

Article

Comparative Study of Some Numerical Methods for the Burgers–Huxley Equation

Appanah Rao Appadu ¹,*¹, Bilge İnan ² and Yusuf Olatunji Tijani ¹

- ¹ Department of Mathematics and Applied Mathematics, Nelson Mandela University, Port-Elizabeth 6031, South Africa; s221356053@mandela.ac.za
- ² Department of Mathematics, Faculty of Muallim Rifat Education, Kilis 7 Aralık University, 79000 Kilis, Turkey; drbilgeinan@gmail.com
- * Correspondence: Rao.Appadu@mandela.ac.za or Rao.Appadu31@gmail.com

Received: 19 September 2019; Accepted: 19 October 2019; Published: 24 October 2019

Abstract: In this paper, we construct four numerical methods to solve the Burgers–Huxley equation with specified initial and boundary conditions. The four methods are two novel versions of nonstandard finite difference schemes (NSFD1 and NSFD2), explicit exponential finite difference method (EEFDM) and fully implicit exponential finite difference method (FIEFDM). These two classes of numerical methods are popular in the mathematical biology community and it is the first time that such a comparison is made between nonstandard and exponential finite difference schemes. Moreover, the use of both nonstandard and exponential finite difference schemes are very new for the Burgers–Huxley equations. We considered eleven different combination for the parameters controlling diffusion, advection and reaction, which give rise to four different regimes. We obtained stability region or condition for positivity. The performances of the four methods are analysed by computing absolute errors, relative errors, L_1 and L_{∞} errors and CPU time.

Keywords: Burgers–Huxley equation; nonstandard finite difference method; explicit exponential finite difference method; fully implicit exponential finite difference method; absolute error; relative error.

1. Introduction

Numerical and mathematical analysis are of significant importance for the solution and understanding of problems in science and engineering. Such problems are usually expressed using differential equations. Many numerical and mathematical methods use geometrical and analytical properties of mathematical and/or numerical problems.

Non-linearities exist in almost every branch of science and engineering ranging from biological systems, organic and inorganic chemistry, population dynamics, astrophysics, robotics, biomolecular engineering and zoology [1]. Non-linear partial differential equations (NLPDE) are the resulting equations for many physical phenomena, which in turn has motivated many researchers to study these alluring non-linear problems. Since mathematicians regard existence as one of the prime attributes of studies [2], the existence, uniqueness, symmetry and integrability have been studied for many evolution parabolic equations (see [3–5]). Unfortunately, exact solution rarely exists for many of these non-linear problems. However, there are some non-linear partial differential equations that become integrable after some symbolic transformation. In this case, the analytical solution becomes obtainable. In this regard, many powerful techniques have been introduced, amongst them are Lie group method [6], Jacobi elliptic functions method [7], function expansion method [8,9], homogeneous balance method [10], solitary wave ansatz method [11], and Hirota bilinear method [12], to mention a few. The Burgers–Huxley (BH) equation, which can be seen as an archetypal equation for describing

the interaction among reaction mechanism, convection effects and diffusion transport, has been widely studied by researchers. Many techniques for obtaining solution to the Burgers-Huxley (BH) equation have been provided, one of them being from the work of Ismail et al. [13]. They provided a solution to the generalised Burgers–Huxley equation using the Adomian decomposition method (ADM). Batiha et al. [14], Biazar and Mohammadi [15], Yaghouti and Zabili [16], Molabahramia and Khani [17], Mittal and Jiwari [18], Javidi [19] and Tomasiello [20] obtained solutions to the Burgers–Huxley equation using variational iteration method (VIM), differential transform method (DTM), Laplace decomposition method, homotopy analysis method (HAM), differential quadrature method, spectral collocation and IDQ methods, respectively. Ray and Gupta [21,22] constructed a novel Haar wavelet collocation method and used it for the numerical solutions of the Burgers, Boussinesq-Burgers, Huxley and Burgers-Huxley equations. Discontinuity is the major drawback of the Haar wavelet method. The approximate analytical methods are plagued with many downsides, which include slow convergence at large *t*, high computer memory usage and difficulty in finding a closed form formula for the obtained series expression. It has been duly noted that the use of standard time integration techniques such as forward or backward Euler and Runge-Kutta methods to solve such differential models often lead to numerical instabilities and chaotic solution due to selection of discretisation parameters [23]. Kyrychko et al. [24] presented a traveling wave analysis for the extended-Burgers-Huxley equation. The existence of traveling wave solution was also validated for singularly perturbed Burgers–Huxley equation.

Among various techniques for solving partial differential equations especially in mathematical biology, the NSFD methods have been proved to be one of the most efficient approaches in recent years [25,26] due to positive definiteness under some conditions, boundedness of solution, monotonicity of the solutions and properties such as special solutions with predetermined stability. Nonstandard (NSFD) methods have been used since 1994 and, in the early stages, the linear advection and advection-diffusion equations were discretised using this type of method. Mickens and Gumel [27] presented a detailed explanation on the nonstandard technique for the Burgers-Fisher equation and the paper was published in 2002. Zhang et al. [28] constructed a scheme based on exact solution and the nonstandard finite difference schemes for the Burgers and Burgers-Fisher equation; their paper was published in 2014. Recently, Agbavon and Appadu [29] analysed four nonstandard schemes for the FitzHugh-Nagumo equation. Interested readers can check the following references for works where nonstandard finite difference scheme are employed (Appadu et al. [30], Appadu [31], Agbavon et al. [32] Chapwanya et al. [33], Mickens [34], Jordan [35], and Aderogba and Chapwanya [36]. The construction of NSFD methods for the Burgers–Huxley equation is very recent. Zibaei et al. [37] presented the exact and nonstandard schemes for the Burgers-Huxley equation and their paper was published in 2016. It is noteworthy to mention that the application of NSFD schemes are not limited to areas of Mathematical Biology; see the works of Oluwaseye and Talitha [38], Dai [39] and Diaz et al. [40].

Another class of schemes known as exponential finite difference methods have been used to solve the Burgers type equations. Some of the good points of these methods to mathematical biologists are the distinctive features of computational efficiency, lesser computational time, ability to preserve physical properties of the differential equation [41,42]. The exponential scheme was originally developed by Bhattacharry [43] to solve the heat equation and the paper was published in 1985. İnan and Bahadir [44] employed implicit and fully implicit exponential finite difference method to solve Burgers equation and their paper was published in 2013. Bahadir [45] obtained a numerical solution for the small time Korteweg–de Vries (KdV) equation using the exponential scheme. Macías-Díaz constructed a modified exponential method that preserves structural properties of the solutions of the Burgers–Huxley equation [42]. More generally, recently in 2017, Burgers–Huxley equations were solved using an explicit exponential finite difference method constructed by İnan [46]. In addition, Burgers equation was solved with exponential method modified with Padé approximation by İnan and Macías-Díaz [47] and by İnan [48]. The quite good accuracy of the exponential finite difference schemes and the nature of some of these alluring non-linear problems has made these methods quite popular for the Burgers-type equations.

The paper is organised as follows. In Section 2, we have a short overview of the Burgers–Huxley equation. Section 3 describes the numerical experiment. In Sections 4 and 5, we construct two versions of non-standard finite difference schemes and two versions of exponential finite difference schemes and study some of their properties. The results are presented in Section 6. Section 7, which is the concluding part, highlights the salient features of this paper and possible future extension of the present study. MATLAB R2015a and Fortran computing platforms were used for simulations. A very short version of this paper has been accepted for publication as [49].

2. The Burgers-Huxley Equation

In recent time, partial differential equations containing nonlinear diffusion such as Equation (1) played an important role in non-linear physics, physiology and nerve propagation. The generalised Burgers–Huxley equation describes a wide class of physical non-linear phenomena in biology. It is well-known that the generalised Burgers–Huxley equation has a traveling wave solution with properties like boundedness, monotonicity and positivity (see [24,50,51]).

The generalised Burgers–Huxley equation is given by

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \alpha u^{\delta} \frac{\partial u}{\partial x} + \beta u (1 - u^{\delta}) (u^{\delta} - \gamma).$$
(1)

In population dynamics, u(x, t) represent the population density, γ is the species carrying capacity, α stands for the speed of advection and β is a parameter which describe nonlinear source.

When certain condition is imposed on the parameter, the generalised Burgers–Huxley equation is reduced to many parabolic evolution equations of physical insight. When $\delta = 1$ and $\beta = 0$, Equation (1) is reduced to the Burgers equation, which can be used to study sound waves in viscous medium [52]. The FitzHugh–Nagumo equation is obtained when $\delta = 1$ and $\alpha = 0$; this equation has enormous applications in neurophysiology, logistic population growth and auto catalytic reaction [29]. When $\delta = 1$, $\alpha = 0$ and $\gamma = -1$, we have the Newell–Whitehead–Segel equation [53]. For $\alpha = 0$ and $\beta = 0$, Equation (1) is reduced to the well-known heat conduction equation. When $\alpha = 0$, the Huxley equation, which describes nerve pulse propagation, liquid crystal wall motion and nerve fiber, is obtained. We note that, for $\delta = 1$, Equation (1) gives the Burgers–Huxley equation.

3. Numerical Experiment

We solve the Burgers–Huxley equation

$$\frac{\partial u}{\partial t} + \alpha u \frac{\partial u}{\partial x} - \frac{\partial^2 u}{\partial x^2} = \beta u (1 - u) (u - \gamma),$$

= $\beta (1 + \gamma) u^2 - \beta \gamma u - \beta u^3,$ (2)

subject to the following initial and boundary conditions [54]:

$$u(x,0) = \left[\frac{\gamma}{2} + \frac{\gamma}{2}\tanh(A_1x)\right], \quad u(0,t) = \left[\frac{\gamma}{2} + \frac{\gamma}{2}\tanh(-A_1A_2)t\right], \quad u(1,t) = \left[\frac{\gamma}{2} + \frac{\gamma}{2}\tanh(A_1(1-A_2t))\right], \quad (3)$$

where $\alpha > 0$, $\beta > 0$, $0 < \gamma < 1$, $x \in [0, 1]$ and $t \in [0, 10]$. The exact solution is given by [54]

$$u(x,t) = \left[\frac{\gamma}{2} + \frac{\gamma}{2} \tanh(A_1(x - A_2 t))\right],\tag{4}$$

where

$$A_1 = \frac{-\alpha + \sqrt{\alpha^2 + 8\beta}}{8}\gamma \text{ and } A_2 = \frac{\alpha\gamma}{2} - \frac{(2-\gamma)(-\alpha + \sqrt{\alpha^2 + 8\beta})}{4}.$$
(5)

We note that the initial condition u(x, 0) is non-negative i.e $u(x, 0) \ge 0$. In this work, we consider 11 different cases:

(1) $\alpha = 0.5, \ \beta = 0.5, \ \gamma = 0.001.$ (2) $\alpha = 0.5, \ (\beta > \alpha) \ \beta = 2.0, \ \gamma = 0.001.$ (3) $\alpha = 0.5, \ (\beta >> \alpha) \ \beta = 10.0, \ \gamma = 0.001.$ (singularly perturbed case) (4) $\alpha > \beta \ (\alpha = 2.0), \ \beta = 0.5, \ \gamma = 0.001.$ (5) $\alpha = 0.5, \ \beta = 0.5, \ \gamma = 0.5.$ (6) $\alpha = 0.5, \ \beta > \alpha \ (\beta = 2.0), \ \gamma = 0.5.$ (7) $\alpha = 0.5, \ (\beta >> \alpha) \ \beta = 10.0, \ \gamma = 0.5.$ (singularly perturbed case) (8) $\alpha > \beta \ (\alpha = 2.0), \ \beta = 0.5, \ \gamma = 0.5.$ (9) $\alpha = \beta = 1.0, \ \gamma = 0.001 \ ([13,14]).$ (10) $\alpha = 0.5, \ \beta = 0.5, \ \gamma = 0.001 \ and \ k = 0.1 \ (FIEFDM)$ (11) $\alpha = 0.5, \ \beta = 10.0, \ \gamma = 0.5 \ and \ k = 0.1 \ (FIEFDM)$

We chose the first eight cases to consider four different regimes, i.e when $\alpha = \beta$, $\beta > \alpha$, $\beta >> \alpha$ (singularly perturbed) and $\alpha > \beta$ and with two different values of γ , namely $\gamma = 0.001$ and $\gamma = 0.5$. We also considered Case 9 so that we can compare our results with other methods in [13,14]. The case $\beta >> \alpha$ is a very challenging one. In [32], the partial differential equation

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = \beta u \left(1 - u \right)$$

was solved using $\beta = 10^4$ and the initial condition consisted of exponential function. This is quite a challenging numerical experiment. Cases 10 and 11 were chosen to check the effectiveness of the fully implicit exponential finite difference method at other values of *k*.

We obtained numerical solutions for the numerical experiment using non-standard finite difference, and explicit and fully implicit exponential finite difference methods. The solution domains are discretised into cells as (x_j, t_n) where $x_j = jh$, (j = 1, 2, ..., N) and $t_n = nk$, (n = 1, 2, ...), $h = \Delta x = \frac{1-0}{N-1}$ is the spatial mesh size and we choose h = 0.1 for all computations in this paper. The temporal step size is $k = \Delta t$ and obtained by applying positivity condition or from stability analysis. U_j^n represents numerical solution while u(x, t) denotes the exact solution at point (x_j, t_n) .

4. Nonstandard Finite Difference Scheme

The pioneering work on non-standard finite difference scheme can be traced back to the works of Ronald Mickens [26,55–57]. The NSFD scheme is designed to resolve the issue of numerical instabilities and/or chaotic behaviour problems, which mostly plague many numerical methods. The concepts generally work on the principle of dynamical consistency which vary from one system to another. There are some major rules to be followed in the construction of such methods . They are listed below.

- 1. Non-local representation of linear and non-linear terms on the computational grid; E.g. $u_n \approx 2U_n U_{n+1}, u_n^2 \approx \left(\frac{U_{n+1} + 2U_n + U_{n-1}}{4}\right)U_n, u_n^3 \approx 2U_n^3 U_n^2U_{n+1}$ etc.
- 2. Use of numerator and denominator functions $\psi(h)$ and $\phi(k)$, respectively with the property

$$\lim_{h \to 0} \psi(h) = h, \text{ and } \lim_{k \to 0} \phi(k) = k, \tag{6}$$

where $\psi(h) = h + O(h^2)$ and $\phi(k) = k + O(k)^2$.

3. The difference equation should have the same order as the original differential equation. In general, when the order of the difference equation is larger than the order of the differential equation, spurious solutions will appear [58]. 4. The discrete approximation should preserve some important properties of the corresponding differential equation. Properties such as boundedness and positivity should be preserved.

The scheme constructed by Zibaei et al. [37] for Equation (2) is given by

$$\frac{U_{j}^{n+1} - U_{j}^{n}}{\Phi} = \left[\frac{U_{j+1}^{n} - 2U_{j}^{n} + U_{j-1}^{n}}{\Psi}\right] - \alpha U_{j}^{n+1} \frac{U_{j}^{n} - U_{j-1}^{n}}{\Gamma} + \beta (1+\gamma) (U_{j-1}^{n})^{2} - \beta \gamma U_{j}^{n+1} + \beta \left(\frac{1}{2} (U_{j-1}^{n})^{3} - \frac{3}{2} (U_{j-1}^{n})^{2} U_{j}^{n+1}\right),$$
(7)

where

$$\Phi = \frac{1 - e^{-2A_1A_2k}}{2A_1A_2}, \ \Gamma = \frac{e^{2A_1h} - 1}{2A_1}, \ \Psi = \Gamma^2.$$

 A_1 is described in Equation (5) and $A_2 = \alpha + \frac{4 - 2\gamma}{\gamma}A_1$. We propose two versions of NSFD scheme as NSFD1 and NSFD2.

4.1. NSFD1 Scheme

Following the rules above, we construct NSFD1 scheme for Equation (2) as

$$\frac{U_{j}^{n+1} - U_{j}^{n}}{\phi(k)} = \left[\frac{U_{j+1}^{n} - 2U_{j}^{n} + U_{j-1}^{n}}{[\psi(h)]^{2}}\right] - \alpha U_{j}^{n+1} \frac{U_{j}^{n} - U_{j-1}^{n}}{\psi(h)} + \beta(1+\gamma) \left[2(U_{j}^{n})^{2} - U_{j}^{n}U_{j}^{n+1}\right] - \beta\gamma U_{j}^{n+1} - \beta U_{j}^{n+1}(U_{j}^{n})^{2}.$$
(8)

The denominator functions are defined as

$$\phi(k) = \frac{e^{\beta k} - 1}{\beta}, \ \psi(h) = \frac{e^{\beta h} - 1}{\beta}.$$
 (9)

We have approximated the linear and non-linear terms as follows:

$$u^{3}(x_{j},t_{n}) \approx U_{j}^{n+1}(U_{j}^{n})^{2}, \ u^{2}(x_{j},t_{n}) \approx 2(U_{j}^{n})^{2} - U_{j}^{n}U_{j}^{n+1}, \ u(x_{j},t_{n}) \approx U_{j}^{n+1}$$

Equation (8) above is an explicit scheme. By making U_j^{n+1} the subject and noting that $R = \frac{\phi(k)}{[\psi(h)]^2}$ and $r = \frac{\phi(k)}{\psi(h)}$, we have

$$U_j^{n+1} = \frac{(1-2R)U_j^n + R(U_{j+1}^n + U_{j-1}^n) + 2\phi(k)\beta(1+\gamma)(U_j^n)^2}{1 + \alpha r(U_j^n - U_{j-1}^n) + \phi(k)\beta\gamma + \Phi(k)\beta(1+\gamma)U_j^n + \phi(k)\beta(U_j^n)^2}.$$
(10)

We then proceed to check positivity and boundedness of the scheme given by Equation (10).

Theorem 1 (Dynamical Consistency). If $1 - 2R \ge 0$, the numerical solution from NSFD1 satisfies

 $0 \leq U_j^n \leq \gamma, \implies 0 \leq U_j^{n+1} \leq \gamma,$

for all considered values of n and j.

Proof. For positivity, we require $1 - 2R \ge 0$. Substituting the appropriate form for *R*, we obtain

$$\left(\frac{e^{\beta k}-1}{\beta}\right)\left(\frac{\beta}{e^{\beta h}-1}\right)^2 \le \frac{1}{2},\tag{11}$$

which gives

$$k \le \frac{1}{\beta} \ln \left(1 + \frac{(e^{\beta h} - 1)^2}{2\beta} \right).$$
⁽¹²⁾

On substituting h = 0.1 and evaluating for some different values of β , we obtain

- (a) $k \le 5.251 \times 10^{-3}$ for $\beta = 0.5$.
- (b) $k \le 5.515 \times 10^{-3}$ for $\beta = 1.0$.
- (c) $k \le 6.090 \times 10^{-3}$ for $\beta = 2.0$.
- (d) $k \le 1.377 \times 10^{-2}$ for $\beta = 10.0$.

For boundedness of NSFD1, we assume $0 \le U_j^n \le \gamma$ for all considered values of *n* and *j*. Therefore,

$$(U_{j}^{n+1} - \gamma)\left(1 + \alpha r(U_{j}^{n} - U_{j-1}^{n}) + \phi(k)\beta\gamma + \phi(k)\beta(1+\gamma)U_{j}^{n} + \phi(k)\beta(U_{j}^{n})^{2}\right) = (1 - 2R)U_{j}^{n} + R(U_{j+1}^{n} + U_{j-1}^{n}) + 2\phi(k)\beta(1+\gamma)(U_{j}^{n})^{2} - \gamma - \alpha r\gamma(U_{j}^{n} - U_{j-1}^{n}) - \phi(k)\beta\gamma^{2} - \phi(k)\beta\gamma(1+\gamma)U_{j}^{n} - \phi(k)\beta\gamma(U_{j}^{n})^{2} \leq 2\beta\phi(k)\beta(U_{j}^{n})^{2} + 2\phi(k)\beta\gamma(U_{j}^{n})^{2} - \alpha r(U_{j}^{n} - U_{j-1}^{n}) - \phi(k)\beta\gamma^{2} - \phi(k)\beta\gamma(U_{j}^{n})^{2} - \phi(k)\beta\gamma(U_{j}^{n}) - \phi(k)\beta\gamma^{2}U_{j}^{n} - \phi(k)\beta\gamma(U_{j}^{n})^{2} + \phi(k)\beta\left(2(U_{j}^{n})^{2} - \gamma^{2} - \gamma U_{j}^{n}\right) - \alpha r\gamma(U_{j}^{n} - U_{j-1}^{n}) - \phi(k)\beta\gamma^{2}U_{j}^{n} \\ \leq \beta\phi(k)\gamma U_{j}^{n}(U_{j}^{n} - \gamma) - \alpha r\gamma(U_{j}^{n} - U_{j-1}^{n}) \leq 0.$$

$$(13)$$

Using Equation (13), we have $U_j^{n+1} \leq \gamma$. Thus, the NSFD1 scheme is bounded, provided the values from the initial conditions are non-negative and bounded. \Box

4.2. NSFD2 Scheme

Using other non-local representations for the linear and non-linear terms as

$$u^{3}(x_{j},t_{n}) \approx 2U_{j}^{n+1}(U_{j}^{n})^{2} - (U_{j}^{n})^{3}, \ u(x_{j},t_{n}) \approx U_{j}^{n+1},$$

we propose the following scheme to discretise Equation (2):

$$\frac{U_j^{n+1} - U_j^n}{\phi(k)} = \left[\frac{U_{j+1}^n - 2U_j^n + U_{j-1}^n}{[\psi(h)]^2}\right] - \alpha U_j^{n+1} \frac{U_j^n - U_{j-1}^n}{\psi(h)} + \beta (1+\gamma) (U_j^n)^2 - \beta \gamma U_j^{n+1} - 2\beta U_j^{n+1} (U_j^n)^2 + \beta (U_j^n)^3.$$
(14)

By making U_i^{n+1} the subject of the equation, we obtain

$$U_{j}^{n+1} = \frac{(1-2R)U_{j}^{n} + R(U_{j+1}^{n} + U_{j-1}^{n}) + \beta\phi(k)[(1+\gamma)(U_{j}^{n})^{2} + (U_{j}^{n})^{3}]}{1 + \alpha r(U_{i}^{n} - U_{i-1}^{n}) + \phi(k)\beta\gamma + 2\phi(k)\beta(U_{j}^{n})^{2}},$$
(15)

We then proceed to check positivity and boundedness of NSFD2 scheme.

Theorem 2 (Dynamical Consistency). If $1 - 2R \ge 0$, the numerical solution from NSFD2 satisfies

$$0 \leq U_j^n \leq \gamma$$
, $\implies 0 \leq U_j^{n+1} \leq \gamma$,

for all relevant values of n and j.

Proof. For positivity, we require $1 - 2R \ge 0$. We have the same condition as for NSFD1 scheme. For boundedness, we note that $0 \le U_j^n \le \gamma$, for all values of *n* and *j*. We have

$$\begin{aligned} (U_{j}^{n+1} - \gamma) \left(1 + \alpha r (U_{j}^{n} - U_{j-1}^{n}) + \phi(k)\beta\gamma + 2\phi(k)\beta(U_{j}^{n})^{2} \right) &= (1 - 2R)U_{j}^{n} + R(U_{j+1}^{n} + U_{j-1}^{n}) \\ + \beta\phi(k) \left((1 + \gamma)(U_{j}^{n})^{2} + (U_{j}^{n})^{3} \right) - \gamma - \gamma r\alpha(U_{j}^{n} - U_{j-1}^{n}) - \gamma^{2}\phi(k)\beta - 2\phi(k)\beta\gamma(U_{j}^{n})^{2} \\ &= \beta\phi(k)(U_{j}^{n})^{2} + \beta\phi(k)\gamma(U_{j}^{n})^{2} + \beta\phi(k)(U_{j}^{n})^{3} - \alpha r\gamma(U_{j}^{n} - U_{j-1}^{n}) - \beta\gamma^{2}\phi(k) - 2\phi(k)\beta\gamma(U_{j}^{n})^{2} \\ &= \beta\phi(k)(U_{j}^{n})^{2} + \beta\phi(k)(U_{j}^{n})^{3} - \alpha r\gamma(U_{j}^{n} - U_{j-1}^{n}) - \beta\gamma^{2}\phi(k) - \phi(k)\beta\gamma(U_{j}^{n})^{2} \\ &= \beta\phi(k)(U_{j}^{n})^{2} \left(U_{j}^{n} - \gamma \right) - \alpha r\gamma(U_{j}^{n} - U_{j-1}^{n}) + \beta\phi(k) \left((U_{j}^{n})^{2} - \gamma^{2} \right) \\ &= \left(\beta\phi(k)(U_{j}^{n})^{2} + \beta\phi(k)(U_{j}^{n} + \gamma) \right) (U_{j}^{n} - \gamma) - \alpha r\gamma(U_{j}^{n} - U_{j-1}^{n}) \le 0. \end{aligned}$$
(16)

Hence, $U_j^{n+1} \leq \gamma$. Hence, we conclude that NSFD2 scheme is bounded. The positivity conditions guarantee non-negativity of the solution. \Box

5. Exponential Finite Difference Methods

In the construction of exponential finite difference schemes, we use the following difference operators:

$$\delta_t U_j^n = \frac{U_j^{n+1} - U_j^n}{k}, \tag{17}$$

$$\delta_x^{(1)} U_j^n = \frac{U_{j+1}^n - U_{j-1}^n}{2h}, \tag{18}$$

$$\delta_x^{(2)} U_j^n = \frac{U_{j+1}^n - 2U_j^n + U_{j-1}^n}{h^2}, \tag{19}$$

$$\delta_x^{(1)} U_j^{n+1} = \frac{U_{j+1}^{n+1} - U_{j-1}^{n+1}}{2h},$$
(20)

$$\delta_x^{(2)} U_j^{n+1} = \frac{U_{j+1}^{n+1} - 2U_j^{n+1} + U_{j-1}^{n+1}}{h^2}, \qquad (21)$$

for each $j \in \{1, 2, ..., N\}$ and $n \in \{1, 2, ...\}$. In addition, we introduce the new discrete operator

$$\Lambda U_j^n = \frac{\ln\left(U_j^{n+1}\right) - \ln\left(U_j^n\right)}{k} = \frac{1}{k}\ln\left(\frac{U_j^{n+1}}{U_j^n}\right).$$
(22)

5.1. Explicit Exponential Finite Difference Method (EEFDM)

An explicit exponential finite difference method was proposed for the generalised Burgers–Huxley equation and numerical solutions for $\delta = 1$ were presented by İnan in [46]. When Equation (2) is rearranged, the following equation is obtained

$$\frac{\partial u}{\partial t} = \beta u \left(1 - u \right) \left(u - \gamma \right) - \alpha u \frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial x^2} \,. \tag{23}$$

Dividing by *u*, we obtain

$$\frac{\partial \ln u}{\partial t} = \frac{1}{u} \left(\beta u \left(1 - u \right) \left(u - \gamma \right) - \alpha u \frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial x^2} \right), \tag{24}$$

and using finite difference approximations for derivatives, we obtain

$$\Lambda U_j^n = \frac{1}{U_j^n} \left[\beta U_j^n \left(1 - U_j^n \right) \left(U_j^n - \gamma \right) - \alpha U_j^n \delta_x^{(1)} U_j^n + \delta_x^{(2)} U_j^n \right].$$
⁽²⁵⁾

Finally, using Equations (18), (19) and (22), a single expression for EEFDM scheme is

$$U_{j}^{n+1} = U_{j}^{n} \exp\left\{\frac{k}{U_{j}^{n}} \left[\beta U_{j}^{n} \left(1 - U_{j}^{n}\right) \left(U_{j}^{n} - \gamma\right) - \alpha U_{j}^{n} \left(\frac{U_{j+1}^{n} - U_{j-1}^{n}}{2h}\right) + \left(\frac{U_{j+1}^{n} - 2U_{j}^{n} + U_{j-1}^{n}}{h^{2}}\right)\right]\right\}.$$
(26)

To obtain the stability of EEFDM, we consider the corresponding standard finite difference scheme given by

$$\frac{U_j^{n+1} - U_j^n}{k} = \left(\frac{U_{j+1}^n - 2U_j^n + U_{j-1}^n}{h^2}\right) - \alpha U_j^n \frac{U_{j+1}^n - U_{j-1}^n}{2h} + \beta (1+\gamma) (U_j^n)^2 - \beta \gamma U_j^n - \beta (U_j^n)^3.$$
(27)

which can be rewritten in the form

$$U_{j}^{n+1} = U_{j}^{n} + k \left(\frac{U_{j+1}^{n} - 2U_{j}^{n} + U_{j-1}^{n}}{h^{2}}\right) - k\alpha U_{j}^{n} \frac{U_{j+1}^{n} - U_{j-1}^{n}}{2h} + k\beta(1+\gamma)(U_{j}^{n})^{2} - k\beta\gamma U_{j}^{n} - k\beta(U_{j}^{n})^{3}.$$
 (28)

We follow the idea of Taha and Ablowitz [59] by using the freezing coefficients method and Von Neumann stability analysis. We obtain the amplification factor as:

$$\xi = 1 - I \frac{k\alpha}{h} U_{max} \sin w + \frac{k}{h^2} (2\cos w - 2) + k\beta U_{max} (1+\gamma) - k\beta\gamma - k\beta U_{max}^2.$$
(29)

Since $0 \le U \le \gamma$, it follows that $U_{max} = \gamma$. On simplification, we obtain

$$|\xi| = \sqrt{\left(1 - \frac{4k}{h^2}\sin^2\frac{w}{2}\right)^2 + \left(\frac{k\alpha\gamma}{h}\sin w\right)^2}.$$
(30)

Stability is guaranteed when $0 < |\xi| \le 1$ for $w = [-\pi, \pi]$. Table 1 shows as follow:

Table 1. Range of values of *k* for stability of EEFDM with h = 0.1.

Cases	Parameter Values	Condition for Stability
1	$\alpha = 0.5, \ \beta = 0.5, \ \gamma = 0.001$	$k \le 0.005$
2	$\alpha = 0.5, \ \beta = 2.0, \ \gamma = 0.001$	$k \le 0.005$
3	$\alpha = 0.5, \ \beta = 10.0, \ \gamma = 0.001$	$k \le 0.005$
4	$\alpha = 2.0, \ \beta = 0.5, \ \gamma = 0.001$	$k \le 0.005$
5	$lpha = 0.5, \ eta = 0.5, \ \gamma = 0.5$	$k \le 0.005$
6	$lpha = 0.5, \ eta = 2.0, \ \gamma = 0.5$	$k \le 0.005$
7	$lpha = 0.5, \ eta = 10.0, \ \gamma = 0.5$	$k \le 0.005$
8	$lpha = 2.0, \ eta = 0.5, \ \gamma = 0.5$	$k \le 0.005$
9	$\alpha = 1.0, \ \beta = 1.0, \ \gamma = 0.001$	$k \le 0.005$

We fix h = 0.1 and we obtain the 3D plots of $|\xi|$ vs. k vs. $\omega \in [-\pi, \pi]$. As shown in Figures 1–9.

Figure 1. Plot of $|\xi|$ vs. *k* vs. ω for $\alpha = 0.5$, $\beta = 0.5$, $\gamma = 0.001$.

Figure 2. Plot of $|\xi|$ vs. *k* vs. ω for $\alpha = 0.5$, $\beta = 2.0$, $\gamma = 0.001$.

Figure 3. Plot of $|\xi|$ vs. *k* vs. ω for $\alpha = 0.5$, $\beta = 10.0$, $\gamma = 0.001$.

Figure 4. Plot of $|\xi|$ vs. *k* vs. ω for $\alpha = 2.0$, $\beta = 0.5$, $\gamma = 0.001$.

Figure 5. Plot of $|\xi|$ vs. *k* vs. ω for $\alpha = 0.5$, $\beta = 0.5$, $\gamma = 0.5$.

Figure 6. Plot of $|\xi|$ vs. *k* vs. ω for $\alpha = 0.5$, $\beta = 2.0$, $\gamma = 0.5$.

Figure 7. Plot of $|\xi|$ vs. *k* vs. ω for $\alpha = 0.5$, $\beta = 10.0$, $\gamma = 0.5$.

Figure 8. Plot of $|\xi|$ vs. *k* vs. ω for $\alpha = 2.0$, $\beta = 0.5$, $\gamma = 0.5$.

Figure 9. Plot of $|\xi|$ vs. *k* vs. ω for $\alpha = 1.0$, $\beta = 1.0$, $\gamma = 0.001$.

5.2. Fully Implicit Exponential Finite Difference Method (FIEFDM)

We rearrange Equation (2) to obtain

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \alpha u \frac{\partial u}{\partial x} + \beta u \left(1 - u \right) \left(u - \gamma \right).$$
(31)

Dividing by *u* gives

$$\frac{\partial \ln u}{\partial t} = \frac{1}{u} \left(\frac{\partial^2 u}{\partial x^2} - \alpha u \frac{\partial u}{\partial x} + \beta u \left(1 - u \right) \left(u - \gamma \right) \right), \tag{32}$$

and using finite difference approximations for derivatives, we obtain following equation.

$$\Lambda U_{j}^{n} = \frac{1}{U_{j}^{n}} \left[\beta U_{j}^{n+1} \left(1 - U_{j}^{n+1} \right) \left(U_{j}^{n+1} - \gamma \right) - \alpha U_{j}^{n+1} \delta_{x}^{(1)} U_{j}^{n+1} + \delta_{x}^{(2)} U_{j}^{n+1} \right] .$$
(33)

Finally, using Equations (20)–(33) gives

$$U_{j}^{n+1} = U_{j}^{n} \exp\left(\frac{k}{U_{j}^{n}} \left[\left(\frac{U_{j+1}^{n+1} - 2U_{j}^{n+1} + U_{j-1}^{n+1}}{h^{2}}\right) - \alpha U_{j}^{n+1} \left(\frac{U_{j+1}^{n+1} - U_{j-1}^{n+1}}{2h}\right) + \beta U_{j}^{n+1} (1 - U_{j}^{n+1}) (U_{j}^{n+1} - \gamma) \right] \right),$$
(34)

which is valid for values of *j* lying in the interval $1 \le j \le N - 1$. Equation (34) is a system of nonlinear difference equations. Let us consider these nonlinear systems of equations in the form

$$\mathbf{F}(\mathbf{V}) = \mathbf{0},\tag{35}$$

where $\mathbf{F} = [f_1, f_2, ..., f_{N-1}]^T$ and $\mathbf{V} = \begin{bmatrix} U_1^{n+1}, U_2^{n+1}, ..., U_{N-1}^{n+1} \end{bmatrix}^T$. Newton's method applied to Equation (35) results in the following iteration:

- 1. Set $\mathbf{V}^{(0)}$, an initial guess.
- 2. For m = 0, 1, 2, ... until convergence do:

Solve $J(\mathbf{V}^{(m)})\mathbf{\Omega}^{(m)} = -\mathbf{F}(\mathbf{V}^{(m)});$

Set $\mathbf{V}^{(m+1)} = \mathbf{V}^{(m)} + \mathbf{\Omega}^{(m)}$ where $J(\mathbf{V}^{(m)})$ is the Jacobian matrix which is evaluated analytically. The solution at the previous time-step is taken as the initial estimate. The Newton's iteration at each time-step is stopped when

$$\left\|\mathbf{F}(\mathbf{V}^{(m)})\right\|_{\infty} \le 10^{-5}.$$
(36)

We choose 10^{-5} as tolerance. It is not easy to choose a tolerance less than 10^{-5} due to excessive computational time.

6. Numerical Results

We performed the numerical experiment described in Section 3 to check the effectiveness of the two NSFD schemes and two exponential schemes. The accuracy of the proposed methods was measured using the absolute error, relative error, L_1 and L_{∞} errors.

Absolute Error =
$$|u(x_j, t_n) - U(x_j, t_n)|$$
, (37)

Relative Error =
$$\frac{|u(x_j, t_n) - U(x_j, t_n)|}{|u(x_j, t_n)|},$$
(38)

$$L_{1} = h \sum_{j=1}^{N} |u(x_{j}, t_{n}) - U(x_{j}, t_{n})|, \qquad (39)$$

and

$$L_{\infty} = \max \left| u\left(x_{j}, t_{n} \right) - U\left(x_{j}, t_{n} \right) \right|.$$

$$\tag{40}$$

All simulations were performed with h = 0.1; the value of k = 0.005 was carefully chosen to preserve the positivity and boundedness condition and/or the stability condition for the two NSFD schemes and two exponential finite difference methods. Comparison of the numerical solutions, exact solution, absolute error, relative error, L_1 and L_{∞} errors, CPU time for various values of α , β and γ are made in Tables 2–38 and in Figures 10–29. We also present results using implicit exponential finite difference scheme using $\alpha = 0.5$, $\beta = 0.5$, $\gamma = 0.001$ and $\alpha = 0.5$, $\beta = 10.0$, $\gamma = 0.5$ using temporal step size k = 0.1 and spatial step size h = 0.1.

In Case 1, parameters are chosen as $\alpha = \beta = 0.5$ and $\gamma = 0.001$. Tables 2–5 display the results for Case 1 at t = 1.0 and t = 10.0.

In Case 2, parameters are chosen as $\alpha = 0.5$, $\beta = 2.0$ ($\beta > \alpha$) and $\gamma = 0.001$. Tables 6–9 display the results for Case 2 at t = 1.0 and t = 10.0.

In Case 3, parameters are chosen as $\alpha = 0.5$ ($\beta >> \alpha$), $\beta = 10.0$ and $\gamma = 0.001$. Tables 10–13 display the results for Case 3 at t = 1.0 and t = 10.0.

In Case 4, parameters are chosen as $\alpha = 2.0$ ($\alpha > \beta$), $\beta = 0.5$ and $\gamma = 0.001$. Tables 14–17 display the results for Case 4 at t = 1.0 and t = 10.0.

In Case 5, parameters are chosen as $\alpha = \beta = 0.5$ and $\gamma = 0.5$. Tables 18–21 display the results for Case 5 at t = 1.0 and t = 10.0.

In Case 6, parameters are chosen as $\alpha = 0.5$, $\beta = 2.0$ ($\beta > \alpha$) and $\gamma = 0.5$. Tables 22–25 display the results for Case 6 at t = 1.0 and t = 10.0.

In Case 7, parameters are chosen as $\alpha = 0.5$ ($\beta >> \alpha$), $\beta = 10.0$ and $\gamma = 0.5$. Tables 26–29 display the results for Case 7 at t = 1.0 and t = 10.0.

In Case 8, parameters are chosen as $\alpha = 2.0$ ($\alpha > \beta$), $\beta = 0.5$ and $\gamma = 0.5$. Tables 30–33 display the results for Case 8 at t = 1.0 and t = 10.0.

In Case 9, we compare the absolute errors obtained by our four methods with other methods in [13,14]. Parameters are chosen as $\alpha = \beta = 1.0$ and $\gamma = 0.001$. Table 34 display the results for Case 9 at t = 0.05, t = 0.1 and t = 1.0.

In Cases 10 and 11, we compare the accuracy of the fully implicit exponential scheme by chosen parameters as $\alpha = 0.5$, $\beta = 0.5$ ($\beta = \alpha$), $\gamma = 0.001$ and k = 0.1 and $\alpha = 0.5$, $\beta = 10.0$ ($\beta >> \alpha$), $\gamma = 0.5$ and k = 0.1, respectively. Tables 35–38 display the results for Cases 10 and 11 at t = 1.0 and t = 10.0. We note that, for Cases 1–9, h = 0.1 and k = 0.005.

Case 1: $\alpha = \beta = 0.5$ and $\gamma = 0.001$.

Table 2. A comparison between the exact and the numerical solutions at some values of *x*.

t	x	Exact	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$5.000858 imes 10^{-4}$	$5.000764 imes 10^{-4}$	$5.000764 imes 10^{-4}$	$5.000768 imes 10^{-4}$	$5.000769 imes 10^{-4}$
	0.5	$5.001249 imes 10^{-4}$	$5.000985 imes 10^{-4}$	$5.000985 imes 10^{-4}$	$5.000998 imes 10^{-4}$	$5.000998 imes 10^{-4}$
	0.9	$5.001640 imes 10^{-4}$	$5.001545 imes 10^{-4}$	$5.001545 imes 10^{-4}$	$5.001549 imes 10^{-4}$	$5.001549 imes 10^{-4}$
10	0.1	$5.007711 imes 10^{-4}$	$5.007616 imes 10^{-4}$	$5.007616 imes 10^{-4}$	$5.007621 imes 10^{-4}$	$5.007621 imes 10^{-4}$
	0.5	$5.008102 imes 10^{-4}$	$5.007838 imes 10^{-4}$	$5.007838 imes 10^{-4}$	$5.007851 imes 10^{-4}$	$5.007851 imes 10^{-4}$
	0.9	$5.008492 imes 10^{-4}$	$5.008397 imes 10^{-4}$	$5.008397 imes 10^{-4}$	$5.008402 imes 10^{-4}$	$5.008402 imes 10^{-4}$

t	x	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$9.509935 imes 10^{-9}$	$9.509930 imes 10^{-9}$	$9.048885 imes 10^{-9}$	$9.048222 imes 10^{-9}$
	0.5	$2.641711 imes 10^{-8}$	$2.641710 imes 10^{-8}$	$2.513647 imes 10^{-8}$	$2.513446 imes 10^{-8}$
	0.9	$9.510585 imes 10^{-9}$	$9.510580 imes 10^{-9}$	$9.049488 imes 10^{-9}$	$9.048757 imes 10^{-9}$
10	0.1	$9.510514 imes 10^{-9}$	$9.510509 imes 10^{-9}$	$9.049214 imes 10^{-9}$	$9.048760 imes 10^{-9}$
	0.5	$2.641900 imes 10^{-8}$	$2.641898 imes 10^{-8}$	$2.513754 imes 10^{-8}$	$2.513624 imes 10^{-8}$
	0.9	$9.511164 imes 10^{-9}$	$9.511159 imes 10^{-9}$	$9.049817 imes 10^{-9}$	$9.049302 imes 10^{-9}$

Table 3. The absolute errors at some values of *x* for each of the numerical schemes.

Table 4. The relative errors at some values of *x* for each of the numerical schemes.

t	x	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$1.901660 imes 10^{-5}$	$1.901659 imes 10^{-5}$	$1.809466 imes 10^{-5}$	$1.809333 imes 10^{-5}$
	0.5	$5.282102 imes 10^{-5}$	$5.282100 imes 10^{-5}$	$5.026038 imes 10^{-5}$	$5.025637 imes 10^{-5}$
	0.9	$1.901493 imes 10^{-5}$	$1.901492 imes 10^{-5}$	$1.809304 imes 10^{-5}$	$1.809158 imes 10^{-5}$
10	0.1	$1.899174 imes 10^{-5}$	$1.899173 imes 10^{-5}$	$1.807056 imes 10^{-5}$	$1.806967 imes 10^{-5}$
	0.5	$5.275251 imes 10^{-5}$	$5.275249 imes 10^{-5}$	$5.019375 imes 10^{-5}$	$5.019115 imes 10^{-5}$
	0.9	$1.899007 imes 10^{-5}$	$1.899006 imes 10^{-5}$	$1.806894 imes 10^{-5}$	$1.806792 imes 10^{-5}$

Table 5. L_1 and L_{∞} error norms with CPU time taken for the four numerical methods.

t	Schemes	L ₁ Error	L_{∞} Error	CPU Time
1	NSFD1	$1.743535 imes 10^{-8}$	$2.641711 imes 10^{-8}$	0.0642
	NSFD2	$1.743534 imes 10^{-8}$	$2.641710 imes 10^{-8}$	0.0649
	EEFDM	$1.659010 imes 10^{-8}$	$2.513647 imes 10^{-8}$	0.0660
	FIEFDM	$1.658878 imes 10^{-8}$	$2.513446 imes 10^{-8}$	0.0683
10	NSFD1	$1.743654 imes 10^{-8}$	$2.641900 imes 10^{-8}$	0.2261
	NSFD2	$1.743653 imes 10^{-8}$	$2.641898 imes 10^{-8}$	0.2247
	EEFDM	$1.659078 imes 10^{-8}$	$2.513754 imes 10^{-8}$	0.2210
	FIEFDM	$1.658990 imes 10^{-8}$	$2.513624 imes 10^{-8}$	0.2341

Case 2: $\alpha = 0.5$, $\beta = 2.0$ ($\beta > \alpha$) and $\gamma = 0.001$

Table 6. A comparison between the exact and the numerical solutions at some values of *x*.

t	x	Exact	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$5.004115 imes 10^{-4}$	$5.003626 imes 10^{-4}$	$5.003626 imes 10^{-4}$	$5.003715 imes 10^{-4}$	$5.003715 imes 10^{-4}$
	0.5	$5.004997 imes 10^{-4}$	$5.003639 imes 10^{-4}$	$5.003639 imes 10^{-4}$	$5.003886 imes 10^{-4}$	$5.003886 imes 10^{-4}$
	0.9	$5.005880 imes 10^{-4}$	$5.005391 imes 10^{-4}$	$5.005391 imes 10^{-4}$	$5.005480 imes 10^{-4}$	$5.005480 imes 10^{-4}$
10	0.1	$5.039160 imes 10^{-4}$	$5.038671 imes 10^{-4}$	$5.038671 imes 10^{-4}$	$5.038760 imes 10^{-4}$	$5.038760 imes 10^{-4}$
	0.5	$5.040428 imes 10^{-4}$	$5.038684 imes 10^{-4}$	$5.038684 imes 10^{-4}$	$5.038931 imes 10^{-4}$	$5.038931 imes 10^{-4}$
	0.9	$5.040926 imes 10^{-4}$	$5.040436 imes 10^{-4}$	$5.040436 imes 10^{-4}$	$5.040525 imes 10^{-4}$	$5.040525 imes 10^{-4}$

Table 7. The absolute errors at some values of *x* for each of the numerical schemes.

t	x	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$4.891509 imes 10^{-8}$	$4.891498 imes 10^{-8}$	$4.001139 imes 10^{-8}$	$4.000776 imes 10^{-8}$
	0.5	$1.358748 imes 10^{-7}$	$1.358745 imes 10^{-7}$	$1.111457 imes 10^{-7}$	$1.111355 imes 10^{-7}$
	0.9	$4.891869 imes 10^{-8}$	$4.891858 imes 10^{-8}$	$4.001405 imes 10^{-8}$	$4.000958 imes 10^{-8}$
10	0.1	$4.892413 imes 10^{-8}$	$4.892402 imes 10^{-8}$	$4.001053 imes 10^{-8}$	$4.000788 imes 10^{-8}$
	0.5	$1.359053 imes 10^{-7}$	$1.359050 imes 10^{-7}$	$1.111440 imes 10^{-7}$	$1.111369 imes 10^{-7}$
	0.9	$4.892767 imes 10^{-8}$	$4.892756 imes 10^{-8}$	$4.001314 imes 10^{-8}$	$4.000966 imes 10^{-8}$

t	x	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$9.774973 imes 10^{-5}$	$9.774951 imes 10^{-5}$	$7.995698 imes 10^{-5}$	$7.994972 imes 10^{-5}$
	0.5	$2.714782 imes 10^{-4}$	$2.714776 imes 10^{-4}$	$2.220695 imes 10^{-4}$	$2.220490 imes 10^{-4}$
	0.9	$9.772245 imes 10^{-5}$	$9.772223 imes 10^{-5}$	$7.993409 imes 10^{-5}$	$7.992517 imes 10^{-5}$
10	0.1	$9.708786 imes 10^{-5}$	$9.708764 imes 10^{-5}$	$7.939920 imes 10^{-5}$	$7.939394 imes 10^{-5}$
	0.5	$2.696512 imes 10^{-4}$	$2.696506 imes 10^{-4}$	$2.205220 imes 10^{-4}$	$2.205079 imes 10^{-4}$
	0.9	$9.706089 imes 10^{-5}$	$9.706068 imes 10^{-5}$	$7.937658 imes 10^{-5}$	$7.936967 imes 10^{-5}$

Table 8. The relative errors at some values of *x* for each of the numerical schemes.

Table 9. L_1 and L_{∞} error norms with CPU time taken for the four numerical methods.

t	Schemes	L ₁ Error	L_{∞} Error	CPU Time (Sec)
1	NSFD1	$8.967845 imes 10^{-8}$	$1.358748 imes 10^{-7}$	0.0641
	NSFD2	$8.967825 imes 10^{-8}$	$1.358745 imes 10^{-7}$	0.0643
	EEFDM	$7.335633 imes 10^{-8}$	$1.111457 imes 10^{-7}$	0.0645
	FIEFDM	$7.334929 imes 10^{-8}$	$1.111355 imes 10^{-7}$	0.0654
10	NSFD1	$8.969751 imes 10^{-8}$	$1.359053 imes 10^{-7}$	0.2322
	NSFD2	$8.969731 imes 10^{-8}$	$1.359053 imes 10^{-7}$	0.2273
	EEFDM	$7.335505 imes 10^{-8}$	$1.111440 imes 10^{-7}$	0.2237
	FIEFDM	$7.335000 imes 10^{-8}$	$1.111369 imes 10^{-7}$	0.2321

Case 3: $\alpha = 0.5$, $\beta = 10.0$ ($\beta >> \alpha$), and $\gamma = 0.001$. (singularly perturbed)

Table 10. A comparison between the exact and the numerical solutions at some values of *x*.

t	x	Exact	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$5.022873 imes 10^{-4}$	$5.016837 imes 10^{-4}$	$5.016837 imes 10^{-4}$	$5.020743 imes 10^{-4}$	$5.020743 imes 10^{-4}$
	0.5	$5.024987 imes 10^{-4}$	$5.008301 imes 10^{-4}$	$5.008301 imes 10^{-4}$	$5.019071 imes 10^{-4}$	$5.019071 imes 10^{-4}$
	0.9	$5.027102 imes 10^{-4}$	$5.021065 imes 10^{-4}$	$5.021065 imes 10^{-4}$	$5.024972 imes 10^{-4}$	$5.024972 imes 10^{-4}$
10	0.1	$5.223822 imes 10^{-4}$	$5.217618 imes 10^{-4}$	$5.217619 imes 10^{-4}$	$5.221696 imes 10^{-4}$	$5.221696 imes 10^{-4}$
		$5.225932 imes 10^{-4}$	$5.208699 imes 10^{-4}$	$5.208699 imes 10^{-4}$	$5.220027 imes 10^{-4}$	$5.220026 imes 10^{-4}$
	0.9	$5.228042 imes 10^{-4}$	$5.221838 imes 10^{-4}$	$5.221838 imes 10^{-4}$	$5.225917 imes 10^{-4}$	$5.225916 imes 10^{-4}$

Table 11. The absolute errors at some values of *x* for each of the numerical schemes.

t	x	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$6.036257 imes 10^{-7}$	$6.036201 imes 10^{-7}$	$2.129791 imes 10^{-7}$	$2.129933 imes 10^{-7}$
	0.5	$1.668652 imes 10^{-6}$	$1.668637 imes 10^{-6}$	$5.916245 imes 10^{-7}$	$5.917030 imes 10^{-7}$
	0.9	$6.036927 imes 10^{-7}$	$6.036870 imes 10^{-7}$	$2.129928 imes 10^{-7}$	$2.129952 imes 10^{-7}$
10	0.1	$6.203521 imes 10^{-7}$	$6.203444 imes 10^{-7}$	$2.125747 imes 10^{-7}$	$2.125934 imes 10^{-7}$
	0.5	$1.723336 imes 10^{-6}$	$1.723315 imes 10^{-6}$	$5.905050 imes 10^{-7}$	$5.905967 imes 10^{-7}$
	0.9	$6.204109 imes 10^{-7}$	$6.204031 imes 10^{-7}$	$2.125841 imes 10^{-7}$	$2.125916 imes 10^{-7}$

Table 12. The relative errors at some values of *x* for each of the numerical schemes.

t	x	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$1.201754 imes 10^{-3}$	$1.201743 imes 10^{-3}$	$4.240185 imes 10^{-4}$	$4.240467 imes 10^{-4}$
	0.5	$3.320709 imes 10^{-3}$	$3.320679 imes 10^{-3}$	$1.177365 imes 10^{-3}$	$1.177521 imes 10^{-3}$
	0.9	$1.200876 imes 10^{-3}$	$1.200865 imes 10^{-3}$	$4.236891 imes 10^{-4}$	$4.236939 imes 10^{-4}$
10	0.1	$1.187545 imes 10^{-3}$	$1.187530 imes 10^{-3}$	$4.069333 imes 10^{-4}$	$4.069691 imes 10^{-4}$
	0.5	$3.297662 imes 10^{-3}$	$3.297621 imes 10^{-3}$	$1.129952 imes 10^{-3}$	$1.130127 imes 10^{-3}$
	0.9	$1.186698 imes 10^{-3}$	$1.186683 imes 10^{-3}$	$4.066228 imes 10^{-4}$	$4.066371 imes 10^{-4}$

t	Schemes	L ₁ Error	L_{∞} Error	CPU Time (Sec)
1	NSFD1	$1.102963 imes 10^{-6}$	$1.668652 imes 10^{-6}$	0.0475
	NSFD2	$1.102954 imes 10^{-6}$	$1.668637 imes 10^{-6}$	0.0748
	EEFDM	$3.904728 imes 10^{-7}$	$4.320404 imes 10^{-7}$	0.1122
	FIEFDM	$3.905126 imes 10^{-7}$	$4.320876 imes 10^{-7}$	0.1620
10	NSFD1	$1.137391 imes 10^{-6}$	$1.723336 imes 10^{-6}$	0.2023
	NSFD2	$1.137376 imes 10^{-6}$	$1.723315 imes 10^{-6}$	0.3251
	EEFDM	$3.897320 imes 10^{-7}$	$4.312213 imes 10^{-7}$	0.2729
	FIEFDM	$3.897805 imes 10^{-7}$	$5.905967 imes 10^{-7}$	0.3018

Table 13. L_1 and L_{∞} error norms with CPU time taken for the four numerical methods.

Case 4: $\alpha = 2.0 \ (\alpha > \beta), \beta = 0.5 \text{ and } \gamma = 0.001.$

Table 14. A comparison between the exact and the numerical solutions at some values of *x*.

t	x	Exact	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$5.000267 imes 10^{-4}$	$5.000196 imes 10^{-4}$	$5.000196 imes 10^{-4}$	$5.000200 imes 10^{-4}$	$5.000200 imes 10^{-4}$
	0.5	$5.000473 imes 10^{-4}$	$5.000280 imes 10^{-4}$	$5.000280 imes 10^{-4}$	$5.000290 imes 10^{-4}$	$5.000290 imes 10^{-4}$
	0.9	$5.000680 imes 10^{-4}$	$5.000611 imes 10^{-4}$	$5.000611 imes 10^{-4}$	$5.000614 imes 10^{-4}$	$5.000614 imes 10^{-4}$
10	0.1	$5.002138 imes 10^{-4}$	$5.002121 imes 10^{-4}$	$5.002121 imes 10^{-4}$	$5.002124 imes 10^{-4}$	$5.002124 imes 10^{-4}$
	0.5	$5.002397 imes 10^{-4}$	$5.002205 imes 10^{-4}$	$5.002205 imes 10^{-4}$	$5.002214 imes 10^{-4}$	$5.002214 imes 10^{-4}$
	0.9	$5.002604 imes 10^{-4}$	$5.002535 imes 10^{-4}$	$5.002535 imes 10^{-4}$	$5.002539 imes 10^{-4}$	$5.002538 imes 10^{-4}$

Table 15. The absolute errors at some values of *x* for each of the numerical schemes.

t	x	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$6.922896 imes 10^{-9}$	$6.922895 imes 10^{-9}$	$6.585668 imes 10^{-9}$	$6.585338 imes 10^{-9}$
	0.5	$1.923270 imes 10^{-8}$	$1.923269 imes 10^{-8}$	$1.829585 imes 10^{-8}$	$1.829491 imes 10^{-8}$
	0.9	$6.924789 imes 10^{-9}$	$6.924788 imes 10^{-9}$	$6.587425 imes 10^{-9}$	$6.587092 imes 10^{-9}$
10	0.1	$6.923333 imes 10^{-9}$	$6.923332 imes 10^{-9}$	$6.585922 imes 10^{-9}$	$6.585749 imes 10^{-9}$
	0.5	$1.923411 imes 10^{-8}$	$1.923411 imes 10^{-8}$	$1.829667 imes 10^{-8}$	$1.829624 imes 10^{-8}$
	0.9	$6.925227 imes 10^{-9}$	$6.925226 imes 10^{-9}$	$6.587680 imes 10^{-9}$	$6.587504 imes 10^{-9}$

Table 16. The relative errors at some values of *x* for each of the numerical schemes.

t	x	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$1.384506 imes 10^{-5}$	$1.384505 imes 10^{-5}$	$1.317064 imes 10^{-5}$	$1.316998 imes 10^{-5}$
	0.5	$3.846175 imes 10^{-5}$	$3.846175 imes 10^{-5}$	$3.658823 imes 10^{-5}$	$3.658636 imes 10^{-5}$
	0.9	$1.384770 imes 10^{-5}$	$1.384769 imes 10^{-5}$	$1.317306 imes 10^{-5}$	$1.317239 imes 10^{-5}$
10	0.1	$1.384060 imes 10^{-5}$	$1.384060 imes 10^{-5}$	$1.316608 imes 10^{-5}$	$1.316573 imes 10^{-5}$
	0.5	$3.844979 imes 10^{-5}$	$3.844978 imes 10^{-5}$	$3.657580 imes 10^{-5}$	$3.657494 imes 10^{-5}$
	0.9	$1.384324 imes 10^{-5}$	$1.384324 imes 10^{-5}$	$1.316850 imes 10^{-5}$	$1.316815 imes 10^{-5}$

Table 17. L_1 and L_{∞} error norms with CPU time taken for the four numerical methods.

t	Schemes	L ₁ Error	L_{∞} Error	CPU Time (Sec)
1	NSFD1	1.269362×10^{-8}	$1.923270 imes 10^{-8}$	0.0654
	NSFD2	$1.269362 imes 10^{-8}$	$1.923269 imes 10^{-8}$	0.0677
	EEFDM	$1.207528 imes 10^{-8}$	$1.829585 imes 10^{-8}$	0.0677
	FIEFDM	$1.207467 imes 10^{-8}$	$1.829491 imes 10^{-8}$	0.0688
10	NSFD1	$1.269451 imes 10^{-8}$	$1.923411 imes 10^{-8}$	0.2381
	NSFD2	$1.269451 imes 10^{-8}$	$1.923411 imes 10^{-8}$	0.2354
	EEFDM	$1.207580 imes 10^{-8}$	$1.829667 imes 10^{-8}$	0.2242
	FIEFDM	$1.207551 imes 10^{-8}$	$1.829624 imes 10^{-8}$	0.2372

_

Case 5: $\alpha = \beta = 0.5$ and $\gamma = 0.5$

t	x	Exact	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$2.636642 imes 10^{-1}$	$2.619319 imes 10^{-1}$	$2.619323 imes 10^{-1}$	$2.620016 imes 10^{-1}$	$2.620423 imes 10^{-1}$
	0.5	$2.733691 imes 10^{-1}$	$2.684776 imes 10^{-1}$	$2.684788 imes 10^{-1}$	$2.686755 imes 10^{-1}$	$2.688005 imes 10^{-1}$
	0.9	$2.830035 imes 10^{-1}$	$2.812149 imes 10^{-1}$	$2.812153 imes 10^{-1}$	$2.812875 imes 10^{-1}$	$2.813362 imes 10^{-1}$
10	0.1	$3.573732 imes 10^{-1}$	$3.559870 imes 10^{-1}$	$3.559874 imes 10^{-1}$	$3.560367 imes 10^{-1}$	$3.560550 imes 10^{-1}$
	0.5	$3.651974 imes 10^{-1}$	$3.612915 imes 10^{-1}$	$3.612927 imes 10^{-1}$	$3.614329 imes 10^{-1}$	$3.614903 imes 10^{-1}$
	0.9	$3.727452 imes 10^{-1}$	$3.713231 imes 10^{-1}$	$3.713236 imes 10^{-1}$	$3.713749 imes 10^{-1}$	$3.713974 imes 10^{-1}$

Table 19. The absolute errors at some values of *x* for each of the numerical schemes.

t	x	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$1.732294 imes 10^{-3}$	$1.731870 imes 10^{-3}$	$1.662559 imes 10^{-3}$	$1.621813 imes 10^{-3}$
	0.5		$4.890247 imes 10^{-3}$	$4.693599 imes 10^{-3}$	$4.568532 imes 10^{-3}$
	0.9	$1.788565 imes 10^{-3}$	$1.788119 imes 10^{-3}$	$1.715994 imes 10^{-3}$	$1.667276 imes 10^{-3}$
10	0.1	$1.386199 imes 10^{-3}$	$1.385769 imes 10^{-3}$	$1.336481 imes 10^{-3}$	$1.318209 imes 10^{-3}$
		$3.905879 imes 10^{-3}$	$3.904660 imes 10^{-3}$	$3.764468 imes 10^{-3}$	$3.707117 imes 10^{-3}$
	0.9	$1.422126 imes 10^{-3}$	$1.421680 imes 10^{-3}$	$1.370378 imes 10^{-3}$	$1.347886 imes 10^{-3}$

Table 20. The relative errors at some values of *x* for each of the numerical schemes.

t	x	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$6.570078 imes 10^{-3}$	$6.568471 imes 10^{-3}$	$6.305595 imes 10^{-3}$	$6.151057 imes 10^{-3}$
	0.5	$1.789322 imes 10^{-2}$	$1.788881 imes 10^{-2}$	$1.716946 imes 10^{-2}$	$1.671196 imes 10^{-2}$
	0.9	$6.319940 imes 10^{-3}$	$6.318365 imes 10^{-3}$	$6.063510 imes 10^{-3}$	$5.891364 imes 10^{-3}$
10	0.1	$3.878856 imes 10^{-3}$	$3.877653 imes 10^{-3}$	$3.739734 imes 10^{-3}$	$3.688607 imes 10^{-3}$
	0.5	$1.069525 imes 10^{-2}$	$1.069191 imes 10^{-2}$	$1.030804 imes 10^{-2}$	$1.015099 imes 10^{-2}$
	0.9	$3.815276 imes 10^{-3}$	$3.814081 imes 10^{-3}$	$3.676447 imes 10^{-3}$	$3.616104 imes 10^{-3}$

Table 21. L_1 and L_∞ error norms with CPU times for the four numerical methods.

t	Schemes	L ₁ Error	L_{∞} Error	CPU Time (Sec)
1	NSFD1	$3.228089 imes 10^{-3}$	$4.891452 imes 10^{-3}$	0.0621
	NSFD2	$3.227293 imes 10^{-3}$	$4.890247 imes 10^{-3}$	0.0637
	EEFDM	$3.097547 imes 10^{-3}$	$4.693599 imes 10^{-3}$	0.0659
	FIEFDM	$3.014506 imes 10^{-3}$	$4.568532 imes 10^{-3}$	0.0671
10	NSFD1	$2.576806 imes 10^{-3}$	$3.905879 imes 10^{-3}$	0.2335
	NSFD2	$2.576002 imes 10^{-3}$	$3.904660 imes 10^{-3}$	0.2281
	EEFDM	$2.483571 imes 10^{-3}$	$3.764468 imes 10^{-3}$	0.2328
	FIEFDM	$2.445540 imes 10^{-3}$	$3.707117 imes 10^{-3}$	0.2871

Case 6: $\alpha = 0.5$, $\beta = 2.0$ ($\beta > \alpha$) and $\gamma = 0.5$.

Table 22. A comparison between the exact and the numerical solutions at some values of *x*.

t	x	Exact	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$3.197787 imes 10^{-1}$	$3.115395 imes 10^{-1}$	$3.115521 imes 10^{-1}$	$3.129688 imes 10^{-1}$	$3.131647 imes 10^{-1}$
	0.5	$3.395893 imes 10^{-1}$	$3.164245 imes 10^{-1}$	$3.164602 imes 10^{-1}$	$3.204963 imes 10^{-1}$	$3.210964 imes 10^{-1}$
	0.9	01001001 / 10	$3.498705 imes 10^{-1}$	$3.498835 imes 10^{-1}$	$3.513357 imes 10^{-1}$	$3.515904 imes 10^{-1}$
10	0.1	$4.976668 imes 10^{-1}$	$4.974441 imes 10^{-1}$	$4.974445 imes 10^{-1}$	$4.974708 imes 10^{-1}$	$4.974707 imes 10^{-1}$
	0.5	$4.979926 imes 10^{-1}$	$4.975407 imes 10^{-1}$	$4.975418 imes 10^{-1}$	$4.976175 imes 10^{-1}$	$4.976172 imes 10^{-1}$
	0.9	$4.983164 imes 10^{-1}$	$4.981586 imes 10^{-1}$	$4.981589 imes 10^{-1}$	$4.981856 imes 10^{-1}$	$4.981855 imes 10^{-1}$

t	x	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$8.239162 imes 10^{-3}$	$8.226605 imes 10^{-3}$	$6.809932 imes 10^{-3}$	$6.613999 imes 10^{-3}$
	0.5	$2.316489 imes 10^{-2}$	$2.312918 imes 10^{-2}$	$1.909310 imes 10^{-2}$	$1.849292 imes 10^{-2}$
	0.9	$8.317574 imes 10^{-3}$	$8.304529 imes 10^{-3}$	$6.852408 imes 10^{-3}$	$6.597658 imes 10^{-3}$
10	0.1	$1.626796 imes 10^{-4}$	$1.622971 imes 10^{-4}$	$1.360407 imes 10^{-4}$	$1.361553 imes 10^{-4}$
	0.5	$4.518804 imes 10^{-4}$	$4.507901 imes 10^{-4}$	$3.751243 imes 10^{-4}$	$3.754311 imes 10^{-4}$
	0.9	$1.578207 imes 10^{-4}$	$1.574438 imes 10^{-4}$	$1.308204 imes 10^{-4}$	$1.309152 imes 10^{-4}$

Table 23. The absolute errors at some values of *x* for each of the numerical schemes.

Table 24. The relative errors at some values of *x* for each of the numerical schemes.

t	x	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$2.576520 imes 10^{-2}$	$2.572593 imes 10^{-2}$	$2.129576 imes 10^{-2}$	$2.068305 imes 10^{-2}$
	0.5	$6.821441 imes 10^{-2}$	$6.810926 imes 10^{-2}$	$5.622408 imes 10^{-2}$	$5.445674 imes 10^{-2}$
	0.9	$2.322125 imes 10^{-2}$	$2.318483 imes 10^{-2}$	$1.913075 imes 10^{-2}$	$1.841954 imes 10^{-2}$
10	0.1	$3.269239 imes 10^{-4}$	$3.261553 imes 10^{-4}$	$2.733899 imes 10^{-4}$	$2.736201 imes 10^{-4}$
		$9.074039 imes 10^{-4}$	$9.052145 imes 10^{-4}$	$7.532729 imes 10^{-4}$	$7.538889 imes 10^{-4}$
	0.9	$3.167078 imes 10^{-4}$	$3.159516 imes 10^{-4}$	$2.625249 imes 10^{-4}$	$2.627150 imes 10^{-4}$

Table 25. L_1 and L_{∞} error norms with CPU times for the four numerical methods.

t	Schemes	L ₁ Error	L_{∞} Error	CPU Time (Sec)
1	NSFD1	1.525544×10^{-2}	$2.316489 imes 10^{-2}$	0.0613
	NSFD2	$1.523190 imes 10^{-2}$	$2.312918 imes 10^{-2}$	0.0625
	EEFDM	$1.257824 imes 10^{-2}$	$1.909310 imes 10^{-2}$	0.0626
	FIEFDM	$1.217271 imes 10^{-2}$	$1.849292 imes 10^{-2}$	0.0628
10	NSFD1	$2.969031 imes 10^{-4}$	$4.518804 imes 10^{-4}$	0.2268
	NSFD2	$2.961906 imes 10^{-4}$	$4.507901 imes 10^{-4}$	0.2217
	EEFDM	$2.466924 imes 10^{-4}$	$3.751243 imes 10^{-4}$	0.2238
	FIEFDM	$2.468907 imes 10^{-4}$	$3.754311 imes 10^{-4}$	0.2401

Case 7: $\alpha = 0.5$, $\beta = 10.0$ ($\beta >> \alpha$), and $\gamma = 0.5$. (singularly perturbed)

Table 26. A comparison between the exact and the numerical solutions at some values of *x*.

t	x	Exact	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$4.826732 imes 10^{-1}$	$4.257945 imes 10^{-1}$	$4.261428 imes 10^{-1}$	$4.749299 imes 10^{-1}$	$4.745925 imes 10^{-1}$
	0.5	$4.885113 imes 10^{-1}$	$3.075586 imes 10^{-1}$	$3.084981 imes 10^{-1}$	$4.662423 imes 10^{-1}$	$4.650936 imes 10^{-1}$
	0.9	$4.924132 imes 10^{-1}$	$4.322566 imes 10^{-1}$	$4.325748 imes 10^{-1}$	$4.852025 imes 10^{-1}$	$4.848678 imes 10^{-1}$
10	0.1	$5.000000 imes 10^{-1}$	$4.999761 imes 10^{-1}$	$4.999801 imes 10^{-1}$	$5.000000 imes 10^{-1}$	$5.000000 imes 10^{-1}$
	0.5	$5.000000 imes 10^{-1}$	$4.999159 imes 10^{-1}$	$4.999301 imes 10^{-1}$	$5.000000 imes 10^{-1}$	$5.000000 imes 10^{-1}$
	0.9	$5.000000 imes 10^{-1}$	$4.999717 imes 10^{-1}$	$4.999765 imes 10^{-1}$	$5.000000 imes 10^{-1}$	$5.000000 imes 10^{-1}$

Table 27. The absolute errors at some values of *x* for each of the numerical schemes.

t	x	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$5.687871 imes 10^{-2}$	$5.653040 imes 10^{-2}$	$7.743372 imes 10^{-3}$	$8.080728 imes 10^{-3}$
	0.5	$1.809527 imes 10^{-1}$	$1.800132 imes 10^{-1}$	$2.226902 imes 10^{-2}$	$2.341770 imes 10^{-2}$
	0.9	$6.015664 imes 10^{-2}$	$5.983845 imes 10^{-2}$	$7.210756 imes 10^{-3}$	$7.545411 imes 10^{-3}$
10	0.1	$2.388699 imes 10^{-5}$	$1.985583 imes 10^{-5}$	$2.275957 imes 10^{-15}$	$2.331470 imes 10^{-15}$
		$8.408308 imes 10^{-5}$	$6.989335 imes 10^{-5}$	$6.716849 imes 10^{-15}$	$6.772361 imes 10^{-15}$
	0.9	$2.826313 imes 10^{-5}$	$2.349352 imes 10^{-5}$	$2.109424 imes 10^{-15}$	$2.164932 imes 10^{-15}$

t	x	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$1.178410 imes 10^{-1}$	$1.171194 imes 10^{-1}$	$1.604268 imes 10^{-2}$	$1.674161 imes 10^{-2}$
	0.5	$3.704166 imes 10^{-1}$	$3.684934 imes 10^{-1}$	$4.558548 imes 10^{-2}$	$4.793687 imes 10^{-2}$
	0.9	$1.221670 imes 10^{-1}$	$1.215208 imes 10^{-1}$	$1.464371 imes 10^{-2}$	$1.532333 imes 10^{-2}$
10	0.1	$4.777397 imes 10^{-5}$	$3.971166 imes 10^{-5}$	$4.551914 imes 10^{-15}$	$4.662940 imes 10^{-15}$
		$1.681662 imes 10^{-4}$	$1.397867 imes 10^{-4}$	$1.343370 imes 10^{-15}$	$1.354472 imes 10^{-14}$
	0.9	$5.652626 imes 10^{-5}$	$4.698704 imes 10^{-5}$	$4.218847 imes 10^{-15}$	$4.329871 imes 10^{-15}$

Table 28. The relative errors at some values of *x* for each of the numerical schemes.

Table 29. L_1 and L_∞ error norms with CPU time taken for the four numerical methods.

t	Schemes	L ₁ Error	L_{∞} Error	CPU Time (Sec)
1	NSFD1	$1.158609 imes 10^{-1}$	$1.809527 imes 10^{-1}$	0.0359
	NSFD2	$1.152403 imes 10^{-1}$	$1.800132 imes 10^{-1}$	0.0325
	EEFDM	$1.439775 imes 10^{-2}$	$2.226902 imes 10^{-2}$	0.0311
	FIEFDM	$1.511013 imes 10^{-2}$	$2.341770 imes 10^{-2}$	0.0527
10	NSFD1	$5.314160 imes 10^{-5}$	$8.408308 imes 10^{-5}$	0.2114
	NSFD2	$4.417351 imes 10^{-5}$	$6.989335 imes 10^{-5}$	0.1933
	EEFDM	$4.352074 imes 10^{-15}$	$6.716849 imes 10^{-15}$	0.2729
	FIEFDM	$4.379830 imes 10^{-15}$	$6.772360 imes 10^{-15}$	0.3112

Case 8: $\alpha = 2.0 \ (\alpha > \beta)$, $\beta = 0.5$ and $\gamma = 0.5$

Table 30. A comparison between the exact and the numerical solutions at some values of *x*.

t	x	Exact	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$2.488436 imes 10^{-1}$	$2.476684 imes 10^{-1}$	$2.476683 imes 10^{-1}$	$2.476904 imes 10^{-1}$	$2.477073 imes 10^{-1}$
	0.5	$2.540209 imes 10^{-1}$	$2.505365 imes 10^{-1}$	$2.505363 imes 10^{-1}$	$2.506012 imes 10^{-1}$	$2.506486 imes 10^{-1}$
	0.9	$2.591948 imes 10^{-1}$	$2.578516 imes 10^{-1}$	$2.578515 imes 10^{-1}$	$2.578762 imes 10^{-1}$	$2.578966 imes 10^{-1}$
10	0.1	$2.268524 imes 10^{-1}$	$2.256753 imes 10^{-1}$	$2.256753 imes 10^{-1}$	$2.257005 imes 10^{-1}$	$2.257192 imes 10^{-1}$
	0.5	$2.319948 imes 10^{-1}$	$2.285207 imes 10^{-1}$	$2.285204 imes 10^{-1}$	$2.285947 imes 10^{-1}$	$2.286462 imes 10^{-1}$
	0.9	$2.371526 imes 10^{-1}$	$2.358195 imes 10^{-1}$	$2.358194 imes 10^{-1}$	$2.358476 imes 10^{-1}$	$2.358697 imes 10^{-1}$

Table 31. The absolute errors at some values of *x* for each of the numerical schemes.

t	x	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$1.175228 imes 10^{-3}$	$1.175311 imes 10^{-3}$	$1.153181 imes 10^{-3}$	$1.136264 imes 10^{-3}$
	0.5	$3.484373 imes 10^{-3}$	$3.484620 imes 10^{-3}$	$3.419683 imes 10^{-3}$	$3.372316 imes 10^{-3}$
	0.9	$1.343119 imes 10^{-3}$	$1.343214 imes 10^{-3}$	$1.318592 imes 10^{-3}$	$1.298113 imes 10^{-3}$
10	0.1	$1.177087 imes 10^{-3}$	$1.177163 imes 10^{-3}$	$1.151921 imes 10^{-3}$	$1.133274 imes 10^{-3}$
	0.5	$3.474168 imes 10^{-3}$	$3.474395 imes 10^{-3}$	$3.400138 imes 10^{-3}$	$3.348644 imes 10^{-3}$
	0.9	$1.333150 imes 10^{-3}$	$1.333237 imes 10^{-3}$	$1.304959 imes 10^{-3}$	$1.282913 imes 10^{-3}$

Table 32. The relative errors at some values of *x* for each of the numerical schemes.

t	x	NSFD1	NSFD2	EEFDM	FIEFDM
1	0.1	$4.722757 imes 10^{-3}$	$4.723090 imes 10^{-3}$	$4.634160 imes 10^{-3}$	$4.566176 imes 10^{-3}$
	0.5	$1.371688 imes 10^{-2}$	$1.371785 imes 10^{-2}$	$1.346221 imes 10^{-2}$	$1.327574 imes 10^{-2}$
	0.9	$5.181890 imes 10^{-3}$	$5.182259 imes 10^{-3}$	$5.087262 imes 10^{-3}$	$5.008252 imes 10^{-3}$
10	0.1	$5.188777 imes 10^{-3}$	$5.189114 imes 10^{-3}$	$5.077841 imes 10^{-3}$	$4.995642 imes 10^{-3}$
	0.5	1.497520×10^{-2}	1.497617×10^{-2}	$1.465609 imes 10^{-2}$	1.443413×10^{-2}
	0.9	$5.621485 imes 10^{-3}$	$5.621854 imes 10^{-3}$	$5.502612 imes 10^{-3}$	$5.409653 imes 10^{-3}$

t	Schemes	L ₁ Error	L_{∞} Error	CPU Time (Sec)
1	NSFD1	$2.302319 imes 10^{-3}$	$3.484373 imes 10^{-3}$	0.0666
	NSFD2	$2.302482 imes 10^{-3}$	$3.484620 imes 10^{-3}$	0.0669
	EEFDM	$2.259624 imes 10^{-3}$	$3.419683 imes 10^{-3}$	0.0658
	FIEFDM	$2.227222 imes 10^{-3}$	$3.372316 imes 10^{-3}$	0.0692
10	NSFD1	$2.295375 imes 10^{-3}$	$3.474168 imes 10^{-3}$	0.2304
	NSFD2	$2.295525 imes 10^{-3}$	$3.474395 imes 10^{-3}$	0.2239
	EEFDM	$2.246500 imes 10^{-3}$	$3.400138 imes 10^{-3}$	0.2391
	FIEFDM	$2.211288 imes 10^{-3}$	$3.348644 imes 10^{-3}$	0.2418

Table 33. L_1 and L_∞ error norms with CPU times for the four numerical methods.

Case 9: $\alpha = 1.0 \ (\alpha = \beta), \beta = 1.0 \text{ and } \gamma = 0.001$

Table 34. Absolute errors from four constructed schemes with the results of [13,14] for $\alpha = 1.0$, $\beta = 1.0$, $\gamma = 0.001$.

t	x	NSFD1	NSFD2	EEFDM	FIEFDM	ADM	VIM
0.05	0.1	$8.13470 imes 10^{-9}$	$8.13470 imes 10^{-9}$	$7.80710 imes 10^{-9}$	7.55427×10^{-9}	1.87406×10^{-8}	$1.87405 imes 10^{-8}$
	0.5	$1.78493 imes 10^{-8}$	$1.78494 imes 10^{-8}$	$1.75693 imes 10^{-8}$	$1.69238 imes 10^{-8}$	$1.87406 imes 10^{-8}$	$1.87405 imes 10^{-8}$
	0.9	$8.13524 imes 10^{-9}$	$8.13526 imes 10^{-9}$	$7.80764 imes 10^{-9}$	$7.55505 imes 10^{-9}$	$1.87406 imes 10^{-8}$	$1.87405 imes 10^{-8}$
0.1	0.1	$1.19758 imes 10^{-8}$	$1.19758 imes 10^{-8}$	$1.13858 imes 10^{-8}$	$1.11183 imes 10^{-8}$	$3.74812 imes 10^{-8}$	$3.74813 imes 10^{-8}$
	0.5	$3.02147 imes 10^{-8}$	$3.02147 imes 10^{-8}$	$2.91176 imes 10^{-8}$	$2.82588 imes 10^{-8}$	$3.74813 imes 10^{-8}$	$1.37481 imes 10^{-8}$
	0.9	$1.19770 imes 10^{-8}$	$1.19770 imes 10^{-8}$	$1.13870 imes 10^{-8}$	$1.11195 imes 10^{-8}$	$3.74813 imes 10^{-7}$	$3.74813 imes 10^{-8}$
1.0	0.1	$1.86367 imes 10^{-8}$	$1.86366 imes 10^{-8}$	$1.68648 imes 10^{-8}$	$1.68635 imes 10^{-8}$	$3.74812 imes 10^{-7}$	$3.74812 imes 10^{-7}$
	0.5	$5.17712 imes 10^{-8}$	$5.17712 imes 10^{-8}$	$4.68494 imes 10^{-8}$	$4.68457 imes 10^{-8}$	$3.74812 imes 10^{-7}$	$3.74813 imes 10^{-7}$
	0.9	$1.86393 imes 10^{-8}$	$1.86392 imes 10^{-8}$	$1.68670 imes 10^{-8}$	$1.68656 imes 10^{-8}$	$3.74812 imes 10^{-7}$	$3.74813 imes 10^{-7}$

In cases 10 and 11, we test the effectiveness of the fully implicit exponential finite difference scheme (FIEFDM) by taking a less refined time step k = 0.1 for computations.

Case 10: $\alpha = \beta = 0.5 \ (\beta = \alpha), \ \gamma = 0.001 \ \text{and} \ k = 0.1$

Table 35. A comparison between the exact and numerical solutions with absolute and relative errors at some values of *x*.

t	x	Exact	FIEFDM	Absolute Error	Relative Error
1	0.1	5.000859×10^{-4}	5.000769×10^{-4}	9.040023×10^{-9}	1.807694×10^{-5}
1	0.1	5.000839×10^{-4} 5.001249×10^{-4}	5.000709×10^{-4} 5.000998×10^{-4}	2.510788×10^{-8}	5.020322×10^{-5}
	0.9	5.001249×10^{-4} 5.001640×10^{-4}	5.000000×10^{-4} 5.001549×10^{-4}	9.040517×10^{-9}	1.807511×10^{-5}
10	0.1	5.007711×10^{-4}	5.007621×10^{-4}	9.048705×10^{-9}	1.806954×10^{-5}
	0.5	$5.008102 imes 10^{-4}$	$5.007851 imes 10^{-4}$	$2.513599 imes 10^{-8}$	$5.019064 imes 10^{-5}$
	0.9	$5.008492 imes 10^{-4}$	$5.008402 imes 10^{-4}$	$9.049199 imes 10^{-9}$	$1.806771 imes 10^{-5}$

Table 36. L_1 and L_{∞} error norms with CPU times for the FIEFDM.

t	L ₁ Error	L_{∞} Error	CPU Time (Sec)
1.0	$1.6571995 imes 10^{-8}$	$2.5107882 imes 10^{-8}$	0.0331
10.0	$1.6589738 imes 10^{-8}$	$2.5135986 imes 10^{-8}$	0.2818

Case 11: $\alpha = 0.5, \beta = 10.0$	$(\beta >> \alpha)$, $\gamma = 0.5$ and $k = 0.1$
--	---------------------	--------------------------------

Table 37. A comparison between the exact and numerical solutions with absolute and relative errors at some values of *x*.

t	x	Exact	FIEFDM	Absolute Error	Relative Error
1	0.1	$4.826732 imes 10^{-1}$	$4.738086 imes 10^{-1}$	$8.864652 imes 10^{-3}$	$1.836574 imes 10^{-2}$
	0.5	$4.885113 imes 10^{-1}$	$4.627574 imes 10^{-1}$	$2.575394 imes 10^{-2}$	$5.271924 imes 10^{-2}$
	0.9	$4.924132 imes 10^{-1}$	$4.841520 imes 10^{-1}$	$8.261271 imes 10^{-3}$	$1.677711 imes 10^{-2}$
10	0.1	$5.000000 imes 10^{-1}$	$5.000000 imes 10^{-1}$	$2.831070 imes 10^{-15}$	$5.662141 imes 10^{-15}$
	0.5	$5.000000 imes 10^{-1}$	$5.000000 imes 10^{-1}$	$8.493211 imes 10^{-15}$	$1.698641 imes 10^{-14}$
	0.9	$5.000000 imes 10^{-1}$	$5.000000 imes 10^{-1}$	$2.720052 imes 10^{-15}$	$5.440091 imes 10^{-15}$

Table 38. L_1 and L_{∞} error norms with CPU times for the FIEFDM.

t	L ₁ Error	L_{∞} Error	CPU Time (Sec)
1.0	$1.659845 imes 10^{-2}$	$2.575394 imes 10^{-2}$	0.0256
10.0	$5.462297 imes 10^{-15}$	$8.493206 imes 10^{-15}$	0.3112

We next present plots of the initial, exact and numerical solutions for the eleven cases in Figures 10-29.

Figure 10. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 1 at t = 1.0.

Figure 11. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 1 at t = 1.0.

Figure 12. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 2 at t = 1.0.

Figure 13. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 2 at t = 1.0.

Figure 14. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 3 at t = 1.0.

Figure 15. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 3 at t = 1.0.

Figure 16. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 4 at t = 1.0.

Figure 17. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 4 at t = 1.0.

Figure 18. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 5 at t = 1.0.

Figure 19. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 5 at t = 1.0.

Figure 20. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 6 at t = 1.0.

Figure 21. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 6 at t = 1.0.

Figure 22. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 7 at t = 1.0.

Figure 23. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 7 at t = 1.0.

Figure 24. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 8 at t = 1.0.

Figure 25. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 8 at t = 1.0.

Figure 26. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 9 at t = 1.0.

Figure 27. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 9 at t = 1.0.

Figure 28. Comparison between Initial, Exact and FIEFDM profiles for Case 10 at t = 1.0.

Figure 29. Comparison between Initial, Exact and FIEFDM profiles for Case 11 at t = 1.0.

7. Conclusions

In this paper, we have obtained numerical solutions to the Burgers–Huxley equation with specified initial and boundary conditions using two novel non-standard finite difference and two exponential finite difference schemes. These types of schemes are very recent for such partial differential equations. The positivity condition of the two NSFD schemes are dependent on k, β and h. We considered eleven test cases ,which made use of two values of $\gamma = 0.001$ and 0.5. The last two test cases are for FIEFDM only, where we used a larger time step size.

For $\gamma = 0.001$, we observe that, for the three different regimes ($\alpha = \beta$, $\alpha < \beta$, $\alpha > \beta$,), all the four schemes are very efficient. The relative error is of order 10^{-5} . The CPU time for the FIEFDM is slightly larger than the other three explicit schemes. For $\gamma = 0.5$, we observe that, for all the three different

regimes, the four schemes perform quite well and the relative error is of order 10^{-2} , 10^{-3} and 10^{-4} . We also compared our four methods with adomian decomposition and variational iteration method for the case $\alpha = \beta = 1.0$, $\gamma = 0.001$ and our methods slightly performed better.

In reference to Figures 14 and 15, we can observe that EEFDM amd FIEFDM are much better than NSFD1 and NSFD2 for the case $\alpha = 0.5$, $\beta = 10.0$, $\gamma = 0.001$ at time t = 1.0.

If we refer to Figures 22 and 23, we can observe that EEFDM and FIEFDM are much better than NSFD1, NSFD2 for the case $\alpha = 0.5$, $\beta = 10.0$, $\gamma = 0.5$ at time t = 1.0.

There is not much difference in performance of FIEFDM at k = 0.1 as compared to k = 0.005, hence a larger time step size can be used.

We would like to extend this study to solve generalised Burgers–Huxley equation using a more challenging numerical experiment, possibly one which consists of a shock-like profile.

Author Contributions: These authors contributed equally to this work.

Funding: A. R. Appadu is grateful to Nelson Mandela University for seed funding which enabled him to present his work at ICNAAM 2019. Yusuf O. Tijani is grateful to Nelson Mandela University for providing some funding to cover first year registration fees at the university.

Acknowledgments: The authors would like to thank the three anonymous reviewers for the insightful comments and suggestions, which have enabled the authors to considerably improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

NSFD Nonstandard Finite Difference

EEFDM Explicit Exponential Finite Difference Method

FIEFDM Fully Implicit Exponential Finite Difference Method

MATLAB Matrix Laboratory

References

- 1. Albowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform; University Press: Cambridge, UK, 1990.
- Lawrence, C.E. Partial Differential Equation; Graduate Studies in Mathematics; American Mathematical Society: Berkeley, CA, USA, 1997; pp. 1–662.
- 3. Estevez, P.G. Non-classical symmetries and the singular manifold method: The Burgers and the Burgers–Huxley equations. *J. Phys. A Math. Gen.* **1994**, 27, 2113–2127. [CrossRef]
- 4. Estevez, P.G.; Gordoa, P.R. Nonclassical symmetries and the singular manifold method: Theory and six examples. *Stud. Appl. Math.* **1995**, *95*, 73–113. [CrossRef]
- 5. Chou, M.H.; Lin, Y.T. Exotic dynamic behavior of the forced FitzHugh-Nagumo equations. *Comput. Math. Appl.* **1996**, *32*, 109–124. [CrossRef]
- 6. Olver, P. Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics; Springer: New York, NY, USA, 1994; Volume 107.
- 7. Zhao, X.; Tang, D.; Wang, L. New soliton-like solutions for KdV equation with variable coefficient. *Phys. Lett. A* 2005, 346, 228–291. [CrossRef]
- 8. Yomba, E. The extended Fan's sub-equation method and its applications to KdV-MkdV, BKK and variant Boussinesq equations. *Phys. Lett. A* 2005, *336*, 463–476. [CrossRef]
- 9. Wazwaz, A.M. Solutions and periodic solutions for the fifth-order KdV equation. *Appl. Math. Lett.* **2006**, *19*, 1162–1167. [CrossRef]
- 10. Wang, M. Exact solutions for a compound KdV-Burgers equation. Phys. Lett. A 1996, 213, 79–287. [CrossRef]
- 11. Biswas, A. Anjan S1-soliton solution of the K (m, n) equation with generalized evolution. *Phys. Lett. A* 2008, 25, 4601–4602. [CrossRef]
- 12. Yu, X.; Gao, Y.T.; Sun, Z.Y.; Liu, Y. N-soliton solutions, Backlund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg–de Vries equation. *Phys. Scr.* **2010**, *81*, 045402. [CrossRef]

- 13. Ismail, H.N.A.; Raslan, K.; Abd Rabboh, A.A. Adomian decomposition method for burgers—Huxley and burgers—Fisher equations. *Appl. Math. Comput.* **2004**, *1*, 291–301.
- 14. Batiha, M.S.M.; Noorani, B.; Hashim, I. Application of variational iteration method to the generalized burgers–huxley equation. *Chaos Solitons Fractals* **2008**, *36*, 660–663. [CrossRef]
- 15. Biazar, J.; Mohammadi, F. Application of differential transform method to the generalized burgers–huxley equation. *Appl. Appl. Math.* **2010**, *5*, 1726–1750.
- 16. Yaghouti, M.R.; Zabihi, A. Application of Laplace decomposition method for burgers–huxley and burgers–fisher equations. *J. Math. Model.* **2013**, *1*, 41–67.
- 17. Molabahramia, A.; Khan, F. The homotopy analysis method to solve the burgers–huxley equation. *Nonlinear Anal. Real World Appl.* **2009**, *10*, 589–600. [CrossRef]
- 18. Mittal, R.C.; Jiwari, R. A numerical study of burger–huxley equation by differential quadrature method. *J. Appl. Math. Mech.* **2009**, *5*, 1–9.
- 19. Javidi, M. A numerical solution of the generalized burgers–huxley equation by spectral collocation method. *Appl. Math. Comput.* **2006**, *178*, 338–334.
- 20. Tomasiello, S. Numerical solutions of the burgers–huxley equation by the IDQ method. *Int. J. Comput. Math.* **2010**, *87*, 129–140. [CrossRef]
- 21. Ray, S.S.; Gupta, A. Comparative analysis of variational iteration method and Haar wavelet method for the numerical solutions of Burgers–Huxley and Huxley equations. *J. Math. Chem.* **2014**, *52*, 1060–1080.
- 22. Ray, S.S.; Gupta, A. Application of novel schemes based on Haar wavelet collocation method for numerical simulations of Burger and Boussinesq–Burger equations. *Appl. Math. Inf. Sci.* 2016, 10, 1513–1524. [CrossRef]
- 23. Chen, Z.; Gumel, A.B.; Micken, R.E. Nonstandard discretizations of the generalized nagumo reaction-diffusion equation. *Numer. Methods Partial Differ. Equ.* **2003**, *19*, 363–379. [CrossRef]
- 24. Kyrychko, Y.N.; Bartuccelli, M.; Blysuss, K.B. Persistence of travelling wave solutions of a fourth order diffusion system. *J. Comput. Appl. Math.* **2005**, *176*, 433–443. [CrossRef]
- 25. Anguelov, R.; Lubuma, J.M.S. Contributions to the Mathematics of the Nonstandard Finite Difference Method and Applications. *Numer. Methods Partial Differ. Equ.* **2001**, *17*, 518–543. [CrossRef]
- 26. Mickens, R.E. Application of Nonstandard Finite Difference Scheme; World Scientific: Singapore, 2000; pp. 1–261.
- 27. Mickens, R.E.; Gumel, A.B. Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equation. *J. Sound Vib.* **2002**, *4*, 791–797. [CrossRef]
- 28. Zhang, L.; Wang, L.; Xiaohu, D. Exact finite difference scheme and nonstandard finite difference scheme for burgers and burgers-fisher equations. *J. Appl. Math.* **2014**, 597926. [CrossRef]
- 29. Agbavon, K.M.; Appadu, A.R. Construction and analysis of some nonstandard finite difference methods for the Fitzhugh-Nagumo equation. *Numer. Methods Partial Differ. Equ.* In Review.
- Appadu, A.R.; Lubuma, J.M.S.; Mphephu, N. Computational study of three numerical methods for some linear and nonlinear advection-diffusion-reaction problems. *Prog. Comput. Fluid Dyn.* 2017, 17, 114–129. [CrossRef]
- 31. Appadu, A.R. Numerical solution of the 1D advection-diffusion equation using standard and nonstandard finite difference schemes. *J. Appl. Math.* **2013**, 2013, 734374. [CrossRef]
- 32. Agabvon, K.M.; Appadu, A.R.; Khumalo, M. On the numerical solution of fishers equation with coefficient of diffusion term much smaller than coefficient of reaction term. *Adv. Differ. Equ.* **2019**, *146*, 33. [CrossRef]
- 33. Chapwanya, M.; Appadu, A.R.; Jejeniwa, M.O.; Lubuma, J.M.S. An explicit nonstandard finite difference scheme for the Fitzhugh-Nagumo equations. *Int. J. Comput. Math.* **2019**, *96*, 1993–2009. [CrossRef]
- 34. Mickens, R.E. Nonstandard finite difference schemes for reaction-diffusion equations. *Numer. Methods Partial Differ. Equ.* **1999**, *15*, 201–215. [CrossRef]
- 35. Jordan, P.M. A nonstandard finite difference scheme for nonlinear heat transfer in a thin finite rod. *J. Differ. Equ. Appl.* **2003**, *9*, 1015–1021. [CrossRef]
- 36. Aderogba, A.A.; Chapwanya, M. Positive and bounded nonstandard finite difference scheme for the hodgkin–huxley equations. *Jpn. J. Ind. Appl. Math.* **2018**, *35*, 773–785. [CrossRef]
- 37. Zibaei, M.; Zeinadini, S.; Namjoo, M. Numerical solutions of Burgers–Huxley equation by exact finite difference and NSFD schemes. *J. Differ. Equ. Appl.* **2016**, *22*, 1098–1113. [CrossRef]
- Oluwaseye, A.; Talitha, W. Nonstandard finite difference scheme for a Tacoma Narrows Bridge model. *Appl. Math. Model.* 2018, 62, 223–236.

- Dai, W. Nonstandard finite difference schemes for solving nonlinear micro heat transport equations in double-layered metal thin films exposed to ultrashort pulsed lasers. In *Advances in the Applications of Nonstandard Finite Difference Schemes*; Mickens, R.E., Ed.; World Scientific: Hackensack, NJ, USA, 2005; pp. 191–248.
- 40. Díaz-Rodríguez, M.; González-Parra, G.; Arenas, A.J. Nonstandard numerical schemes for modeling a 2-DOF serial robot with rotational spring-damper-actuators. *Int. J. Numer. Methods Biomed. Eng.* **2011**, 27, 1211–1224. [CrossRef]
- 41. Inan, B.; Bahadir, A.R. A numerical solution of the Burgers equation using a Crank–Nicolson exponential finite difference method. *J. Math. Comput. Sci.* **2014**, *4*, 849–860.
- 42. Macías-Díaz, J.E. A modified exponential method that preserves structural properties of the solutions of the Burgers-Huxley equation. *Int. J. Comput. Math.* **2017**. [CrossRef]
- 43. Bhattacharya, M.C. An explicit conditionally stable finite difference equation for heat conduction problems. *Int. J. Numer. Method Eng.* **1985**, *21*, 239–265. [CrossRef]
- 44. Inan, B.; Bahadir, A.R. Numerical solution of the one-dimensional burgers equation: Implicit and fully implicit exponential finite difference methods. *Pramana J. Phys.* **2018**, *81*, 547–556. [CrossRef]
- 45. Bahadir, A.R. Exponential finite-difference method applied to korteweg-de vries equation for small times. *Appl. Math. Comput.* **2005**, *160*, 675–682.
- 46. İnan, B. Finite difference methods for the generalized huxley and burgers-huxley equations. *Kuwait J. Sci.* **2017**, *44*, 20–27.
- 47. İnan, B. An exponential finite difference method based on Padé approximation. *Celal Bayar Univ. Sci.* **2017**, 13, 71–80. [CrossRef]
- 48. Macías-Díaz, J.E.; İnan, B. Numerical efficiency of some exponential methods for an advection-diffusion equation. *Int. J. Comput. Math.* **2019**, *96*, 1005–1029. [CrossRef]
- 49. Appadu, A.R.; İnan, B.; Tijani, Y.O. Comparison of some numerical methods for the Burgers-Huxley equation. *To appear in AIP Conference Proceedings.*
- 50. Griffiths, W.G.; Schiesser, E.W. Traveling Wave Analysis of Partial Differential Equation: Numerical and Analytical Methods with MATLAB and Maple; Academic Press: Cambridge, MA, USA, 2011; p. 461. ISBN: 9780123846525.
- 51. Deng, X. Travelling wave solutions for the generalized Burgers–Huxley equation. *Appl. Math. Comput.* **2008**, 204, 733–737. [CrossRef]
- 52. Burgers, J.M. A mathematical model illustrating the theory of turbulence. In *Advances in Applied Mechanics*; Academic Press: New York, NY, USA, 1948; Volume 1, pp. 171–199.
- 53. Nourazar, S.S.; Soori, M.; Nazari-Golshan, A. On the Exact Solution of Newell-Whitehead-Segel Equation Using the Homotopy Perturbation Method. *Aust. J. Basic Appl. Sci.* **2011**, *5*, 1400–1411.
- 54. Wang, Z.S.; Zhuo, X.Y.; Lu, Y.K. Solitary wave solutions of the generalised Burgers-Huxley equation. *J. Phys. A Math. Gen.* **1990**, *23*, 271–274. [CrossRef]
- Mickens, R.E. Pitfalls in the numerical integration of differential equations. In *Analytical Techniques for Material Characterization*; Collins, W.E., Chowdari, B.V.R., Radhakrishna, S., Eds.; World Scientific: Singapore, 1987; Volume 17, pp. 123–143.
- 56. Mickens, R.E.; Smith, A. Finite-Difference Model of Ordinary Differential Equations: Influence of Denominator Function. *J. Franklin Inst.* **1990**, *327*, 143–149. [CrossRef]
- 57. Mickens, R.E. Lie methods in mathematical modeling: Difference equation models of differential equations. *Math. Comput. Model.* **1988**, *11*, 528–530. [CrossRef]
- 58. Hilderband, F.B. *Finite-Difference Equations and Simulations*; Prentice-Hall: Englewood Cliffs, NJ, USA, 1968; p. 338.
- 59. Taha, T.; Ablowitz, M. Analytical and numerical aspects of certain nonlinear evolution equations III. Numerical Korteweg-de Vries equation. *J. Comput. Phys.* **1984**, *2*, 231–235. [CrossRef]

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).