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Abstract: The diffusion subband adaptive filtering (DSAF) algorithm has attracted much attention in
recent years due to its decorrelation ability for colored input signals. In this paper, a modified DSAF
algorithm using the symmetry maximum correntropy criterion (MCC) with individual weighting
factors is proposed and discussed to combat impulsive noise, which is denoted as the MCC-DSAF
algorithm. During the iterations, the negative exponent in the Gaussian kernel of the MCC-DSAF
eliminates the interference of outliers to provide a robust performance in non-Gaussian noise
environments. Moreover, in order to enhance the convergence for sparse system identifications,
a variant of MCC-DSAF named as improved proportionate MCC-DSAF (MCC-IPDSAF) is presented
and investigated, which provides a dynamic gain assignment matrix in the MCC-DSAF to adjust the
weighted values of each coefficient. Simulation results verify that the newly presented MCC-DSAF
and MCC-IPDSAF algorithms are superior to the popular DSAF algorithms.

Keywords: diffusion subband adaptive filtering algorithm; maximum correntropy criterion;
impulsive noise; proportionate adaptive filters ; sparse system identifications

1. Introduction

Distributed estimation is required to get the interested estimated parameters from the data
collected in distributed networks and sensors [1], and has been widely investigated and utilized in
wireless sensor networks, target locations, environmental monitorings, medical applications, military
applications, and other fields [2–5]. Diffusion strategy exchanges information between a current node
and its neighbors in the networks, which makes it widely studied in distributed estimation [6]. A global
solution in the network performs iterative operations when all node information is fused to the center,
which requires a large amount of energy and communication resources [7]. Thus, many adaptive
filtering (AF) algorithms in light of distributed estimation were reported like diffusion affine projection
algorithms (DAPA) [8], diffusion least mean square algorithms (DLMS) [9], and diffusion subband
adaptive filtering (SAF) algorithms (DSAF) [10]. DLMS was developed in line with the least mean
square (LMS) for distributed estimation since the LMS is simple, but its convergence speed will sharply
deteriorate for colored input signals. Although the DAPA and DSAF can improve the convergence
when the input is colored, the complexity for DAPA is increased. DSAF is more popular because of its
simple computational complexity that is similar to the DLMS [11–15]. However, the above mentioned
algorithms are all developed based on the l2-norm optimization criterion, whose performance will be
seriously degraded under non-Gaussian interference.
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Recently, the l1 norm optimization criterion (LOC) was used for dealing with strong impulsive
noise to provide good anti-interference abilities [16]. Then, AF algorithms in line of the LOC
were reported, such as the diffusion sign subband AF algorithm (DSSAF) [17], the DSSAF with
enlarged cooperation (DSSAF-EC) [18], and the individual weighting factored DSSAF algorithm
(IWF-DSSAF) [19]. The above mentioned algorithms are very sensitive to non-Gaussian noise, resulting
in potential deterioration of their steady-state error performance, since the LOC algorithms use the
sign function on the error in each iterative process. In order to ensure the reliability of signal estimation
and transmission in real-life systems, it is necessary to construct a more robust method to suppress
non-Gaussian noise interference.

Since the maxmimum correntropy scheme can resist the outliers, it has been used to deal with
non-Gaussian noise in recent years [20]. For example, the diffusion maximum correntropy criterion
(DMCC) [21–25] and the diffusion minimum error entropy (DMEE) algorithms [22] provide good
robustness under non-Gaussian noise-interference, and have been developed over networks based
on the correntropy theory. Their performance demonstrates that the computational complexity of
symmetry maximum correntropy criterion (MCC)-based algorithms is less than that of minimum error
entropy (MEE)-based algorithms.

Moreover, the impulse responses (IR) of many scenes are regarded as sparse [26–31], which
means that the values of most IR coefficients are zero or very small, where only a small part of
the IR coefficients have significant amplitude. Then, proportionate techniques [32,33] have been
used to enhance the DSAF algorithms for sparse system identifications. The main idea of the
proportionate adaption AF algorithms is that the proportionate assignment matrix assigns different
gain to each coefficient. The large coefficients obtain large gain to provide large step-size, and vice
versa. The proportionate-type scheme has been utilized in diffusion proportionate sign subband
adaptive filtering (DPSSAF) [34] and its series of variants [18,19]. In this paper, the MCC [23,35,36]
is adopted for constructing a new cost function in this paper, where the proposed novel algorithm is
named as MCC-DSAF. The outliers in the noise make error become large, and the negative exponential
term of the Gaussian kernel function in the MCC-DSAF causes the outlier to approach zero. Therefore,
compared with DSSAFs, MCC-DSAF has good adaptability and stronger robustness in non-Gaussian
noise environments. We also proposed an improved proportionate MCC-DSAF (MCC-IPDSAF) by
giving each coefficient an independent gain. The MCC-IPDSAF not only has the ability to resist
impulsive noise, but also is suitable for system identifications with different sparse characteristics.
The simulated results show that the derived two algorithms have good performance if the convergence
performance, steady state error and tracking behaviors are compared with popular methods.

2. The Proposed Algorithms

A smart dust network is a system that contains many sensors, robots, or other devices to build a
tiny microelectromechanical systems (MEMS) to detect light, temperature, vibration, magnetism, or
chemicals. Herein, an N-node smart dust network within the wireless sensor network framework is
considered. At node n and time slot l, the signal dn(l) arises from the linear model:

dn(l) = uT
n (l)w0 + ηn(l), n = 1, 2, 3, 4, . . . , N (1)

where un(l) = [un(l), un(l − 1), . . . , un(l −M + 1)]T denotes input vector, w0 is the unknown vector
with length M that we expect to estimate, and ηn(l) is the system noise.

2.1. Review of the DSAF Algorithm

The DSAF is implemented based on a multiband structure, which is shown Figure 1. In Figure 1,
↑ I and ↓ I represent N interpolations and decimations, respectively. Considering Hi(z) =

∑M−1
m=0 hi(m)z−m, the desired signal dn(l) and inputing signal un(l) for node n are assigned to I subband
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signals dn,i(l) and un,i(l), where i = 0, 1, . . . , I − 1, I is the number of subbands. The subband desired
vectors and subband input vectors for node n are expressed as:

un,i(k) = [un,i(kI), un,i(kI − 1), . . . , un,i(kI −M + 1)]T , (2)

dn(k) = [dn,0,D(k), dn,1,D(k), . . . , dn,I−1,D(k)]T . (3)

un,i(l) for node n are handled by adaptive filter Ŵn(z) whose weight vector is wn(l), which is to
generate output signal yn,i(l). dn,i(l) for node n and the output signals yn,i(l) are to get dn,i,D(k) and
yn,i,D(k). The subband errors en,i,D(k) are the difference between dn,i,D(k) and yn,i,D(k). Using the
synthesis filter bank Gi(z) = ∑M−1

m=0 gi(m)z−m, the fullband error en(l) is obtained. The original and
decimated sequences are denoted by variables l and k respectively, where l = kI.

Figure 1. The scheme of the diffusion subband adaptive filtering (DSAF) algorithm.

As we know, DSAF algorithms can be divided into two types, namely (Adapt-then-Combine)
ATC and (Combine-then-Adapt) CTA [37]. In general, ATC performs better than CTA, and hence,
the ATC type is employed herein.

For DSAF, its cost function for node n is

J(k) = E[‖
L−1

∑
i=0

(dn,i,D(k)− uT
n,i(k)wn(k− 1)‖2)], (4)

in which E denotes the expected symbol. By using ATC type in Equation (4), J(k) is minimized to
obtain the updated equation of the DSAF:

φn(k) = wn(k− 1) + 2µn

L−1

∑
i=0

un,i(k)en,i,D(k)
uT

n,i(k)un,i(k) + ε

wn(k) = ∑
j∈Nn

cjnφj(k)
, (5)

where en,i,D(k) is
en,i,D(k) = dn,i,D(k)− uT

n,i,D(k)wn(k− 1). (6)

Nn represents the neighbor of node n. cjn denotes the combination coefficients of the N × N
matrix C, where, ∑j∈Nn cjn = 1 and cjn = 0 if j 6∈ Nn. In other words, cjn is zero when j is not connected
to n. Otherwise, the column and row of the combination coefficients cjn in C are added to one. ε is a
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regularization parameter which prevents the denominator from being zero, µn is the step-size for node
n. φn(k) and wn(k) are the intermediate estimation and estimation of w0 for node n.

Under the Gaussian noise interference, the DSAF has a decorrelation ability for the colored
input signals and enjoys a faster convergence speed than DLMS. However, for the interference of
non-Gaussian noise, the error sequences in the DSAF are not stabilized due to the pulse characteristics
of non-Gaussian noise, which affects the convergence characteristics of DSAF. Then, a modified DSAF
algorithm based on an MCC scheme with an individual weighting factor for improving the DSAF is
proposed and given the name MCC-DSAF.

2.2. The Proposed MCC-DSAF Algorithm

Correntropy between two random variables X and Y is defined as

C(X, Y) = E[κσ(X−Y)] =
∫∫

κ(x− y) fX,Y(x, y)dxdy, (7)

where κσ denotes the Mercer kernel, and fX,Y(x, y) is the joint probability density function. A Gaussian
kernel is always used and is presented as

κσ(x− y) =
1

σ
√

2π
exp(− (x− y)2

2σ2 ), (8)

where σ is the kernel size. To use the correntropy in our algorithm, we define en,i,D(k) = x− y, x =

dn,i,D(k) and y = uT
n,i(k)wn(k− 1). Then, the new cost function is defined as:

Jglob(k) =
N

∑
n=1

L−1

∑
i=0

(

√
β

π
exp[−β

(dn,i,D(k)− uT
n,i(k)wn(k− 1))2

uT
n,i(k)un,i(k) + ε1

]), (9)

where β denotes the kernel parameter related to the kernel size and β =
1

2σ2 , ε1 > 0 has a small value.
In the global network, a large amount of communication resources and energy are required and

the real-time requirements of the system are high. Thus, the above problem should be well solved in
the distributed network, and the global cost function should be changed into a local cost function.

For diffusion networks, local cost function can be formulated as linear-combination of local
weighted correntropy, which is expressed as:

Jloc
n (k) = ∑

j∈Nn

cjn(
L−1

∑
i=0

(

√
β

π
exp[−β

(dn,i,D(k)− uT
n,i(k)wn(k− 1))2

uT
n,i(k)un,i(k) + ε1

]). (10)

Driven by Equation (10), the increment of weight vector ∆wn(k) at instant time k is written as:

∆wn(k) =
∂Jloc

n (k)
∂w

= ∑
j∈Nn

cjn(
L−1

∑
i=0

(2

√
β3

π
exp[−β

(dn,i,D(k)− uT
n,i(k)wn(k− 1))2

uT
n,i(k)un,i(k) + ε1

])

×
un,i(k)(dn,i,D(k)− uT

n,i(k)wn(k− 1))

uT
n,i(k)un,i(k) + ε1

)

= ∑
j∈Nn

cjn(
L−1

∑
i=0

(2

√
β3

π
exp[−β

e2
n,i,D(k)

uT
n,i(k)un,i(k) + ε1

])

× un,i(k)en,i,D(k)
uT

n,i(k)un,i(k) + ε1
).

(11)
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Then, the updating of the MCC-DSAF based on the gradient method can be obtained,

wn(k) = wn(k− 1) + µn∆wn(k)

= wn(k− 1) + µn ∑
j∈Nn

cjn(
L−1

∑
i=0

(2

√
β3

π
exp[−β

e2
n,i,D(k)

uT
n,i(k)un,i(k) + ε1

])

× un,i(k)en,i,D(k)
uT

n,i(k)un,i(k) + ε1
).

(12)

For the diffusion strategy, the local estimation wn(k) is a linear combination of
intermediate-estimation φn(k), their relationship can be expressed

wn(k) = ∑
j∈Nn

cjnφn(k). (13)

In such way, ∆wn(k) is written as:

∆wn(k) = ∑
j∈Nn

cjn∆φn(k). (14)

Comparing Equation (11) with Equation (14), the increment of intermediate estimation ∆φn(k) is

∆φn(k) = 2

√
β3

π

L−1

∑
i=0

exp[−β
e2

n,i,D(k)

uT
n,i(k)un,i(k) + ε1

]× un,i(k)en,i,D(k)
uT

n,i(k)un,i(k) + ε1
. (15)

From Equation (12), the updating of the intermediate-estimation φn(k) is

φn(k) = φn(k− 1) + µn∆φn(k). (16)

From Equation (13), wn(k− 1) contains more data information from neighbor nodes compared
with φn(k − 1) [7,22]. According to the diffusion in [7], by replacing φn(k− 1) by wn(k − 1) in
Equation (16), we have

φn(k) = wn(k− 1) + µn∆φn(k). (17)

Using Equations (12), (15), and (17), the updating equation of the MCC-DSAF is rewritten as:

φn(k) = wn(k− 1) + 2µn

√
β3

π

L−1

∑
i=0

exp[−β
e2

n,i,D(k)

uT
n,i(k)un,i(k) + ε1

]

× un,i(k)en,i,D(k)
uT

n,i(k)un,i(k) + ε1

wn(k) = ∑
j∈Nn

cjnφj(k).

(18)

When the error en,i,D(k) is interrupted by the pulse during the weight updating process, the

negative exponential action in the Gaussian kernel function term exp[−β
e2

n,i,D(k)

uT
n,i(k)un,i(k) + ε1

] makes the

outlier close to zero, which ensures that the MCC-DSAF has good performance under non-Gaussian
noise interference.
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2.3. The Proposed MCC-IPDSAF Algorithm

The MCC-IPDSAF is proposed using the adaptive gain matrix in the MCC-DSAF to obtain faster
convergence when the unknown system is sparse since the adaptive gain matrix Gn(k) can get a better
balance between the convergence and steady state error. The update equation for the MCC-IPDSAF is

φn(k) = wn(k− 1) + 2µn

√
β3

π

L−1

∑
i=0

exp[−β
e2

n,i,D(k)

uT
n,i(k)un,i(k) + ε1

]

× Gn(k)un,i(k)en,i,D(k)
uT

n,i(k)Gn(k)un,i(k) + ε1

wn(k) = ∑
j∈Nn

cjnφj(k)

. (19)

There are several methods for choosing Gn(k) to render it suitable for a sparse system [33]. As we
know, the main idea of adaptive gain matrix in AFs is to obtain larger step sizes for the larger filter
coefficients, which guarantees their convergence. Therefore, the MCC-IPDSAF can provide a quicker
convergence compared to the MCC-DSAF in the sparse system.

Gn(k) = diag[gn,0(k), gn,1(k), . . . , gn,M−1(k)] denotes the M × M adaptive gain matrix.
The diagonal elements of Gn(k) are calculated by

gn,m(k) =
1− α

2M
+ (1 + α)

|wn,m(k)|
‖wn(k)‖1 + ε2

, (20)

where α is a parameter related to system sparsity. ε2 is a regularization to prevent the denominator
from being zero.

3. Performance Analysis

3.1. Data Model and Assumption

Mean square analysis of the MCC-DSAF will be performed. We define the following
global variables:

w(k) = col{w1(k), w2(k), . . . , wN(k)}, (21)

φ(k) = col{φ1(k), φ2(k), . . . , φN(k)}, (22)

U(k) = diag{u1(k), u2(k), . . . , uN(k)}, (23)

un(k) = col{un,0(k), un,1(k), . . . , un,L−1(k)}, (24)

d(k) = col{d1,0(k), . . . , d1,L−1(k), dN,0(k), . . . , dN,L−1(k)}, (25)

v(k) = col{η1,0(k), . . . , η1,L−1(k), ηN,0(k), . . . , ηN,L−1(k)}, (26)

where col {·} denotes the column vector, and diag{·} denotes a diagonal matrix . The desired signal
of the entire network d(k) = UT(k)w0 + v(k), and w0 = Iw0, I = col{IM, IM, . . . , IM} is an MN ×
M matrix.

H(k) is 
H(k) = diag{ 1

uT
1,0(k)u1,0(k) + ε1

, . . . ,
1

uT
1,L−1(k)u1,L−1(k) + ε1

,

. . . ,
1

uT
N,0(k)uN,0(k) + ε1

, . . . ,
1

uT
N,L−1(k)uN,L−1(k) + ε1

}.
(27)

Herein, the P matrix is a collection of local step parameters:

P = diag{µ1, µ2, . . . , µN} ⊗ IM, (28)
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where ⊗ denotes the Kronecker product. Next, C is the combination coefficients matrix of N × N:

C =


c1,1 c1,2 · · · c1,N
c2,1 c2,2 · · · c2,N

...
... · · ·

...
cN,1 cN,2 · · · cN,N

 , (29)

and the matrix A is defined as:.
A = CT ⊗ IM. (30)

The matrix Ω(k) is given by

Ω(k) =



2

√
β3

π
exp[−β

e2
1,0,D(k)

uT
1,0(k)u1,0(k) + ε1

], . . . ,

2

√
β3

π
exp[−β

e2
1,L−1,D(k)

uT
1,L−1(k)u1,L−1(k) + ε1

], . . . ,

2

√
β3

π
exp[−β

e2
N,0,D(k)

uT
N,0(k)uN,0(k) + ε1

], . . . ,

2

√
β3

π
exp[−β

e2
N,L−1,D(k)

uT
N,L−1(k)uN,L−1(k) + ε1

]



. (31)

Using the global variables, the global update equation of the MCC-DSAF can be obtained,{
φ(k) = w(k− 1) + PΩ(k)H(k)U(k)[d(k)−UT(k)w(k− 1)]

w(k) = Aφ(k).
(32)

In the analysis, we have the following assumptions:

Assumption 1. All input regressions un(l) are independent. ηn(l) is independent and independent of un(l).

Assumption 2. Subband colored input signal un,i(k) is close to a white signal.

Assumption 3. The Gaussian kernel function

{
2

√
β3

π
exp[−β

e2
n,i,D(k)

uT
n,i(k)un,i(k) + ε1

]

}
is independent of

un,i(k).

Assumption 1 is widely used in the analysis of AF algorithms. Assumption 3 does not really

apply to the proposed algorithms, since

{
2

√
β3

π
exp[−β

e2
n,i,D(k)

uT
n,i(k)un,i(k) + ε1

]

}
is an error function.

In [21,37–39], the variable step size is independent of un,i(k).

{
2

√
β3

π
exp[−β

e2
n,i,D(k)

uT
n,i(k)un,i(k) + ε1

]

}
is

considered as a variable step term.

The weighted error-vector for node n is expressed as:

w̃n(k) = w0 −wn(k). (33)

The global weighted error-vector is:
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w̃(k) = w0 −w(k). (34)

Due to A = CT ⊗ IM and ‖C‖2 = 1, where C is the matrix whose coefficients are cjn, and we have
A = IMN . Thus, we get the relationship of w0 = Aw0. Replacing w(k) with Aφ(k) in Equation (32),
then Equation (34) is modified to be:

w̃(k)

= w0 −w(k)

= Aw0 −Aφ(k)

= Aw0 −A[w(k− 1) + PΩ(k)H(k)U(k)(d(k)−UT(k)w(k− 1))]

= Aw̃(k− 1)−A[PΩ(k)H(k)U(k)(UT(k)w0 + v(k)−UT(k)w(k− 1))]

= Aw̃(k− 1)−A[PΩ(k)H(k)U(k)(UT(k)w̃(k− 1) + v(k))]

= A[IMN − PΩ(k)H(k)U(k)UT(k)]w̃(k− 1)−APΩ(k)H(k)UT(k)v(k).

(35)

Next, the mean square analysis for w̃(k) will be presented.

3.2. Convergence Analysis

The expectation is simultaneously exerted on both sides of (35), then we get

E[w̃(k)] = A[IMN − E[PΩ(k)H(k)U(k)UT(k)]]E[w̃(k− 1)]

−AE[PΩ(k)H(k)UT(k)v(k)].
(36)

It can be seen from Assumption 3 that Ω(k) is independent of U(k). Thereby, we obtain

E[PΩ(k)H(k)U(k)UT(k)] = PE[Ω(k)]RU , (37)

where RU = E[H(k)U(k)UT(k)] = E[∑L−1
i=0

un,i(k)uT
n,i(k)

uT
n,i(k)un,i(k) + ε1

].

From Assumption 1, we can find that the expectation of the last term of (36) is close to zero.
Therefore, (36) is rewritten as

E[w̃(k)] = A[IMN − PE[Ω(k)]RU ]E[w̃(k− 1)]. (38)

In Equation (38), the matrix {A[IMN − PE[Ω(k)]RU ]} should be stable. Thus,{
I − µnE

[
2

√
β3

π
∑L−1

i=0 exp[−β
e2

n,i,D(k)

uT
n,i(k)un,i(k) + ε1

]

]
RU

}
should be stable for all n, which means that

µn should satisfy the following equation

− 1 < 1− µnλmax(RU)E[2

√
β3

π

L−1

∑
i=0

exp[−β
e2

n,i,D(k)

uT
n,i(k)un,i(k) + ε1

]] < 1, (39)

then,

0 < µn <
2

λmax(RU)E[2

√
β3

π
∑L−1

i=0 exp[−β
e2

n,i,D(k)

uT
n,i(k)un,i(k) + ε1

]]

n = 1, 2, . . . , N,

(40)
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where λmax denotes the maximum eigenvalue of RU . If the l1 norm of the weight wn(k) is smaller
than τ, we have

|en,i,D(k)| = |dn,i,D − uT
n,i(k)wn(k− 1)|

≤ ‖un,i(k)‖1‖wn(k− 1)‖1 + |dn,i,D(k)|
≤ τ‖un,i(k)‖1 + |dn,i,D(k)|.

(41)

Next, let uT
n,i(k)un,i(k) = ‖un,i(k)‖2

2. Therefore, the following condition for the stability of the
MCC-DSAF should satisfy

0 < µn <
2

λmax(RU)E[2

√
β3

π
∑L−1

i=0 exp[−β
[τ‖un,i(k)‖1 + |dn,i,D(k)|]2

‖un,i(k)‖2
2 + ε1

]]

n = 1, 2, . . . , N.

(42)

3.3. Steady-State Performance

Steady-state behavior of MCC-DSAF is studied herein. Σ denotes any symmetric positive
definite weighting matrix, ‖t‖2

Σ denotes the weighting squared Euclidean norm ‖t‖2
Σ = tTΣt. Then,

considering the Σ-Euclidean-norm on both sides of Equation (35) results in

‖w̃(k)‖2
Σ = ‖w̃(k− 1)‖2

Σ′
+ vT(k)Y(k)v(k), (43)

where
Y(k) = UT(k)HT(k)ΩT(k)PTATΣAPΩ(k)H(k)U(k), (44)

and
Σ
′
= ATΣA−ATΣAPZ(k)− ZT(k)PTATΣA +ZT(k)PTATΣAPZ(K), (45)

and
Z(k) = Ω(k)H(k)U(k)UT(k). (46)

We take the expectation on both sides of Equation (43) and find:

E[‖w̃(k)‖2
Σ] = E[‖w̃(k− 1)‖2

Σ′
] + E[vT(k)Y(k)v(k)]. (47)

E[Σ
′
] is

E[Σ
′
] = ATΣA−ATΣAPE[Z(k)]− E[ZT(k)]PTATΣA +E[ZT(k)PTATΣAPZ(K)]. (48)

Herein, let E[Σ
′
] = Σ

′′
. The bvec{} operator is to convert a block matrix into a single-column

vector. The � operator denotes the block Kronecker product. From bvec[QΣPT ] = (P�Q)ξ in [40],
ξ = bvec[Σ] and applying the bvec{} operator to each item on the right side of (48) yields

bvec[ATΣA] = (AT �AT)ξ, (49)

bvec[ATΣAPE[Z(k)]] = (E[ZT(k)]� IMN)](PT � IMN)(AT �AT)ξ, (50)

bvec[E[ZT(k)]PTATΣA] = (IMN � E[ZT(k)])(IMN � PT)(AT �AT)ξ, (51)

bvec[E[ZTPTATΣAPZ(k)]] = (E[ZT(k)� ZT(k)])(PT � PT)(AT �AT)ξ. (52)
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By applying the bvec{} operator to right side of Equation (48) without ξ, the final expression is
represented by matrix Q:

Q = [IM2 N2 − (E[Z(k)]� IMN)(PT � IMN)− (IMN � E[ZT(k)])

(IMN � PT) + (E[ZT(k)� ZT(k)])(PT � PT)](AT �AT),
(53)

where bvec[Σ] = ξ, and applying the bvec{} operator to left side of Equation (48), we get bvec[Σ
′′
] = ξ

′
.

Finally, we have
ξ
′
= Qξ. (54)

Also, applying bvec{} operator to the second term on the right side of Equation (47) yields

bvec[E[vT(k)Y(k)v(k)]] = Rξ. (55)

Thus, R is
R = E[(vT(k)� vT(k))(UT(k)�UT(k))(HT(k)�HT(k))

× (ΩT(k)�ΩT(k))(PT � PT)(AT �AT)].
(56)

According to the above analysis, Equation (47) is obtained,

E[‖w̃(k)‖2
ξ ] = E[‖w̃(k− 1)‖2

Qξ ] + Rξ. (57)

The mean square deviation (MSD) for node n is given by

MSDn = E[‖w̃n(k)‖2] = E[‖w0 −wn(k)‖2]. (58)

Here, mn is defined as
mn = vec[diag(bn,N)⊗ IM], (59)

where bn,N denotes the n-th column vector of IN , vec stacks the columns of its matrix into a column
vector. Let ξ = mn in Equation (57). When k approaches infinity, the MSD for node n is

MSDn = R[I−Q]−1mn. (60)

The MSD of the entire network is defined by the average of all node MSDs:

MSDnetwork =
1
N

N

∑
n=1

MSDn. (61)

4. Simulation

The effectiveness of the proposed algorithms is verified through experimental simulation. Figure 2
shows the network topology with 20 nodes. The location coordinates for the nodes in a squared area
are [0, 1.2]× [0, 1.2].

The combination coefficients cjn are obtained by Metropolis criterion [11,41], where cjn =
1

max(Nn,Nj)
, if n 6= j and cjn = 1−∑j 6=n cjn, if n = j. The unknown system has a length of M = 128

and the calculation of sparsity is ζ(w0) =
M

M−
√

M

(
1− ‖w0‖1√

M‖w0‖2

)
[42,43] with ζ(w0) = 0.751.

Figure 3 shows the non-Gaussian noise distribution of Pr = 0.01 and Pr = 0.1 for node n = 1.

The normalized mean square deviation (NMSD), NMSD = 1/N
N
∑
n

10 log10
‖wn −w0‖2

‖w0‖2 is used to

evaluate the behaviors of the devised algorithms. The smaller the value of NMSD, the closer the
estimated results are to the unknown system. In order to make it easier to compare the differences
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between the different algorithms, the convergence lines are run in 30 independent simulations to get
the average values.
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Figure 2. Diffusion network topology with 20 nodes within a squared area of [0, 1.2]× [0, 1.2].
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Figure 3. The non-Gaussian noise of Pr = 0.01 (up) and Pr = 0.1 (down) for node n = 1.

System Identification

The algorithms use four-subband cosine modulation filter banks. White, colored and speech
signals are used as input in this section. The colored signal un(l) is realized by Gaussian white noise

via a first-order system with its transform function of H(z) =
1

1− 0.95z−1 . The variance of the input

signal and the variance of the Gaussian noise are given in Figure 4. Zero-mean Gaussian noise vn(l)
and the impulsive noise zn(l) are used to construct the measurement noise ηn(l). The impulsive noise
zn(l) is obtained by using the Bernoulli process φn(l) and the Gaussian process qn(l), which is defined
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as zn(l) = qn(l)φn(l). The probability density function of the Bernoulli process is P{φn = 0} = 1− Pr,
P{φn = 1} = Pr. The signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR) used in [18] are

given by SNR = 10log10
σ2

d,n

σ2
v,n

and SIR = 10log10
σ2

d,n

σ2
z,n

, respectively. σ2
d,n and σ2

v,n are the variances of

un(l)w0 and vn(l). σ2
z,n = 1000E[(un(l)w0)

2]. The kernel parameter β is 15, α = 0.5, ε = ε1 = ε2 = 0.01.

0 2 4 6 8 10 12 14 16 18 20

node n

1

1.5

2

2 u
,n

0 2 4 6 8 10 12 14 16 18 20

node n

0

0.01

0.02

0.03

2 v
,n

Figure 4. The variance of input signal and Gaussian noise. (up) σ2
u,n; (down) σ2

v,n.

Figure 5 gives the performance of the DSAF, MCC-DSAF, and MCC-IPDSAF for colored input
signals, where Pr = 0.01. Their step-size parameters are 0.1, 0.0158 and 0.0075 to get nearly the
same initial convergence. The DSAF is severely degraded under non-Gaussian noise interference.
The proposed MCC-DSAF can better suppress non-Gaussian interferences. The steady-state error
of MCC-IPDSAF is smaller than MCC-DSAF, which is attributed to the adaptive gain matrix that
reassigns the gains to each coefficient.

Figure 6 illustrates the performance of diffusion sign error-LMS (DSE-LMS) [44], DMCC [21],
diffusion affine projection sign algorithm (DAPSA) [45], MCC-DSAF, and MCC-IPDSAF for colored
input signals for Pr = 0.01. Their step-size parameters are 0.0017, 0.065, 0.11, 0.029, and 0.015.
The Gaussian kernel σDMCC = 2 and the DAPSA projection order is 4. DAPSA converges faster
than the DSE-LMS and DMCC, but it converges slower than the proposed MCC-DSAF. MCC-DSAF’s
convergence is significantly faster than DSE-LMS,DMCC, and DAPSA. It can be verified that the
subband algorithms can speed-up the convergence. When the proposed MCC-IPDSAF maintains the
same convergence speed with MCC-DSAF, its steady-state error is smaller than that of the MCC-DSAF.
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Figure 5. The performance of DSAF, maximum correntropy criterion (MCC)-DSAF, and improved
proportionate MCC-DSAF (MCC-IPDSAF) for the colored input with Pr = 0.01.
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Figure 6. The performance of DSE-LMS, diffusion maximum correntropy criterion (DMCC), DAPSA,
MCC-DSAF and MCC-IPDSAF for the colored input with Pr = 0.01.

Figure 7 demonstrates the performance of DSAF, DSSAF, IWF-DSSAF, MCC-DSAF, IPDSSAF,
IWF-IPDSSAF, and MCC-IPDSAF for a white input signal, where Pr = 0.01. Their step-size parameters
are chosen to be 0.5, 0.14, 0.07, 0.02, 0.08, 0.055, and 0.01 for achieving the same initial convergence.
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DSAF shows the worst behavior. The DSSAF and IWF-DSSAF algorithms have almost the same
performance as each other, and the IPDSSAF and IWF-IPDSSAF algorithms are similar, this is because
IWF-DSSAF and IWF-IPDSSAF are subband variants of DSSAF and IPDSSAF, respectively, and
subband splitting of white signals has almost no effect when the impulsiveness of non-Gaussian noise
is not particularly large. The steady-state error of the proposed MCC-DSAF is smaller than the DSSAF
and IPDSSAF because it is realized based on MCC, which can resist non-Gaussian noise. As a result,
the behavior of MCC-IPDSAF is better than the other algorithms.

Figure 7. The performance of the DSAF, diffusion sign subband AF algorithm (DSSAF), individual
weighting factored (IWF)-DSSAF , MCC-DSAF, IPDSSAF, IWF-IPDSSAF and MCC-IPDSAF for white
input with Pr = 0.01.

Figure 8 is the performance of DSAF, DSSAF, IWF-DSSAF, MCC-DSAF, IPDSSAF, IWF-IPDSSAF,
and MCC-IPDSAF for a white input signal with Pr = 0.1. Their step-size parameters are 0.25, 0.7, 0.34,
0.065, 0.4, 0.25, and 0.039, respectively. By increasing the impulsiveness of non-Gaussian noise, DSAF
has completely failed, and the algorithms have similar performance to those in Figure 7.

Figure 9 discusses the behavior of DSAF, DSSAF, IWF-DSSAF, MCC-DSAF, IPDSSAF,
IWF-IPDSSAF, and MCC-IPDSAF for a colored input signal, where Pr = 0.01. The step-size parameters
of these algorithms are 0.1, 0.42, 0.055, 0.0158, 0.3,0.06, and 0.0075, respectively. The DSAF has been
severely degraded, while the proposed MCC-DSAF has a smaller steady-state-error than those of
DSSAF, IWF-DSSAF, and IPDSSAF. Due to the advantages of adaptive gain matrix and MCC schemes,
the proposed MCC-IPDSAF outperforms all other algorithms.

Figure 10 shows the performance of DSAF, DSSAF, IWF-DSSAF, MCC-DSAF, IPDSSAF,
IWF-IPDSSAF, and MCC-IPDSAF for a colored input signal, where Pr = 0.1. The step size parameters
of these algorithms are 0.1, 0.25, 0.06,0.021, 0.25, 0.0765, and 0.01, respectively. Compared with Figure 9,
when the impulsiveness of non-Gaussian noise is increased, the steady-state error and convergence
for all algorithms become worse. However, the behavior of the proposed MCC-IPDSAF algorithm is
the best.

Figure 11 shows the tracking behavior of DSAF, DSSAF, IWF-DSSAF, MCC-DSAF, IPDSSAF,
MCC-IPDSAF, IWF-IPDSSAF for a colored input signal, where Pr = 0.01. The unknown system
changes when the iterations reach to 20,000, the proposed MCC-DSAF and MCC-IPDSAF still have
good tracking performance.
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Figure 8. The performance of DSAF, IWF-DSSAF, DSSAF, MCC-DSAF, IPDSSAF, IWF-IPDSSAF, and
MCC-IPDSAF for white input with Pr = 0.1.

Figure 9. The performance of IWF-DSSAF, DSSAF, DSAF, MCC-DSAF, IPDSSAF, IWF-IPDSSAF, and
MCC-IPDSAF for the colored input with Pr = 0.01.
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Figure 10. The performance of DSAF, IWF-DSSAF, DSSAF, MCC-DSAF, IPDSSAF, IWF-IPDSSAF, and
MCC-IPDSAF for the colored input with Pr = 0.1.
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Figure 11. The tracking performance of DSAF, IWF-DSSAF, DSSAF, MCC-DSAF, IPDSSAF,
IWF-IPDSSAF, and MCC-IPDSAF for the colored input with Pr = 0.01.

Figure 12 gives a highly correlated real speech signal and the sparse channel. The real speech
signal is the input, and the sampling frequency is 8 KHz, and the sample length is 4.8× 104.
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Figure 12. The speech input signal and the sparse channel.

From Figure 13, DSAF fails to converge, while the steady state error of the proposed MCC-DSAF
is better than those of the DSSAF and IWF-DSSAF for the non-Gaussian interference and speech input.
The behavior of MCC-IPDSAF is superior to the other algorithms. Although the non-stationarity
of speech input affects the behavior of the mentioned algorithms, the experiment result verifies the
feasibility and effectiveness of the MCC-DSAF and MCC-IPDSAF algorithms.
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Figure 13. The behavior of DSAF, IWF-DSSAF, DSSAF, MCC-DSAF, IWF-DSSAF, IPDSSAF, and
MCC-IPDSAF for speech input with Pr = 0.01.
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5. Conclusions

In this paper, the maximum correntropy criterion and an individual weighting factor have been
taken to construct a new cost function within the distributed subband adaptive filtering framework,
which is named MCC-DSAF. The developed MCC-DSAF has been well derived and analyzed.
The proposed MCC-DSAF algorithm can not only effectively suppress non-Gaussian noise interference,
but also outperforms DSSAF and IWF-DSSAF with respect to convergence and MSD. Moreover,
the proportionate adaption scheme is also introduced into MCC-DSAF to get MCC-IPDSAF, which
further enhances the behavior of MCC-DSAF for identifying sparse systems. The convergence analysis
and the steady-state behavior of MCC-DSAF are presented. The estimation behaviors of the algorithms
are verified and the simulation results demonstrate that the proposed MCC-DSAF and MCC-IPDSAF
are superior to the mentioned, popular DSAF algorithms. The algorithms in this paper will provide a
better effect in the fields of radar, medical, wireless sensor networks, smart dust networks, distributed
channel estimations, and hydroacoustics, etc.
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