fi(x̄, ȳ))5yy fi(x̄, ȳ) + [G′′fi

( fi(x̄, ȳ))5y fi(x̄, y)(5y fi(x̄, ȳ))T − R̄i[G
′
gi
(gi(x̄, ȳ))

5yygi(x̄, ȳ) + G′′gi
(gi(x̄, ȳ))5y gi(x̄, y)(5ygi(x̄, ȳ))T 6= 0.

(iv)
[
G
′
fi
( fi(x̄, ȳ))5yy fi(x̄, ȳ) + {G′′fi

( fi(x̄, ȳ))5y fi(x̄, ȳ)(5y fi(x̄, ȳ))T − R̄i(G
′
gi
(gi(x̄, ȳ))5yy gi(x̄, ȳ)

+G′′gi
(gi(x̄, ȳ))5y gi(x̄, y)(5ygi(x̄, y))T)}

]k
i=1 is linearly independent.

(iv) R̄i > 0, i = 1, 2, 3, ..., k.

Then, there exist w̄i ∈ Q and t̄i ∈ Ei, i = 1, 2, 3, ..., k such that (x̄, ȳ, R̄, w̄, λ̄, t̄, q̄ = 0) is
feasible for (EGMFD). Furthermore, if the assumptions of Theorem 1 or Theorem 2 are satisfied, then
(x̄, ȳ, R̄, w̄, λ̄, t̄, q̄ = 0) is an efficient solution to (EGMFD).

Proof. Since (x̄, ȳ, R̄, w̄, λ̄, t̄, q̄ = 0) is an efficient solution of (EMFP), by Fritz John necessary
conditions [14], there exists α ∈ Rk, β ∈ R+, γ ∈ C2, δ ∈ R and ξ ∈ Rk such that

(x− x̄)T
k

∑
i=1

βi

[
G′fi

( fi(x̄, ȳ))∇x fi(x̄, ȳ) + w̄i −
1
2

p̄T
i ∇x[{G′′fi

( fi(x̄, ȳ))∇y fi(x̄, ȳ)(∇y fi(x̄, ȳ))T

+ G′fi
( fi(x̄, ȳ))∇yy fi(x̄, ȳ)}] p̄i − R̄i

(
G′gi

(gi(x̄, ȳ))∇xgi(x̄, ȳ) + t̄i −
1
2

p̄T
i ∇x[{G′′gi

(gi(x̄, ȳ))∇ygi(x̄, ȳ)

(∇ygi(x̄, ȳ))T + G′gi
(gi(x̄, ȳ))∇yygi(x̄, ȳ)}] p̄i

)]
+ (γ− δȳ)T

k

∑
i=1

λ̄i

[
G′′fi

( fi(x̄, ȳ))∇x fi(x̄, ȳ)∇y fi(x̄, ȳ)

+ G′fi
( fi(x̄, ȳ))∇xy fi(x̄, ȳ) +∇x[{G′′fi

( fi(x̄, ȳ))∇y fi(x̄, ȳ)(∇y fi(x̄, ȳ))T + G′fi
( fi(x̄, ȳ))

∇yy fi(x̄, ȳ)} p̄i]− R̄i

(
G′′gi

(gi(x̄, ȳ))∇xgi(x̄, ȳ)∇ygi(x̄, ȳ) + G′gi
(gi(x̄, ȳ))∇xygi(x̄, ȳ)

+∇x[{G′′gi
(gi(x̄, ȳ))∇ygi(x̄, ȳ)(∇ygi(x̄, ȳ))T + G′gi

(gi(x̄, ȳ))∇yygi(x̄, ȳ)} p̄i]

)]
≥ 0, ∀x ∈ C1, (21)

k

∑
i=1

[
(βi − δλ̄i){(G

′
fi
( fi(x̄, ȳ))5y fi(x̄, ȳ)− z̄i + (G

′
fi
( fi(x̄, ȳ))5yy fi(x̄, ȳ) + (G′′fi

( fi(x̄, ȳ))

5y fi(x̄, ȳ)(5y fi(x̄, ȳ))T) p̄i)− R̄i((G
′
gi
(gi(x̄, ȳ))5y gi(x̄, ȳ) + r̄i + (G

′
gi
(gi(x̄, ȳ))5yy gi(x̄, ȳ)

+(G′′gi
(gi(x̄, ȳ))5y gi(x̄, ȳ)(5ygi(x̄, ȳ))T) p̄i)}) + ((γ− δȳ)λ̄i − βi p̄i){(G

′
fi
( fi(x̄, ȳ))

5yy fi(x̄, ȳ) + (G′′fi
( fi(x̄, ȳ))5y fi(x̄, y)(5y fi(x̄, ȳ))T)− R̄i(G

′
gi
(gi(x̄, ȳ))5yy gi(x̄, ȳ)

+(G′′gi
(gi(x̄, ȳ))5y gi(x̄, y)(5ygi(x̄, ȳ))T)}+

(
(γ− δȳ)λ̄i −

βi p̄i
2

)
{∇y((G

′
fi
( fi(x̄, ȳ))5yy fi(x̄, ȳ)

+(G′′fi
( fi(x̄, ȳ))5y fi(x̄, ȳ)(5y fi(x̄, ȳ))T) p̄i)− R̄i(∇y((G

′
gi
(gi(x̄, ȳ))

5yygi(x̄, ȳ) + (G′′gi
(gi(x̄, ȳ))5y gi(x̄, y)(5ygi(x̄, y)(x̄, ȳ))T) p̄i)}

]
= 0, (22)
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(γ− δȳ){(G′fi
( fi(x̄, ȳ))5y fi(x̄, ȳ)− z̄i + (G

′
fi
( fi(x̄, ȳ))5yy fi(x̄, ȳ) + (G′′fi

( fi(x̄, ȳ))

5y fi(x̄, ȳ)(5y fi(x̄, ȳ))T) p̄i)− R̄i((G
′
gi
(gi(x̄, ȳ))5y gi(x̄, ȳ) + r̄i + (G

′
gi
(gi(x̄, ȳ))5yy gi(x̄, ȳ)

gi(x̄, ȳ) + (G′′gi
(gi(x̄, ȳ))5y gi(x̄, ȳ)(5ygi(x̄, ȳ))T) p̄i)) = 0, i = 1, 2, 3, . . . , k, (23)

(λ̄i(γ− δȳ)− βi p̄i)
T [G

′
fi
( fi(x̄, ȳ))5yy fi(x̄, ȳ) + G′′fi

( fi(x̄, ȳ)(5y fi(x̄, ȳ))

(5y fi(x̄, ȳ))T − R̄i[G
′
gi
(gi(x̄, ȳ))5yy gi(x̄, ȳ) + G′′gi

(gi(x̄, ȳ))(5ygi(x̄, ȳ))

(5ygi(x̄, ȳ))T ]] = 0, i = 1, 2, 3, . . . , k. (24)

αi − βi[Ggi (gi(x̄, ȳ))− s(x̄|Ei) + ȳT r̄i − 1
2 p̄i

T [G
′
gi
(gi(x̄, ȳ))5yy gi(x̄, ȳ) + G′′gi

(gi(x̄, ȳ))

(5ygi(x̄, ȳ))(5ygi(x̄, ȳ))T)pi]− (γ− δȳ)[λ̄i(G
′
gi
(gi(x̄, ȳ))5y gi(x̄, ȳ) + r̄i+

(G
′
gi
(gi(x̄, ȳ))5yy gi(x̄, ȳ) + G′′gi

(gi(x̄, ȳ))(5ygi(x̄, ȳ))(5ygi(x̄, ȳ))T)) p̄i] = 0, i = 1, 2, . . . , k. (25)

βi ȳ + (γ− δȳ)λ̄i ∈ NDi (z̄i), i = 1, 2, ..., K, (26)

βiR̄i ȳ + (γ− δȳ)R̄iλ̄i ∈ NFi (r̄i), i = 1, 2, 3, ..., k, (27)

ȳT
k

∑
i=1

λ̄i[G
′
fi
( fi(x̄, ȳ))5y fi(x̄, ȳ)− z̄i + (G

′
fi
( fi(x̄, ȳ))5yy fi(x̄, ȳ) + G′′fi

( fi(x̄, ȳ))

(5y fi(x̄, ȳ))(5y fi(x̄, ȳ))T) p̄i − R̄i[G
′
fi
( fi(x̄, ȳ))5y fi(x̄, ȳ) + r̄i + {G

′
gi
(gi(x̄, ȳ))

5yygi(x̄, ȳ) + G′′gi
(gi(x̄, ȳ))(5ygi(x̄, ȳ))(5ygi(x̄, ȳ))T) p̄i]] = 0. (28)

δȳT
k

∑
i=1

λ̄i[G
′
fi
( fi(x̄, ȳ))5y fi(x̄, ȳ)− z̄i + (G

′
fi
( fi(x̄, ȳ))5yy fi(x̄, ȳ) + G′′fi

( fi(x̄, ȳ))

(5y fi(x̄, ȳ))(5y fi(x̄, ȳ))T) p̄i − R̄i[G
′
fi
( fi(x̄, ȳ))5y fi(x̄, ȳ) + r̄i + {G

′
gi
(gi(x̄, ȳ))

5yygi(x̄, ȳ) + G′′gi
(gi(x̄, ȳ))..(5ygi(x̄, ȳ))(5ygi(x̄, ȳ))T) p̄i]] = 0. (29)

λ̄Tξ = 0, (30)

w̄i ∈ Qi, t̄i ∈ Ei, x̄T t̄i = S(x̄|Ei), x̄Tw̄i = S(x̄|Qi), i = 1, 2, 3, ..., k, (31)

(α, δ, ξ) ≥ 0, (α, β, γ, δ, ξ) 6= 0. (32)

From Assumption (i) and Equation (24), we have

γλ̄i − βi p̄i − λ̄iδȳ = 0. (33)
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We claim that βi 6= 0, ∀i. The proof is by contradiction. Let βi = 0 for some i. Since λ̄ > 0, the
relation in Equation (33) yields

γ = δȳ. (34)

From the relation in Equations (22), (33) and (34), we obtain

k

∑
i=1

(βi − δλ̄i)[G
′
fi
( fi(x̄, ȳ))5y fi(x̄, ȳ)− z̄i + (G

′
fi
( fi(x̄, ȳ))5yy fi(x̄, ȳ)+

G′′fi
( fi(x̄, ȳ))(5y fi(x̄, ȳ))(5y fi(x̄, ȳ))T) p̄i − R̄i[G

′
gi
(gi(x̄, ȳ))5y gi(x̄, ȳ) + r̄i

+{G′′gi
(gi(x̄, ȳ))(5ygi(x̄, ȳ))(5ygi(x̄, ȳ))T) + G

′
gi
(5yygi(x̄, ȳ))} p̄i)] = 0. (35)

On using Asumption (iv), this gives

βi − δλ̄i = 0, i = 1, 2, . . . , k. (36)

Since βi = 0, we obtain δλ̄i = 0 but λ̄i > 0, i = 1, 2, . . . , k and thus the relation in Equation (36)
implies δ = 0. Thus, from the relation in Equations (25), (34) and (36), we get αi = 0, i = 1, 2, . . . , k.
In addition, from the relation in Equation (34), we get γ = 0, which is a contradiction, since (α, β, γ, δ) 6=
0. Hence, we get βi 6= 0, i = 1, 2, . . . , k.

Since λ̄ > 0, using Equations (22) and (33), we get

k

∑
i=1

βi p̄i[G
′
fi
( fi(x̄, ȳ))5y fi(x̄, ȳ) + w̄i + (G

′
fi
( fi(x̄, ȳ))5yy fi(x̄, ȳ)+

G′′fi
( fi(x̄, ȳ))(5y fi(x̄, ȳ))(5y fi(x̄, ȳ))T) p̄i − R̄i[G

′
gi
(gi(x̄, ȳ))5y gi(x̄, ȳ)− t̄i

+{G′′gi
(gi(x̄, ȳ))(5ygi(x̄, ȳ))(5ygi(x̄, ȳ))T) + G

′
gi
(5yygi(x̄, ȳ))} p̄i)] = 0. (37)

Hence, from Assumption (iii), we get p̄i = 0, i = 1, 2, . . . , k. From the relation in Equation (33),
p̄i = 0, i = 1, 2, . . . , k and λ̄ > 0, we have γ = δȳ, from Equations (21) and (22), we have

k

∑
i=1

λ̄i[G
′
fi
( fi(x̄, ȳ))5x fi(x̄, ȳ) + w̄i − R̄i[G

′
gi
(gi(x̄, ȳ))5x gi(x̄, ȳ)− t̄i]] = 0. (38)

k

∑
i=1

(βi − δλ̄i)[G
′
fi
( fi(x̄, ȳ))5y fi(x̄, ȳ) + w̄i − R̄iG

′
gi
5y gi(x̄, ȳ)− t̄i] = 0. (39)

By Assumptions (i) and (iii), we have

βi = δλ̄i, i = 1, 2, . . . , k. (40)

Since βi > 0 and λ̄i > 0, i = 1, 2, . . . , k, the relation in Equation (40) implies that δ > 0, and the
relation in Equation (38) reduces to

(x− x̄)T
k

∑
i=1

λ̄i[G
′
fi
( fi(x̄, ȳ))∇x fi(x̄, ȳ) + w̄i − R̄i(G

′
gi
(gi(x̄, ȳ))∇xgi(x̄, ȳ)− t̄i)] ≥ 0, ∀x ∈ C1. (41)
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Let x ∈ C1. Then, x + x̄ ∈ C1 as C1 is a closed convex cone. On substituting x + x̄ into the place of
x in Equation (41), we get

xT
k

∑
i=1

λ̄i[(G
′
fi
( fi(x̄, ȳ))∇x fi(x̄, ȳ) + w̄i)− R̄i(G

′
gi
(gi(x̄, ȳ))∇xgi(x̄, ȳ)− t̄i)] ≥ 0.

Hence,

k

∑
i=1

λ̄i[(G
′
fi
( fi(x̄, ȳ))∇x fi(x̄, ȳ) + w̄i)− R̄i(G

′
gi
(gi(x̄, ȳ))∇xgi(x̄, ȳ)− t̄i)] ∈ C∗1 . (42)

In addition, by letting x = 0 and x = 2x̄ simultaneously in Equation (41), we have

x̄T
k

∑
i=1

λ̄i[(G
′
fi
( fi(x̄, ȳ))∇x fi(x̄, ȳ) + w̄i)− R̄i(G

′
gi
(gi(x̄, ȳ))∇xgi(x̄, ȳ)− t̄i)] = 0. (43)

Since γ = δȳ and δ > 0, we have

ȳ =
γ

δ
∈ C2. (44)

From Equations (26) and (34) and using β > 0, we get ȳ ∈ NDi (z̄i), i = 1, 2, 3, ..., k This implies

ȳT z̄i = S(ȳ|Di), i = 1, 2, 3, ..., k. (45)

Similarly, by Equation (27) and Assumption (iii), ȳ ∈ NFi (r̄i), i = 1, 2, 3, ..., k, we obtain

ȳT r̄i = S(ȳ|Fi), i = 1, 2, 3, ..., k. (46)

Combining Equations (31), (45), (46) and (31), it follows that

(G fi
( fi(x̄, ȳ))− S(ȳ|Di) + x̄Tw̄i)− R̄i(Ggi (gi(x̄, ȳ)) + S(ȳ|Fi)− x̄T t̄i) = 0, i = 1, 2, 3, ..., k. (47)

This together with Equations (42), (43) and (47) shows that (x̄, ȳ, R̄, λ̄, w̄, t̄) ∈ W0. Now, let
(x̄, ȳ, R̄, λ̄, w̄, t̄) be not an efficient solution of (EGMFD). Then, there exists other (u, v, R, λ, w, t) ∈W0

such that R̄i ≤ Si, ∀ i = 1, 2, ..., k and R̄j < Sj, for some j = 1, 2, ..., m. This contradicts the result of the
Theorems 1 and 2. Hence, the proof is complete.

Remark 2. In the case of symmetric programming problem, the proof of converse duality theorem remains same
as Theorem 3.

Theorem 4. (Converse duality theorem). Let (ū, v̄, S̄, t̄, w̄, λ̄, q̄) be an efficient solution to (EGMFD), fix λ = λ̄

in (EGMFP). Further, assume that

(i)
{

G
′
fi
( fi(ū, v̄))5xx fi(ū, v̄) + G′′fi

( fi(ū, v̄))5x fi(ū, v̄)(5x fi(ū, v̄))T − S̄i{G
′
gi
(gi(ū, v̄))5xx gi(ū, v̄)

+G′′gi
(gi(ū, v̄))5x gi(ū, v̄)(5xgi(ū, v̄))T}

]
is positive definite and

qT
i [G

′
fi
( fi(ū, v̄))5xx fi(ū, v̄) + [G′′fi

( fi(ū, v̄))5x fi(ū, v̄)(5x fi(ū, v̄))T − S̄i[G
′
gi
(gi(ū, v̄))

5xxgi(ū, v̄) + G′′gi
(gi(ū, v̄))5x gi(ū, v̄)(5xgi(ū, v̄))T ≥ 0, for all i = 1, 2, 3, . . . , k.

(ii) The matrix
{

G
′
fi
( fi(ū, v̄))5xx fi(ū, v̄) + [G′′fi

( fi(ū, v̄))5x fi(ū, v̄)(5x fi(ū, v̄))T − S̄i[G
′
gi
(gi(ū, v̄))
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5xxgi(ū, v̄) + G′′gi
(gi(ū, v̄))5x gi(ū, v̄)(5xgi(ū, v̄))T

}
is positive definite for i = 1, 2, 3, . . . , k.

(iii) For β > 0 and q̄i ∈ Rn, q̄i 6= 0, i = 1, 2, . . . , k implies that

k

∑
i=1

βi q̄i[G
′
fi
( fi(ū, v̄))5xx fi(ū, v̄) + [G′′fi

( fi(ū, v̄))5x fi(ū, v̄)(5x fi(ū, v̄))T − S̄i[G
′
gi
(gi(ū, v̄))

5xxgi(ū, v̄) + G′′gi
(gi(ū, v̄))5x gi(ū, v̄)(5xgi(ū, v̄))T 6= 0,

(iv)
[
G
′
fi
( fi(ū, v̄))5xx fi(ū, v̄) + {G′′fi

( fi(ū, v̄))5x fi(ū, v̄)(5x fi(ū, v̄))T − S̄i(G
′
gi
(gi(ū, v̄))

5xxgi(ū, v̄) + G′′gi
(gi(ū, v̄))5x gi(ū, v̄)(5x(gi(ū, v̄))T)}

]k
i=1 is linearly independent.

(v) S̄i > 0, i = 1, 2, 3, ..., k. Then, there exist z̄i ∈ Di and r̄i ∈ Ei, i = 1, 2, 3, ..., k such that
(ū, v̄, S̄, z̄, λ̄, r̄, p̄ = 0) is feasible for (EGMFP). Furthermore, if the assumptions of Theorem 1 or Theorem 2
are satisfied, then (ū, v̄, S̄, z̄, λ̄, r̄, p̄ = 0) is an efficient solution to (EGMFP).

Proof. The results can be obtained on the lines of Theorem 3.

4. Conclusions

In this paper, we use the concept of G f - bonvex/G f -pseudobonvex functions to establish duality
results for G- Mond–Weir type dual model related to multiobjective nondifferentiable second-order
symmetric fractional programming problem over arbitrary cones. Numerical examples are also
illustrated to justify the existence of such type of functions. The present work can be further extended
to nondifferentiable higher-order symmetric fractional programming over cones. This will orient the
future task for the researcher working in this area.
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