
symmetryS S

Article

Comparative Study of Some Numerical Methods for
the Burgers–Huxley Equation
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Abstract: In this paper, we construct four numerical methods to solve the Burgers–Huxley equation
with specified initial and boundary conditions. The four methods are two novel versions of
nonstandard finite difference schemes (NSFD1 and NSFD2), explicit exponential finite difference
method (EEFDM) and fully implicit exponential finite difference method (FIEFDM). These two classes
of numerical methods are popular in the mathematical biology community and it is the first time
that such a comparison is made between nonstandard and exponential finite difference schemes.
Moreover, the use of both nonstandard and exponential finite difference schemes are very new for
the Burgers–Huxley equations. We considered eleven different combination for the parameters
controlling diffusion, advection and reaction, which give rise to four different regimes. We obtained
stability region or condition for positivity. The performances of the four methods are analysed by
computing absolute errors, relative errors, L1 and L∞ errors and CPU time.

Keywords: Burgers–Huxley equation; nonstandard finite difference method; explicit exponential
finite difference method; fully implicit exponential finite difference method; absolute error;
relative error.

1. Introduction

Numerical and mathematical analysis are of significant importance for the solution and
understanding of problems in science and engineering. Such problems are usually expressed using
differential equations. Many numerical and mathematical methods use geometrical and analytical
properties of mathematical and/or numerical problems.

Non-linearities exist in almost every branch of science and engineering ranging from biological
systems, organic and inorganic chemistry, population dynamics, astrophysics, robotics, biomolecular
engineering and zoology [1]. Non-linear partial differential equations (NLPDE) are the resulting
equations for many physical phenomena, which in turn has motivated many researchers to study these
alluring non-linear problems. Since mathematicians regard existence as one of the prime attributes
of studies [2], the existence, uniqueness, symmetry and integrability have been studied for many
evolution parabolic equations (see [3–5]). Unfortunately, exact solution rarely exists for many of
these non-linear problems. However, there are some non-linear partial differential equations that
become integrable after some symbolic transformation. In this case, the analytical solution becomes
obtainable. In this regard, many powerful techniques have been introduced, amongst them are Lie
group method [6], Jacobi elliptic functions method [7], function expansion method [8,9], homogeneous
balance method [10], solitary wave ansatz method [11], and Hirota bilinear method [12], to mention a
few. The Burgers–Huxley (BH) equation, which can be seen as an archetypal equation for describing
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the interaction among reaction mechanism, convection effects and diffusion transport, has been
widely studied by researchers. Many techniques for obtaining solution to the Burgers–Huxley (BH)
equation have been provided, one of them being from the work of Ismail et al. [13]. They provided
a solution to the generalised Burgers–Huxley equation using the Adomian decomposition method
(ADM). Batiha et al. [14], Biazar and Mohammadi [15], Yaghouti and Zabili [16], Molabahramia
and Khani [17], Mittal and Jiwari [18], Javidi [19] and Tomasiello [20] obtained solutions to the
Burgers–Huxley equation using variational iteration method (VIM), differential transform method
(DTM), Laplace decomposition method, homotopy analysis method (HAM), differential quadrature
method, spectral collocation and IDQ methods, respectively. Ray and Gupta [21,22] constructed
a novel Haar wavelet collocation method and used it for the numerical solutions of the Burgers,
Boussinesq–Burgers, Huxley and Burgers–Huxley equations. Discontinuity is the major drawback of
the Haar wavelet method. The approximate analytical methods are plagued with many downsides,
which include slow convergence at large t, high computer memory usage and difficulty in finding a
closed form formula for the obtained series expression. It has been duly noted that the use of standard
time integration techniques such as forward or backward Euler and Runge–Kutta methods to solve
such differential models often lead to numerical instabilities and chaotic solution due to selection
of discretisation parameters [23]. Kyrychko et al. [24] presented a traveling wave analysis for the
extended-Burgers–Huxley equation. The existence of traveling wave solution was also validated for
singularly perturbed Burgers–Huxley equation.

Among various techniques for solving partial differential equations especially in mathematical
biology, the NSFD methods have been proved to be one of the most efficient approaches in
recent years [25,26] due to positive definiteness under some conditions, boundedness of solution,
monotonicity of the solutions and properties such as special solutions with predetermined stability.
Nonstandard (NSFD) methods have been used since 1994 and, in the early stages, the linear
advection and advection-diffusion equations were discretised using this type of method. Mickens
and Gumel [27] presented a detailed explanation on the nonstandard technique for the Burgers-Fisher
equation and the paper was published in 2002. Zhang et al. [28] constructed a scheme based on
exact solution and the nonstandard finite difference schemes for the Burgers and Burgers–Fisher
equation; their paper was published in 2014. Recently, Agbavon and Appadu [29] analysed four
nonstandard schemes for the FitzHugh–Nagumo equation. Interested readers can check the following
references for works where nonstandard finite difference scheme are employed (Appadu et al. [30],
Appadu [31], Agbavon et al. [32] Chapwanya et al. [33], Mickens [34], Jordan [35], and Aderogba and
Chapwanya [36]. The construction of NSFD methods for the Burgers–Huxley equation is very recent.
Zibaei et al. [37] presented the exact and nonstandard schemes for the Burgers–Huxley equation and
their paper was published in 2016. It is noteworthy to mention that the application of NSFD schemes
are not limited to areas of Mathematical Biology; see the works of Oluwaseye and Talitha [38], Dai [39]
and Diaz et al. [40].

Another class of schemes known as exponential finite difference methods have been used to solve
the Burgers type equations. Some of the good points of these methods to mathematical biologists are the
distinctive features of computational efficiency, lesser computational time, ability to preserve physical
properties of the differential equation [41,42]. The exponential scheme was originally developed by
Bhattacharry [43] to solve the heat equation and the paper was published in 1985. İnan and Bahadir [44]
employed implicit and fully implicit exponential finite difference method to solve Burgers equation
and their paper was published in 2013. Bahadir [45] obtained a numerical solution for the small time
Korteweg–de Vries (KdV) equation using the exponential scheme. Macías-Díaz constructed a modified
exponential method that preserves structural properties of the solutions of the Burgers–Huxley
equation [42]. More generally, recently in 2017, Burgers–Huxley equations were solved using an
explicit exponential finite difference method constructed by İnan [46]. In addition, Burgers equation
was solved with exponential method modified with Padé approximation by İnan and Macías-Díaz [47]
and by İnan [48]. The quite good accuracy of the exponential finite difference schemes and the
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nature of some of these alluring non-linear problems has made these methods quite popular for the
Burgers-type equations.

The paper is organised as follows. In Section 2, we have a short overview of the Burgers–Huxley
equation. Section 3 describes the numerical experiment. In Sections 4 and 5, we construct two versions
of non-standard finite difference schemes and two versions of exponential finite difference schemes
and study some of their properties. The results are presented in Section 6. Section 7, which is the
concluding part, highlights the salient features of this paper and possible future extension of the
present study. MATLAB R2015a and Fortran computing platforms were used for simulations. A very
short version of this paper has been accepted for publication as [49].

2. The Burgers–Huxley Equation

In recent time, partial differential equations containing nonlinear diffusion such as Equation (1)
played an important role in non-linear physics, physiology and nerve propagation. The generalised
Burgers–Huxley equation describes a wide class of physical non-linear phenomena in biology. It is
well-known that the generalised Burgers–Huxley equation has a traveling wave solution with
properties like boundedness, monotonicity and positivity (see [24,50,51]).

The generalised Burgers–Huxley equation is given by

∂u
∂t

=
∂2u
∂x2 − αuδ ∂u

∂x
+ βu(1− uδ)(uδ − γ). (1)

In population dynamics, u(x, t) represent the population density, γ is the species carrying capacity,
α stands for the speed of advection and β is a parameter which describe nonlinear source.

When certain condition is imposed on the parameter, the generalised Burgers–Huxley equation is
reduced to many parabolic evolution equations of physical insight. When δ = 1 and β = 0, Equation (1)
is reduced to the Burgers equation, which can be used to study sound waves in viscous medium [52].
The FitzHugh–Nagumo equation is obtained when δ = 1 and α = 0; this equation has enormous
applications in neurophysiology, logistic population growth and auto catalytic reaction [29]. When
δ = 1, α = 0 and γ = −1, we have the Newell–Whitehead–Segel equation [53]. For α = 0 and
β = 0, Equation (1) is reduced to the well-known heat conduction equation. When α = 0, the Huxley
equation, which describes nerve pulse propagation, liquid crystal wall motion and nerve fiber, is
obtained. We note that, for δ = 1, Equation (1) gives the Burgers–Huxley equation.

3. Numerical Experiment

We solve the Burgers–Huxley equation

∂u
∂t

+ αu
∂u
∂x
− ∂2u

∂x2 = βu (1− u) (u− γ) ,

= β(1 + γ)u2 − βγu− βu3,
(2)

subject to the following initial and boundary conditions [54]:

u(x, 0) =
[

γ

2
+

γ

2
tanh(A1x)

]
, u(0, t) =

[
γ

2
+

γ

2
tanh(−A1 A2)t

]
, u(1, t) =

[
γ

2
+

γ

2
tanh(A1(1− A2t))

]
, (3)

where α > 0, β > 0, 0 < γ < 1, x ∈ [0, 1] and t ∈ [0, 10]. The exact solution is given by [54]

u(x, t) =
[

γ

2
+

γ

2
tanh(A1(x− A2t))

]
, (4)

where

A1 =
−α +

√
α2 + 8β

8
γ and A2 =

αγ

2
− (2− γ)(−α +

√
α2 + 8β)

4
. (5)
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We note that the initial condition u(x, 0) is non-negative i.e u(x, 0) ≥ 0. In this work, we consider
11 different cases:

(1) α = 0.5, β = 0.5, γ = 0.001.
(2) α = 0.5, (β > α) β = 2.0, γ = 0.001.
(3) α = 0.5, (β >> α) β = 10.0, γ = 0.001. (singularly perturbed case)
(4) α > β (α = 2.0), β = 0.5, γ = 0.001.
(5) α = 0.5, β = 0.5, γ = 0.5.
(6) α = 0.5, β > α (β = 2.0), γ = 0.5.
(7) α = 0.5, (β >> α) β = 10.0, γ = 0.5. (singularly perturbed case)
(8) α > β (α = 2.0), β = 0.5, γ = 0.5.
(9) α = β = 1.0, γ = 0.001 ([13,14]).

(10) α = 0.5, β = 0.5, γ = 0.001 and k = 0.1 (FIEFDM)
(11) α = 0.5, β = 10.0, γ = 0.5 and k = 0.1 (FIEFDM)

We chose the first eight cases to consider four different regimes, i.e when α = β, β > α, β >> α

(singularly perturbed) and α > β and with two different values of γ, namely γ = 0.001 and γ = 0.5.
We also considered Case 9 so that we can compare our results with other methods in [13,14]. The case
β >> α is a very challenging one. In [32], the partial differential equation

∂u
∂t
− ∂2u

∂x2 = βu (1− u)

was solved using β = 104 and the initial condition consisted of exponential function. This is quite a
challenging numerical experiment. Cases 10 and 11 were chosen to check the effectiveness of the fully
implicit exponential finite difference method at other values of k.

We obtained numerical solutions for the numerical experiment using non-standard finite
difference, and explicit and fully implicit exponential finite difference methods. The solution domains
are discretised into cells as (xj, tn) where xj = jh, (j = 1, 2, ..., N) and tn = nk, (n = 1, 2, ...),
h = ∆x = 1−0

N−1 is the spatial mesh size and we choose h = 0.1 for all computations in this paper.
The temporal step size is k = ∆t and obtained by applying positivity condition or from stability
analysis. Un

j represents numerical solution while u(x, t) denotes the exact solution at point
(
xj, tn

)
.

4. Nonstandard Finite Difference Scheme

The pioneering work on non-standard finite difference scheme can be traced back to the works of
Ronald Mickens [26,55–57]. The NSFD scheme is designed to resolve the issue of numerical instabilities
and/or chaotic behaviour problems, which mostly plague many numerical methods. The concepts
generally work on the principle of dynamical consistency which vary from one system to another.
There are some major rules to be followed in the construction of such methods . They are listed below.

1. Non-local representation of linear and non-linear terms on the computational grid; E.g. un ≈

2Un −Un+1, u2
n ≈

(
Un+1 + 2Un + Un−1

4

)
Un, u3

n ≈ 2U3
n −U2

nUn+1 etc.

2. Use of numerator and denominator functions ψ(h) and φ(k) , respectively with the property

lim
h→0

ψ(h) = h, and lim
k→0

φ(k) = k, (6)

where ψ(h) = h + O(h2) and φ(k) = k + O(k)2.
3. The difference equation should have the same order as the original differential equation.

In general, when the order of the difference equation is larger than the order of the differential
equation, spurious solutions will appear [58].
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4. The discrete approximation should preserve some important properties of the corresponding
differential equation. Properties such as boundedness and positivity should be preserved.

The scheme constructed by Zibaei et al. [37] for Equation (2) is given by

Un+1
j −Un

j

Φ
=

[Un
j+1 − 2Un

j + Un
j−1

Ψ

]
− αUn+1

j

Un
j −Un

j−1

Γ
+ β(1 + γ)(Un

j−1)
2 − βγUn+1

j

+β

(
1
2
(Un

j−1)
3 − 3

2
(Un

j−1)
2Un+1

j

)
,

(7)

where

Φ =
1− e−2A1 A2k

2A1 A2
, Γ =

e2A1h − 1
2A1

, Ψ = Γ2.

A1 is described in Equation (5) and A2 = α +
4− 2γ

γ
A1.

We propose two versions of NSFD scheme as NSFD1 and NSFD2.

4.1. NSFD1 Scheme

Following the rules above, we construct NSFD1 scheme for Equation (2) as

Un+1
j −Un

j

φ(k)
=

[Un
j+1 − 2Un

j + Un
j−1

[ψ(h)]2

]
− αUn+1

j

Un
j −Un

j−1

ψ(h)
+ β(1 + γ)

[
2(Un

j )
2 −Un

j Un+1
j

]
−βγUn+1

j − βUn+1
j (Un

j )
2 .

(8)

The denominator functions are defined as

φ(k) =
eβk − 1

β
, ψ(h) =

eβh − 1
β

. (9)

We have approximated the linear and non-linear terms as follows:

u3(xj, tn) ≈ Un+1
j (Un

j )
2, u2(xj, tn) ≈ 2(Un

j )
2 −Un

j Un+1
j , u(xj, tn) ≈ Un+1

j .

Equation (8) above is an explicit scheme. By making Un+1
j the subject and noting that R =

φ(k)
[ψ(h)]2

and r =
φ(k)
ψ(h)

, we have

Un+1
j =

(1− 2R)Un
j + R(Un

j+1 + Un
j−1) + 2φ(k)β(1 + γ)(Un

j )
2

1 + αr(Un
j −Un

j−1) + φ(k)βγ + Φ(k)β(1 + γ)Un
j + φ(k)β(Un

j )
2 . (10)

We then proceed to check positivity and boundedness of the scheme given by Equation (10).

Theorem 1 (Dynamical Consistency). If 1− 2R ≥ 0, the numerical solution from NSFD1 satisfies

0 ≤ Un
j ≤ γ, =⇒ 0 ≤ Un+1

j ≤ γ,

for all considered values of n and j.
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Proof. For positivity, we require 1− 2R ≥ 0. Substituting the appropriate form for R, we obtain(
eβk − 1

β

)(
β

eβh − 1

)2

≤ 1
2

, (11)

which gives

k ≤ 1
β

ln
(

1 +
(eβh − 1)2

2β

)
. (12)

On substituting h = 0.1 and evaluating for some different values of β, we obtain

(a) k ≤ 5.251× 10−3 for β = 0.5.
(b) k ≤ 5.515× 10−3 for β = 1.0.
(c) k ≤ 6.090× 10−3 for β = 2.0.
(d) k ≤ 1.377× 10−2 for β = 10.0.

For boundedness of NSFD1, we assume 0 ≤ Un
j ≤ γ for all considered values of n and j. Therefore,

(Un+1
j − γ)

(
1 + αr(Un

j −Un
j−1) + φ(k)βγ + φ(k)β(1 + γ)Un

j + φ(k)β(Un
j )

2
)
= (1− 2R)Un

j +

R(Un
j+1 + Un

j−1) + 2φ(k)β(1 + γ)(Un
j )

2 − γ− αrγ(Un
j −Un

j−1)− φ(k)βγ2 − φ(k)βγ(1 + γ)Un
j

−φ(k)βγ(Un
j )

2 ≤ 2βφ(k)β(Un
j )

2 + 2φ(k)βγ(Un
j )

2 − αr(Un
j −Un

j−1)

−φ(k)βγ2 − φ(k)βγ(Un
j )− φ(k)βγ2Un

j − φ(k)βγ(Un
j )

2

= φ(k)βγ(Un
j )

2 + φ(k)β

(
2(Un

j )
2 − γ2 − γUn

j

)
− αrγ(Un

j −Un
j−1)− φ(k)βγ2Un

j

≤ βφ(k)γUn
j (U

n
j − γ)− αrγ(Un

j −Un
j−1) ≤ 0.

(13)

Using Equation (13), we have Un+1
j ≤ γ. Thus, the NSFD1 scheme is bounded, provided the

values from the initial conditions are non-negative and bounded.

4.2. NSFD2 Scheme

Using other non-local representations for the linear and non-linear terms as

u3(xj, tn) ≈ 2Un+1
j (Un

j )
2 − (Un

j )
3, u(xj, tn) ≈ Un+1

j ,

we propose the following scheme to discretise Equation (2):

Un+1
j −Un

j

φ(k)
=

[Un
j+1 − 2Un

j + Un
j−1

[ψ(h)]2

]
− αUn+1

j

Un
j −Un

j−1

ψ(h)
+ β(1 + γ)(Un

j )
2 − βγUn+1

j

−2βUn+1
j (Un

j )
2 + β(Un

j )
3 .

(14)

By making Un+1
j the subject of the equation, we obtain

Un+1
j =

(1− 2R)Un
j + R(Un

j+1 + Un
j−1) + βφ(k)[(1 + γ)(Un

j )
2 + (Un

j )
3]

1 + αr(Un
j −Un

j−1) + φ(k)βγ + 2φ(k)β(Un
j )

2 , (15)

We then proceed to check positivity and boundedness of NSFD2 scheme.

Theorem 2 (Dynamical Consistency). If 1− 2R ≥ 0, the numerical solution from NSFD2 satisfies

0 ≤ Un
j ≤ γ, =⇒ 0 ≤ Un+1

j ≤ γ,
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for all relevant values of n and j.

Proof. For positivity, we require 1− 2R ≥ 0. We have the same condition as for NSFD1 scheme.
For boundedness, we note that 0 ≤ Un

j ≤ γ, for all values of n and j. We have

(Un+1
j − γ)

(
1 + αr(Un

j −Un
j−1) + φ(k)βγ + 2φ(k)β(Un

j )
2
)
= (1− 2R)Un

j + R(Un
j+1 + Un

j−1)

+βφ(k)
(
(1 + γ)(Un

j )
2 + (Un

j )
3
)
− γ− γrα(Un

j −Un
j−1)− γ2φ(k)β− 2φ(k)βγ(Un

j )
2

= βφ(k)(Un
j )

2 + βφ(k)γ(Un
j )

2 + βφ(k)(Un
j )

3 − αrγ(Un
j −Un

j−1)− βγ2φ(k)− 2φ(k)βγ(Un
j )

2

= βφ(k)(Un
j )

2 + βφ(k)(Un
j )

3 − αrγ(Un
j −Un

j−1)− βγ2φ(k)− φ(k)βγ(Un
j )

2

= βφ(k)(Un
j )

2
(

Un
j − γ

)
− αrγ(Un

j −Un
j−1) + βφ(k)

(
(Un

j )
2 − γ2

)
=

(
βφ(k)(Un

j )
2 + βφ(k)(Un

j + γ)

)
(Un

j − γ)− αrγ(Un
j −Un

j−1) ≤ 0.

(16)

Hence, Un+1
j ≤ γ. Hence, we conclude that NSFD2 scheme is bounded. The positivity conditions

guarantee non-negativity of the solution.

5. Exponential Finite Difference Methods

In the construction of exponential finite difference schemes, we use the following difference
operators:

δtUn
j =

Uj
n+1 −Un

j

k
, (17)

δ
(1)
x Un

j =
Un

j+1 −Un
j−1

2h
, (18)

δ
(2)
x Un

j =
Un

j+1 − 2Un
j + Un

j−1

h2 , (19)

δ
(1)
x Un+1

j =
Un+1

j+1 −Un+1
j−1

2h
, (20)

δ
(2)
x Un+1

j =
Un+1

j+1 − 2Un+1
j + Un+1

j−1

h2 , (21)

for each j ∈ {1, 2, ..., N} and n ∈ {1, 2, ...} . In addition, we introduce the new discrete operator

ΛUn
j =

ln
(

Un+1
j

)
− ln

(
Un

j

)
k

=
1
k

ln

(
Un+1

j

Un
j

)
. (22)

5.1. Explicit Exponential Finite Difference Method (EEFDM)

An explicit exponential finite difference method was proposed for the generalised Burgers–Huxley
equation and numerical solutions for δ = 1 were presented by İnan in [46]. When Equation (2) is
rearranged, the following equation is obtained

∂u
∂t

= βu (1− u) (u− γ)− αu
∂u
∂x

+
∂2u
∂x2 . (23)
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Dividing by u, we obtain

∂ ln u
∂t

=
1
u

(
βu (1− u) (u− γ)− αu

∂u
∂x

+
∂2u
∂x2

)
, (24)

and using finite difference approximations for derivatives, we obtain

ΛUn
j =

1
Un

j

[
βUn

j

(
1−Un

j

) (
Un

j − γ
)
− αUn

j δ
(1)
x Un

j + δ
(2)
x Un

j

]
. (25)

Finally, using Equations (18), (19) and (22), a single expression for EEFDM scheme is

Un+1
j = Un

j exp

{
k

Un
j

[
βUn

j

(
1−Un

j

) (
Un

j − γ
)

−αUn
j

(
Un

j+1 −Un
j−1

2h

)
+

(
Un

j+1 − 2Un
j + Un

j−1

h2

)]}
. (26)

To obtain the stability of EEFDM, we consider the corresponding standard finite difference scheme
given by

Un+1
j −Un

j

k
=

(Un
j+1 − 2Un

j + Un
j−1

h2

)
− αUn

j

Un
j+1 −Un

j−1

2h
+ β(1 + γ)(Un

j )
2 − βγUn

j − β(Un
j )

3. (27)

which can be rewritten in the form

Un+1
j = Un

j + k
(Un

j+1 − 2Un
j + Un

j−1

h2

)
− kαUn

j

Un
j+1 −Un

j−1

2h
+ kβ(1 + γ)(Un

j )
2 − kβγUn

j − kβ(Un
j )

3. (28)

We follow the idea of Taha and Ablowitz [59] by using the freezing coefficients method and Von
Neumann stability analysis. We obtain the amplification factor as:

ξ = 1− I
kα

h
Umax sin w +

k
h2 (2 cos w− 2) + kβUmax(1 + γ)− kβγ− kβU2

max. (29)

Since 0 ≤ U ≤ γ, it follows that Umax = γ. On simplification, we obtain

| ξ |=

√(
1− 4k

h2 sin2 w
2

)2

+

(
kαγ

h
sin w

)2

. (30)

Stability is guaranteed when 0 <| ξ | ≤ 1 for w = [−π, π]. Table 1 shows as follow:

Table 1. Range of values of k for stability of EEFDM with h = 0.1.

Cases Parameter Values Condition for Stability

1 α = 0.5, β = 0.5, γ = 0.001 k ≤ 0.005
2 α = 0.5, β = 2.0, γ = 0.001 k ≤ 0.005
3 α = 0.5, β = 10.0, γ = 0.001 k ≤ 0.005
4 α = 2.0, β = 0.5, γ = 0.001 k ≤ 0.005
5 α = 0.5, β = 0.5, γ = 0.5 k ≤ 0.005
6 α = 0.5, β = 2.0, γ = 0.5 k ≤ 0.005
7 α = 0.5, β = 10.0, γ = 0.5 k ≤ 0.005
8 α = 2.0, β = 0.5, γ = 0.5 k ≤ 0.005
9 α = 1.0, β = 1.0, γ = 0.001 k ≤ 0.005

We fix h = 0.1 and we obtain the 3D plots of |ξ| vs. k vs. ω ∈ [−π, π]. As shown in Figures 1–9.



Symmetry 2019, 11, 1333 9 of 30

Figure 1. Plot of |ξ| vs. k vs. ω for α = 0.5, β = 0.5, γ = 0.001.

Figure 2. Plot of |ξ| vs. k vs. ω for α = 0.5, β = 2.0, γ = 0.001.

Figure 3. Plot of |ξ| vs. k vs. ω for α = 0.5, β = 10.0, γ = 0.001.
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Figure 4. Plot of |ξ| vs. k vs. ω for α = 2.0, β = 0.5, γ = 0.001.

Figure 5. Plot of |ξ| vs. k vs. ω for α = 0.5, β = 0.5, γ = 0.5.

Figure 6. Plot of |ξ| vs. k vs. ω for α = 0.5, β = 2.0, γ = 0.5.
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Figure 7. Plot of |ξ| vs. k vs. ω for α = 0.5, β = 10.0, γ = 0.5.

Figure 8. Plot of |ξ| vs. k vs. ω for α = 2.0, β = 0.5, γ = 0.5.

Figure 9. Plot of |ξ| vs. k vs. ω for α = 1.0, β = 1.0, γ = 0.001.

5.2. Fully Implicit Exponential Finite Difference Method (FIEFDM)

We rearrange Equation (2) to obtain

∂u
∂t

=
∂2u
∂x2 − αu

∂u
∂x

+ βu (1− u) (u− γ) . (31)
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Dividing by u gives

∂ ln u
∂t

=
1
u

(
∂2u
∂x2 − αu

∂u
∂x

+ βu (1− u) (u− γ)

)
, (32)

and using finite difference approximations for derivatives, we obtain following equation.

ΛUn
j =

1
Un

j

[
βUn+1

j

(
1−Un+1

j

) (
Un+1

j − γ
)
− αUn+1

j δ
(1)
x Un+1

j + δ
(2)
x Un+1

j

]
. (33)

Finally, using Equations (20)–(33) gives

Un+1
j = Un

j exp
(

k
Un

j

[(Un+1
j+1 − 2Un+1

j + Un+1
j−1

h2

)
− αUn+1

j

(Un+1
j+1 −Un+1

j−1

2h

)
+

βUn+1
j (1−Un+1

j )(Un+1
j − γ)

])
,

(34)

which is valid for values of j lying in the interval 1 ≤ j ≤ N− 1. Equation (34) is a system of nonlinear
difference equations. Let us consider these nonlinear systems of equations in the form

F(V) = 0, (35)

where F = [ f1, f2, ..., fN−1]
T and V =

[
Un+1

1 , Un+1
2 , ..., Un+1

N−1

]T
.

Newton’s method applied to Equation (35) results in the following iteration:

1. Set V(0), an initial guess.
2. For m = 0, 1, 2, .. until convergence do:

Solve J(V(m))Ω(m) = −F(V(m));
Set V(m+1) = V(m) + Ω(m) where J(V(m)) is the Jacobian matrix which is evaluated analytically.

The solution at the previous time-step is taken as the initial estimate. The Newton’s iteration at each
time-step is stopped when ∥∥∥F(V(m))

∥∥∥
∞
≤ 10−5. (36)

We choose 10−5 as tolerance. It is not easy to choose a tolerance less than 10−5 due to excessive
computational time.

6. Numerical Results

We performed the numerical experiment described in Section 3 to check the effectiveness of
the two NSFD schemes and two exponential schemes. The accuracy of the proposed methods was
measured using the absolute error, relative error, L1 and L∞ errors.

Absolute Error =
∣∣u (xj, tn

)
−U

(
xj, tn

)∣∣ , (37)

Relative Error =

∣∣u (xj, tn
)
−U

(
xj, tn

)∣∣∣∣u(xj, tn)
∣∣ , (38)

L1 = h
N

∑
j=1

∣∣u (xj, tn
)
−U

(
xj, tn

)∣∣ , (39)

and
L∞ = max

∣∣u (xj, tn
)
−U

(
xj, tn

)∣∣ . (40)
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All simulations were performed with h = 0.1; the value of k = 0.005 was carefully chosen to
preserve the positivity and boundedness condition and/or the stability condition for the two NSFD
schemes and two exponential finite difference methods. Comparison of the numerical solutions, exact
solution, absolute error, relative error, L1 and L∞ errors, CPU time for various values of α, β and γ are
made in Tables 2–38 and in Figures 10–29. We also present results using implicit exponential finite
difference scheme using α = 0.5, β = 0.5, γ = 0.001 and α = 0.5, β = 10.0, γ = 0.5 using temporal
step size k = 0.1 and spatial step size h = 0.1.

In Case 1, parameters are chosen as α = β = 0.5 and γ = 0.001. Tables 2–5 display the
results for Case 1 at t = 1.0 and t = 10.0.
In Case 2, parameters are chosen as α = 0.5, β = 2.0 (β > α) and γ = 0.001. Tables 6–9 display the
results for Case 2 at t = 1.0 and t = 10.0.
In Case 3, parameters are chosen as α = 0.5 (β >> α), β = 10.0 and γ = 0.001. Tables 10–13 display
the results for Case 3 at t = 1.0 and t = 10.0.
In Case 4, parameters are chosen as α = 2.0 (α > β), β = 0.5 and γ = 0.001. Tables 14–17 display the
results for Case 4 at t = 1.0 and t = 10.0.
In Case 5, parameters are chosen as α = β = 0.5 and γ = 0.5. Tables 18–21 display the results for Case
5 at t = 1.0 and t = 10.0.
In Case 6, parameters are chosen as α = 0.5, β = 2.0 (β > α) and γ = 0.5. Tables 22–25 display the
results for Case 6 at t = 1.0 and t = 10.0.
In Case 7, parameters are chosen as α = 0.5 (β >> α), β = 10.0 and γ = 0.5. Tables 26–29 display the
results for Case 7 at t = 1.0 and t = 10.0.
In Case 8, parameters are chosen as α = 2.0 (α > β), β = 0.5 and γ = 0.5. Tables 30–33 display the
results for Case 8 at t = 1.0 and t = 10.0.
In Case 9, we compare the absolute errors obtained by our four methods with other methods in [13,14].
Parameters are chosen as α = β = 1.0 and γ = 0.001. Table 34 display the results for Case 9 at t = 0.05,
t = 0.1 and t = 1.0.
In Cases 10 and 11, we compare the accuracy of the fully implicit exponential scheme by chosen
parameters as α = 0.5, β = 0.5 (β = α), γ = 0.001 and k = 0.1 and α = 0.5, β = 10.0 (β >> α),
γ = 0.5 and k = 0.1, respectively. Tables 35–38 display the results for Cases 10 and 11 at t = 1.0 and
t = 10.0. We note that, for Cases 1–9, h = 0.1 and k = 0.005.

Case 1: α = β = 0.5 and γ = 0.001.

Table 2. A comparison between the exact and the numerical solutions at some values of x.

t x Exact NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 5.000858× 10−4 5.000764× 10−4 5.000764× 10−4 5.000768× 10−4 5.000769× 10−4

0.5 5.001249× 10−4 5.000985× 10−4 5.000985× 10−4 5.000998× 10−4 5.000998× 10−4

0.9 5.001640× 10−4 5.001545× 10−4 5.001545× 10−4 5.001549× 10−4 5.001549× 10−4

10 0.1 5.007711× 10−4 5.007616× 10−4 5.007616× 10−4 5.007621× 10−4 5.007621× 10−4

0.5 5.008102× 10−4 5.007838× 10−4 5.007838× 10−4 5.007851× 10−4 5.007851× 10−4

0.9 5.008492× 10−4 5.008397× 10−4 5.008397× 10−4 5.008402× 10−4 5.008402× 10−4
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Table 3. The absolute errors at some values of x for each of the numerical schemes.

t x NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 9.509935× 10−9 9.509930× 10−9 9.048885× 10−9 9.048222× 10−9

0.5 2.641711× 10−8 2.641710× 10−8 2.513647× 10−8 2.513446× 10−8

0.9 9.510585× 10−9 9.510580× 10−9 9.049488× 10−9 9.048757× 10−9

10 0.1 9.510514× 10−9 9.510509× 10−9 9.049214× 10−9 9.048760× 10−9

0.5 2.641900× 10−8 2.641898× 10−8 2.513754× 10−8 2.513624× 10−8

0.9 9.511164× 10−9 9.511159× 10−9 9.049817× 10−9 9.049302× 10−9

Table 4. The relative errors at some values of x for each of the numerical schemes.

t x NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 1.901660× 10−5 1.901659× 10−5 1.809466× 10−5 1.809333× 10−5

0.5 5.282102× 10−5 5.282100× 10−5 5.026038× 10−5 5.025637× 10−5

0.9 1.901493× 10−5 1.901492× 10−5 1.809304× 10−5 1.809158× 10−5

10 0.1 1.899174× 10−5 1.899173× 10−5 1.807056× 10−5 1.806967× 10−5

0.5 5.275251× 10−5 5.275249× 10−5 5.019375× 10−5 5.019115× 10−5

0.9 1.899007× 10−5 1.899006× 10−5 1.806894× 10−5 1.806792× 10−5

Table 5. L1 and L∞ error norms with CPU time taken for the four numerical methods.

t Schemes L1 Error L∞ Error CPU Time

1 NSFD1 1.743535× 10−8 2.641711× 10−8 0.0642
NSFD2 1.743534× 10−8 2.641710× 10−8 0.0649
EEFDM 1.659010× 10−8 2.513647× 10−8 0.0660
FIEFDM 1.658878× 10−8 2.513446× 10−8 0.0683

10 NSFD1 1.743654× 10−8 2.641900× 10−8 0.2261
NSFD2 1.743653× 10−8 2.641898× 10−8 0.2247
EEFDM 1.659078× 10−8 2.513754× 10−8 0.2210
FIEFDM 1.658990× 10−8 2.513624× 10−8 0.2341

Case 2: α = 0.5, β = 2.0 (β > α) and γ = 0.001

Table 6. A comparison between the exact and the numerical solutions at some values of x.

t x Exact NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 5.004115× 10−4 5.003626× 10−4 5.003626× 10−4 5.003715× 10−4 5.003715× 10−4

0.5 5.004997× 10−4 5.003639× 10−4 5.003639× 10−4 5.003886× 10−4 5.003886× 10−4

0.9 5.005880× 10−4 5.005391× 10−4 5.005391× 10−4 5.005480× 10−4 5.005480× 10−4

10 0.1 5.039160× 10−4 5.038671× 10−4 5.038671× 10−4 5.038760× 10−4 5.038760× 10−4

0.5 5.040428× 10−4 5.038684× 10−4 5.038684× 10−4 5.038931× 10−4 5.038931× 10−4

0.9 5.040926× 10−4 5.040436× 10−4 5.040436× 10−4 5.040525× 10−4 5.040525× 10−4

Table 7. The absolute errors at some values of x for each of the numerical schemes.

t x NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 4.891509× 10−8 4.891498× 10−8 4.001139× 10−8 4.000776× 10−8

0.5 1.358748× 10−7 1.358745× 10−7 1.111457× 10−7 1.111355× 10−7

0.9 4.891869× 10−8 4.891858× 10−8 4.001405× 10−8 4.000958× 10−8

10 0.1 4.892413× 10−8 4.892402× 10−8 4.001053× 10−8 4.000788× 10−8

0.5 1.359053× 10−7 1.359050× 10−7 1.111440× 10−7 1.111369× 10−7

0.9 4.892767× 10−8 4.892756× 10−8 4.001314× 10−8 4.000966× 10−8
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Table 8. The relative errors at some values of x for each of the numerical schemes.

t x NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 9.774973× 10−5 9.774951× 10−5 7.995698× 10−5 7.994972× 10−5

0.5 2.714782× 10−4 2.714776× 10−4 2.220695× 10−4 2.220490× 10−4

0.9 9.772245× 10−5 9.772223× 10−5 7.993409× 10−5 7.992517× 10−5

10 0.1 9.708786× 10−5 9.708764× 10−5 7.939920× 10−5 7.939394× 10−5

0.5 2.696512× 10−4 2.696506× 10−4 2.205220× 10−4 2.205079× 10−4

0.9 9.706089× 10−5 9.706068× 10−5 7.937658× 10−5 7.936967× 10−5

Table 9. L1 and L∞ error norms with CPU time taken for the four numerical methods.

t Schemes L1 Error L∞ Error CPU Time (Sec)

1 NSFD1 8.967845× 10−8 1.358748× 10−7 0.0641
NSFD2 8.967825× 10−8 1.358745× 10−7 0.0643
EEFDM 7.335633× 10−8 1.111457× 10−7 0.0645
FIEFDM 7.334929× 10−8 1.111355× 10−7 0.0654

10 NSFD1 8.969751× 10−8 1.359053× 10−7 0.2322
NSFD2 8.969731× 10−8 1.359053× 10−7 0.2273
EEFDM 7.335505× 10−8 1.111440× 10−7 0.2237
FIEFDM 7.335000× 10−8 1.111369× 10−7 0.2321

Case 3: α = 0.5, β = 10.0 (β >> α), and γ = 0.001. (singularly perturbed)

Table 10. A comparison between the exact and the numerical solutions at some values of x.

t x Exact NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 5.022873× 10−4 5.016837× 10−4 5.016837× 10−4 5.020743× 10−4 5.020743× 10−4

0.5 5.024987× 10−4 5.008301× 10−4 5.008301× 10−4 5.019071× 10−4 5.019071× 10−4

0.9 5.027102× 10−4 5.021065× 10−4 5.021065× 10−4 5.024972× 10−4 5.024972× 10−4

10 0.1 5.223822× 10−4 5.217618× 10−4 5.217619× 10−4 5.221696× 10−4 5.221696× 10−4

0.5 5.225932× 10−4 5.208699× 10−4 5.208699× 10−4 5.220027× 10−4 5.220026× 10−4

0.9 5.228042× 10−4 5.221838× 10−4 5.221838× 10−4 5.225917× 10−4 5.225916× 10−4

Table 11. The absolute errors at some values of x for each of the numerical schemes.

t x NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 6.036257× 10−7 6.036201× 10−7 2.129791× 10−7 2.129933× 10−7

0.5 1.668652× 10−6 1.668637× 10−6 5.916245× 10−7 5.917030× 10−7

0.9 6.036927× 10−7 6.036870× 10−7 2.129928× 10−7 2.129952× 10−7

10 0.1 6.203521× 10−7 6.203444× 10−7 2.125747× 10−7 2.125934× 10−7

0.5 1.723336× 10−6 1.723315× 10−6 5.905050× 10−7 5.905967× 10−7

0.9 6.204109× 10−7 6.204031× 10−7 2.125841× 10−7 2.125916× 10−7

Table 12. The relative errors at some values of x for each of the numerical schemes.

t x NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 1.201754× 10−3 1.201743× 10−3 4.240185× 10−4 4.240467× 10−4

0.5 3.320709× 10−3 3.320679× 10−3 1.177365× 10−3 1.177521× 10−3

0.9 1.200876× 10−3 1.200865× 10−3 4.236891× 10−4 4.236939× 10−4

10 0.1 1.187545× 10−3 1.187530× 10−3 4.069333× 10−4 4.069691× 10−4

0.5 3.297662× 10−3 3.297621× 10−3 1.129952× 10−3 1.130127× 10−3

0.9 1.186698× 10−3 1.186683× 10−3 4.066228× 10−4 4.066371× 10−4
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Table 13. L1 and L∞ error norms with CPU time taken for the four numerical methods.

t Schemes L1 Error L∞ Error CPU Time (Sec)

1 NSFD1 1.102963× 10−6 1.668652× 10−6 0.0475
NSFD2 1.102954× 10−6 1.668637× 10−6 0.0748
EEFDM 3.904728× 10−7 4.320404× 10−7 0.1122
FIEFDM 3.905126× 10−7 4.320876× 10−7 0.1620

10 NSFD1 1.137391× 10−6 1.723336× 10−6 0.2023
NSFD2 1.137376× 10−6 1.723315× 10−6 0.3251
EEFDM 3.897320× 10−7 4.312213× 10−7 0.2729
FIEFDM 3.897805× 10−7 5.905967× 10−7 0.3018

Case 4: α = 2.0 (α > β), β = 0.5 and γ = 0.001.

Table 14. A comparison between the exact and the numerical solutions at some values of x.

t x Exact NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 5.000267× 10−4 5.000196× 10−4 5.000196× 10−4 5.000200× 10−4 5.000200× 10−4

0.5 5.000473× 10−4 5.000280× 10−4 5.000280× 10−4 5.000290× 10−4 5.000290× 10−4

0.9 5.000680× 10−4 5.000611× 10−4 5.000611× 10−4 5.000614× 10−4 5.000614× 10−4

10 0.1 5.002138× 10−4 5.002121× 10−4 5.002121× 10−4 5.002124× 10−4 5.002124× 10−4

0.5 5.002397× 10−4 5.002205× 10−4 5.002205× 10−4 5.002214× 10−4 5.002214× 10−4

0.9 5.002604× 10−4 5.002535× 10−4 5.002535× 10−4 5.002539× 10−4 5.002538× 10−4

Table 15. The absolute errors at some values of x for each of the numerical schemes.

t x NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 6.922896× 10−9 6.922895× 10−9 6.585668× 10−9 6.585338× 10−9

0.5 1.923270× 10−8 1.923269× 10−8 1.829585× 10−8 1.829491× 10−8

0.9 6.924789× 10−9 6.924788× 10−9 6.587425× 10−9 6.587092× 10−9

10 0.1 6.923333× 10−9 6.923332× 10−9 6.585922× 10−9 6.585749× 10−9

0.5 1.923411× 10−8 1.923411× 10−8 1.829667× 10−8 1.829624× 10−8

0.9 6.925227× 10−9 6.925226× 10−9 6.587680× 10−9 6.587504× 10−9

Table 16. The relative errors at some values of x for each of the numerical schemes.

t x NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 1.384506× 10−5 1.384505× 10−5 1.317064× 10−5 1.316998× 10−5

0.5 3.846175× 10−5 3.846175× 10−5 3.658823× 10−5 3.658636× 10−5

0.9 1.384770× 10−5 1.384769× 10−5 1.317306× 10−5 1.317239× 10−5

10 0.1 1.384060× 10−5 1.384060× 10−5 1.316608× 10−5 1.316573× 10−5

0.5 3.844979× 10−5 3.844978× 10−5 3.657580× 10−5 3.657494× 10−5

0.9 1.384324× 10−5 1.384324× 10−5 1.316850× 10−5 1.316815× 10−5

Table 17. L1 and L∞ error norms with CPU time taken for the four numerical methods.

t Schemes L1 Error L∞ Error CPU Time (Sec)

1 NSFD1 1.269362× 10−8 1.923270× 10−8 0.0654
NSFD2 1.269362× 10−8 1.923269× 10−8 0.0677
EEFDM 1.207528× 10−8 1.829585× 10−8 0.0677
FIEFDM 1.207467× 10−8 1.829491× 10−8 0.0688

10 NSFD1 1.269451× 10−8 1.923411× 10−8 0.2381
NSFD2 1.269451× 10−8 1.923411× 10−8 0.2354
EEFDM 1.207580× 10−8 1.829667× 10−8 0.2242
FIEFDM 1.207551× 10−8 1.829624× 10−8 0.2372
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Case 5: α = β = 0.5 and γ = 0.5

Table 18. A comparison between the exact and the numerical solutions at some values of x.

t x Exact NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 2.636642× 10−1 2.619319× 10−1 2.619323× 10−1 2.620016× 10−1 2.620423× 10−1

0.5 2.733691× 10−1 2.684776× 10−1 2.684788× 10−1 2.686755× 10−1 2.688005× 10−1

0.9 2.830035× 10−1 2.812149× 10−1 2.812153× 10−1 2.812875× 10−1 2.813362× 10−1

10 0.1 3.573732× 10−1 3.559870× 10−1 3.559874× 10−1 3.560367× 10−1 3.560550× 10−1

0.5 3.651974× 10−1 3.612915× 10−1 3.612927× 10−1 3.614329× 10−1 3.614903× 10−1

0.9 3.727452× 10−1 3.713231× 10−1 3.713236× 10−1 3.713749× 10−1 3.713974× 10−1

Table 19. The absolute errors at some values of x for each of the numerical schemes.

t x NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 1.732294× 10−3 1.731870× 10−3 1.662559× 10−3 1.621813× 10−3

0.5 4.891452× 10−3 4.890247× 10−3 4.693599× 10−3 4.568532× 10−3

0.9 1.788565× 10−3 1.788119× 10−3 1.715994× 10−3 1.667276× 10−3

10 0.1 1.386199× 10−3 1.385769× 10−3 1.336481× 10−3 1.318209× 10−3

0.5 3.905879× 10−3 3.904660× 10−3 3.764468× 10−3 3.707117× 10−3

0.9 1.422126× 10−3 1.421680× 10−3 1.370378× 10−3 1.347886× 10−3

Table 20. The relative errors at some values of x for each of the numerical schemes.

t x NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 6.570078× 10−3 6.568471× 10−3 6.305595× 10−3 6.151057× 10−3

0.5 1.789322× 10−2 1.788881× 10−2 1.716946× 10−2 1.671196× 10−2

0.9 6.319940× 10−3 6.318365× 10−3 6.063510× 10−3 5.891364× 10−3

10 0.1 3.878856× 10−3 3.877653× 10−3 3.739734× 10−3 3.688607× 10−3

0.5 1.069525× 10−2 1.069191× 10−2 1.030804× 10−2 1.015099× 10−2

0.9 3.815276× 10−3 3.814081× 10−3 3.676447× 10−3 3.616104× 10−3

Table 21. L1 and L∞ error norms with CPU times for the four numerical methods.

t Schemes L1 Error L∞ Error CPU Time (Sec)

1 NSFD1 3.228089× 10−3 4.891452× 10−3 0.0621
NSFD2 3.227293× 10−3 4.890247× 10−3 0.0637
EEFDM 3.097547× 10−3 4.693599× 10−3 0.0659
FIEFDM 3.014506× 10−3 4.568532× 10−3 0.0671

10 NSFD1 2.576806× 10−3 3.905879× 10−3 0.2335
NSFD2 2.576002× 10−3 3.904660× 10−3 0.2281
EEFDM 2.483571× 10−3 3.764468× 10−3 0.2328
FIEFDM 2.445540× 10−3 3.707117× 10−3 0.2871

Case 6: α = 0.5, β = 2.0 (β > α) and γ = 0.5.

Table 22. A comparison between the exact and the numerical solutions at some values of x.

t x Exact NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 3.197787× 10−1 3.115395× 10−1 3.115521× 10−1 3.129688× 10−1 3.131647× 10−1

0.5 3.395893× 10−1 3.164245× 10−1 3.164602× 10−1 3.204963× 10−1 3.210964× 10−1

0.9 3.581881× 10−1 3.498705× 10−1 3.498835× 10−1 3.513357× 10−1 3.515904× 10−1

10 0.1 4.976668× 10−1 4.974441× 10−1 4.974445× 10−1 4.974708× 10−1 4.974707× 10−1

0.5 4.979926× 10−1 4.975407× 10−1 4.975418× 10−1 4.976175× 10−1 4.976172× 10−1

0.9 4.983164× 10−1 4.981586× 10−1 4.981589× 10−1 4.981856× 10−1 4.981855× 10−1
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Table 23. The absolute errors at some values of x for each of the numerical schemes.

t x NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 8.239162× 10−3 8.226605× 10−3 6.809932× 10−3 6.613999× 10−3

0.5 2.316489× 10−2 2.312918× 10−2 1.909310× 10−2 1.849292× 10−2

0.9 8.317574× 10−3 8.304529× 10−3 6.852408× 10−3 6.597658× 10−3

10 0.1 1.626796× 10−4 1.622971× 10−4 1.360407× 10−4 1.361553× 10−4

0.5 4.518804× 10−4 4.507901× 10−4 3.751243× 10−4 3.754311× 10−4

0.9 1.578207× 10−4 1.574438× 10−4 1.308204× 10−4 1.309152× 10−4

Table 24. The relative errors at some values of x for each of the numerical schemes.

t x NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 2.576520× 10−2 2.572593× 10−2 2.129576× 10−2 2.068305× 10−2

0.5 6.821441× 10−2 6.810926× 10−2 5.622408× 10−2 5.445674× 10−2

0.9 2.322125× 10−2 2.318483× 10−2 1.913075× 10−2 1.841954× 10−2

10 0.1 3.269239× 10−4 3.261553× 10−4 2.733899× 10−4 2.736201× 10−4

0.5 9.074039× 10−4 9.052145× 10−4 7.532729× 10−4 7.538889× 10−4

0.9 3.167078× 10−4 3.159516× 10−4 2.625249× 10−4 2.627150× 10−4

Table 25. L1 and L∞ error norms with CPU times for the four numerical methods.

t Schemes L1 Error L∞ Error CPU Time (Sec)

1 NSFD1 1.525544× 10−2 2.316489× 10−2 0.0613
NSFD2 1.523190× 10−2 2.312918× 10−2 0.0625
EEFDM 1.257824× 10−2 1.909310× 10−2 0.0626
FIEFDM 1.217271× 10−2 1.849292× 10−2 0.0628

10 NSFD1 2.969031× 10−4 4.518804× 10−4 0.2268
NSFD2 2.961906× 10−4 4.507901× 10−4 0.2217
EEFDM 2.466924× 10−4 3.751243× 10−4 0.2238
FIEFDM 2.468907× 10−4 3.754311× 10−4 0.2401

Case 7: α = 0.5, β = 10.0 (β >> α), and γ = 0.5. (singularly perturbed)

Table 26. A comparison between the exact and the numerical solutions at some values of x.

t x Exact NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 4.826732× 10−1 4.257945× 10−1 4.261428× 10−1 4.749299× 10−1 4.745925× 10−1

0.5 4.885113× 10−1 3.075586× 10−1 3.084981× 10−1 4.662423× 10−1 4.650936× 10−1

0.9 4.924132× 10−1 4.322566× 10−1 4.325748× 10−1 4.852025× 10−1 4.848678× 10−1

10 0.1 5.000000× 10−1 4.999761× 10−1 4.999801× 10−1 5.000000× 10−1 5.000000× 10−1

0.5 5.000000× 10−1 4.999159× 10−1 4.999301× 10−1 5.000000× 10−1 5.000000× 10−1

0.9 5.000000× 10−1 4.999717× 10−1 4.999765× 10−1 5.000000× 10−1 5.000000× 10−1

Table 27. The absolute errors at some values of x for each of the numerical schemes.

t x NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 5.687871× 10−2 5.653040× 10−2 7.743372× 10−3 8.080728× 10−3

0.5 1.809527× 10−1 1.800132× 10−1 2.226902× 10−2 2.341770× 10−2

0.9 6.015664× 10−2 5.983845× 10−2 7.210756× 10−3 7.545411× 10−3

10 0.1 2.388699× 10−5 1.985583× 10−5 2.275957× 10−15 2.331470× 10−15

0.5 8.408308× 10−5 6.989335× 10−5 6.716849× 10−15 6.772361× 10−15

0.9 2.826313× 10−5 2.349352× 10−5 2.109424× 10−15 2.164932× 10−15
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Table 28. The relative errors at some values of x for each of the numerical schemes.

t x NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 1.178410× 10−1 1.171194× 10−1 1.604268× 10−2 1.674161× 10−2

0.5 3.704166× 10−1 3.684934× 10−1 4.558548× 10−2 4.793687× 10−2

0.9 1.221670× 10−1 1.215208× 10−1 1.464371× 10−2 1.532333× 10−2

10 0.1 4.777397× 10−5 3.971166× 10−5 4.551914× 10−15 4.662940× 10−15

0.5 1.681662× 10−4 1.397867× 10−4 1.343370× 10−15 1.354472× 10−14

0.9 5.652626× 10−5 4.698704× 10−5 4.218847× 10−15 4.329871× 10−15

Table 29. L1 and L∞ error norms with CPU time taken for the four numerical methods.

t Schemes L1 Error L∞ Error CPU Time (Sec)

1 NSFD1 1.158609× 10−1 1.809527× 10−1 0.0359
NSFD2 1.152403× 10−1 1.800132× 10−1 0.0325
EEFDM 1.439775× 10−2 2.226902× 10−2 0.0311
FIEFDM 1.511013× 10−2 2.341770× 10−2 0.0527

10 NSFD1 5.314160× 10−5 8.408308× 10−5 0.2114
NSFD2 4.417351× 10−5 6.989335× 10−5 0.1933
EEFDM 4.352074× 10−15 6.716849× 10−15 0.2729
FIEFDM 4.379830× 10−15 6.772360× 10−15 0.3112

Case 8: α = 2.0 (α > β), β = 0.5 and γ = 0.5

Table 30. A comparison between the exact and the numerical solutions at some values of x.

t x Exact NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 2.488436× 10−1 2.476684× 10−1 2.476683× 10−1 2.476904× 10−1 2.477073× 10−1

0.5 2.540209× 10−1 2.505365× 10−1 2.505363× 10−1 2.506012× 10−1 2.506486× 10−1

0.9 2.591948× 10−1 2.578516× 10−1 2.578515× 10−1 2.578762× 10−1 2.578966× 10−1

10 0.1 2.268524× 10−1 2.256753× 10−1 2.256753× 10−1 2.257005× 10−1 2.257192× 10−1

0.5 2.319948× 10−1 2.285207× 10−1 2.285204× 10−1 2.285947× 10−1 2.286462× 10−1

0.9 2.371526× 10−1 2.358195× 10−1 2.358194× 10−1 2.358476× 10−1 2.358697× 10−1

Table 31. The absolute errors at some values of x for each of the numerical schemes.

t x NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 1.175228× 10−3 1.175311× 10−3 1.153181× 10−3 1.136264× 10−3

0.5 3.484373× 10−3 3.484620× 10−3 3.419683× 10−3 3.372316× 10−3

0.9 1.343119× 10−3 1.343214× 10−3 1.318592× 10−3 1.298113× 10−3

10 0.1 1.177087× 10−3 1.177163× 10−3 1.151921× 10−3 1.133274× 10−3

0.5 3.474168× 10−3 3.474395× 10−3 3.400138× 10−3 3.348644× 10−3

0.9 1.333150× 10−3 1.333237× 10−3 1.304959× 10−3 1.282913× 10−3

Table 32. The relative errors at some values of x for each of the numerical schemes.

t x NSFD1 NSFD2 EEFDM FIEFDM

1 0.1 4.722757× 10−3 4.723090× 10−3 4.634160× 10−3 4.566176× 10−3

0.5 1.371688× 10−2 1.371785× 10−2 1.346221× 10−2 1.327574× 10−2

0.9 5.181890× 10−3 5.182259× 10−3 5.087262× 10−3 5.008252× 10−3

10 0.1 5.188777× 10−3 5.189114× 10−3 5.077841× 10−3 4.995642× 10−3

0.5 1.497520× 10−2 1.497617× 10−2 1.465609× 10−2 1.443413× 10−2

0.9 5.621485× 10−3 5.621854× 10−3 5.502612× 10−3 5.409653× 10−3
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Table 33. L1 and L∞ error norms with CPU times for the four numerical methods.

t Schemes L1 Error L∞ Error CPU Time (Sec)

1 NSFD1 2.302319× 10−3 3.484373× 10−3 0.0666
NSFD2 2.302482× 10−3 3.484620× 10−3 0.0669
EEFDM 2.259624× 10−3 3.419683× 10−3 0.0658
FIEFDM 2.227222× 10−3 3.372316× 10−3 0.0692

10 NSFD1 2.295375× 10−3 3.474168× 10−3 0.2304
NSFD2 2.295525× 10−3 3.474395× 10−3 0.2239
EEFDM 2.246500× 10−3 3.400138× 10−3 0.2391
FIEFDM 2.211288× 10−3 3.348644× 10−3 0.2418

Case 9: α = 1.0 (α = β), β = 1.0 and γ = 0.001

Table 34. Absolute errors from four constructed schemes with the results of [13,14] for α = 1.0, β = 1.0,
γ = 0.001.

t x NSFD1 NSFD2 EEFDM FIEFDM ADM VIM

0.05 0.1 8.13470× 10−9 8.13470× 10−9 7.80710× 10−9 7.55427× 10−9 1.87406× 10−8 1.87405× 10−8

0.5 1.78493× 10−8 1.78494× 10−8 1.75693× 10−8 1.69238× 10−8 1.87406× 10−8 1.87405× 10−8

0.9 8.13524× 10−9 8.13526× 10−9 7.80764× 10−9 7.55505× 10−9 1.87406× 10−8 1.87405× 10−8

0.1 0.1 1.19758× 10−8 1.19758× 10−8 1.13858× 10−8 1.11183× 10−8 3.74812× 10−8 3.74813× 10−8

0.5 3.02147× 10−8 3.02147× 10−8 2.91176× 10−8 2.82588× 10−8 3.74813× 10−8 1.37481× 10−8

0.9 1.19770× 10−8 1.19770× 10−8 1.13870× 10−8 1.11195× 10−8 3.74813× 10−7 3.74813× 10−8

1.0 0.1 1.86367× 10−8 1.86366× 10−8 1.68648× 10−8 1.68635× 10−8 3.74812× 10−7 3.74812× 10−7

0.5 5.17712× 10−8 5.17712× 10−8 4.68494× 10−8 4.68457× 10−8 3.74812× 10−7 3.74813× 10−7

0.9 1.86393× 10−8 1.86392× 10−8 1.68670× 10−8 1.68656× 10−8 3.74812× 10−7 3.74813× 10−7

In cases 10 and 11, we test the effectiveness of the fully implicit exponential finite difference
scheme (FIEFDM) by taking a less refined time step k = 0.1 for computations.

Case 10: α = β = 0.5 (β = α), γ = 0.001 and k = 0.1

Table 35. A comparison between the exact and numerical solutions with absolute and relative errors at
some values of x.

t x Exact FIEFDM Absolute Error Relative Error

1 0.1 5.000859× 10−4 5.000769× 10−4 9.040023× 10−9 1.807694× 10−5

0.5 5.001249× 10−4 5.000998× 10−4 2.510788× 10−8 5.020322× 10−5

0.9 5.001640× 10−4 5.001549× 10−4 9.040517× 10−9 1.807511× 10−5

10 0.1 5.007711× 10−4 5.007621× 10−4 9.048705× 10−9 1.806954× 10−5

0.5 5.008102× 10−4 5.007851× 10−4 2.513599× 10−8 5.019064× 10−5

0.9 5.008492× 10−4 5.008402× 10−4 9.049199× 10−9 1.806771× 10−5

Table 36. L1 and L∞ error norms with CPU times for the FIEFDM.

t L1 Error L∞ Error CPU Time (Sec)

1.0 1.6571995× 10−8 2.5107882× 10−8 0.0331
10.0 1.6589738× 10−8 2.5135986× 10−8 0.2818
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Case 11: α = 0.5, β = 10.0 (β >> α), γ = 0.5 and k = 0.1

Table 37. A comparison between the exact and numerical solutions with absolute and relative errors at
some values of x.

t x Exact FIEFDM Absolute Error Relative Error

1 0.1 4.826732× 10−1 4.738086× 10−1 8.864652× 10−3 1.836574× 10−2

0.5 4.885113× 10−1 4.627574× 10−1 2.575394× 10−2 5.271924× 10−2

0.9 4.924132× 10−1 4.841520× 10−1 8.261271× 10−3 1.677711× 10−2

10 0.1 5.000000× 10−1 5.000000× 10−1 2.831070× 10−15 5.662141× 10−15

0.5 5.000000× 10−1 5.000000× 10−1 8.493211× 10−15 1.698641× 10−14

0.9 5.000000× 10−1 5.000000× 10−1 2.720052× 10−15 5.440091× 10−15

Table 38. L1 and L∞ error norms with CPU times for the FIEFDM.

t L1 Error L∞ Error CPU Time (Sec)

1.0 1.659845× 10−2 2.575394× 10−2 0.0256
10.0 5.462297× 10−15 8.493206× 10−15 0.3112

We next present plots of the initial, exact and numerical solutions for the eleven cases in
Figures 10–29.
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Figure 10. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 1 at t = 1.0.
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Figure 11. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 1 at t = 1.0.
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Figure 12. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 2 at t = 1.0.
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Figure 13. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 2 at t = 1.0.
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Figure 14. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 3 at t = 1.0.
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Figure 15. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 3 at t = 1.0.
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Figure 16. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 4 at t = 1.0.
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Figure 17. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 4 at t = 1.0.
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Figure 18. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 5 at t = 1.0.
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Figure 19. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 5 at t = 1.0.
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Figure 20. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 6 at t = 1.0.
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Figure 21. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 6 at t = 1.0.
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Figure 22. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 7 at t = 1.0.
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Figure 23. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 7 at t = 1.0.
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Figure 24. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 8 at t = 1.0.
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Figure 25. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 8 at t = 1.0.
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Figure 26. Comparison between Initial, Exact, NSFD1 and NSFD2 profiles for Case 9 at t = 1.0.
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Figure 27. Comparison between Initial, Exact, EEFDM and FIEFDM profiles for Case 9 at t = 1.0.
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Figure 28. Comparison between Initial, Exact and FIEFDM profiles for Case 10 at t = 1.0.
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Figure 29. Comparison between Initial, Exact and FIEFDM profiles for Case 11 at t = 1.0.

7. Conclusions

In this paper, we have obtained numerical solutions to the Burgers–Huxley equation with specified
initial and boundary conditions using two novel non-standard finite difference and two exponential
finite difference schemes. These types of schemes are very recent for such partial differential equations.
The positivity condition of the two NSFD schemes are dependent on k, β and h. We considered eleven
test cases ,which made use of two values of γ = 0.001 and 0.5. The last two test cases are for FIEFDM
only, where we used a larger time step size.

For γ = 0.001, we observe that, for the three different regimes (α = β, α < β, α > β, ), all the four
schemes are very efficient. The relative error is of order 10−5. The CPU time for the FIEFDM is slightly
larger than the other three explicit schemes. For γ = 0.5, we observe that, for all the three different
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regimes, the four schemes perform quite well and the relative error is of order 10−2, 10−3 and 10−4.
We also compared our four methods with adomian decomposition and variational iteration method
for the case α = β = 1.0, γ = 0.001 and our methods slightly performed better.

In reference to Figures 14 and 15, we can observe that EEFDM amd FIEFDM are much better than
NSFD1 and NSFD2 for the case α = 0.5, β = 10.0, γ = 0.001 at time t = 1.0.

If we refer to Figures 22 and 23, we can observe that EEFDM and FIEFDM are much better than
NSFD1, NSFD2 for the case α = 0.5, β = 10.0, γ = 0.5 at time t = 1.0.

There is not much difference in performance of FIEFDM at k = 0.1 as compared to k = 0.005,
hence a larger time step size can be used.

We would like to extend this study to solve generalised Burgers–Huxley equation using a more
challenging numerical experiment, possibly one which consists of a shock-like profile.
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