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Abstract: We consider linear differential equations with variable delay of the form

x′(t) + p(t)x(t− τ(t))= 0, t ≥ t0,

where p : [t0, ∞)→ [0, ∞) and τ : [t0, ∞)→ (0, ∞) are continuous functions, such that t− τ(t)→ ∞ (as
t→ ∞). It is well-known that, for the oscillation of all solutions, it is necessary that

B := lim sup
t→∞

A(t) ≥ 1
e

holds, where A(t) :=
∫ t

t−τ(t)
p(s) ds.

Our main result shows that, if the function A is slowly varying at infinity (in additive form), then under
mild additional assumptions on p and τ, condition B > 1/e implies that all solutions of the above delay
differential equation are oscillatory.

Keywords: oscillation; delay differential equation; variable delay; deviating argument; non-monotone
argument; slowly varying function
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1. Introduction and Preliminary Results

Consider the following linear differential equation with variable delay:

x′(t) + p(t)x(t− τ(t))= 0, t ≥ t0, (1)

where p : [t0, ∞) → [0, ∞) and τ : [t0, ∞) → (0, ∞) are continuous functions, such that t− τ(t) → ∞ (as
t → ∞). Note that t− τ(t) is not assumed to be nondecreasing. Let t−1 = inf{s− τ(s) : s ∈ [t0, ∞)}
and note that t−1 ∈ (−∞, t0) holds. Then, a continuous function x : [t−1, ∞)→ R is called a solution of
Equation (1), if it is continuously differentiable on [t0, ∞) and satisfies Equation (1) there.

Such equations, and, in general, delay differential equations with either constant or variable delay
arise naturally in a multitude of models from biology, physics, engineering, chemistry and economy. For
an extensive introduction to the theory of delay differential equations, we refer to the books [1,2], whereas
for more on their applications we recommend the reader to study [3,4].

This paper is concerned with the oscillatory behaviour of Equation (1). By convention, a solution
is called oscillatory if it has arbitrary large zeros and is nonoscillatory otherwise. Results on oscillation of
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retarded first order equations already appeared in the works of Johann Bernoulli [5]. The first systematic
study of oscillatory and nonoscillatory behaviour of Equation (1) goes back to Myshkis [6]. He showed
that, in case the functions τ and p are bounded, then

inf
t∈[t0,∞)

τ(t) inf
t∈[t0,∞)

p(t) >
1
e

(2)

implies that all solutions of Equation (1) are oscillatory, whereas condition

sup
t∈[t_0,∞)

τ(t) sup
t∈[t_0,∞)

p(t) ≤ 1
e

(3)

guarantees the existence of a nonoscillatory solution.
Since then, the question of oscillation has received much attention and many results have been

published providing sufficient conditions guaranteeing that all solutions are oscillatory and others that
establish the existence of a nonoscillatory solution. For more details, we refer the interested reader to
monographs [7–9] and to the survey papers [10,11]. Here, we only point out some results that are most
relevant from our perspective.

Ladas, Lakshmikantham and Papadakis [12] proved that all solutions of Equation (1) are
oscillatory, provided

lim sup
t→∞

∫ t

t−τ(t)
p(s) ds > 1, t− τ(t) is nondecreasing, and p(t) > 0 for all t ≥ t0. (4)

The following important contribution is due to Koplatadze and Chanturija [13]. For the proof, see
also e.g., Theorem 2.1.1 of [9].

Theorem 1 ([13]).

(i) If

lim inf
t→∞

∫ t

t−τ(t)
p(s) ds >

1
e

, (5)

then all solutions of Equation (1) are oscillatory.
(ii) If

lim sup
t→∞

∫ t

t−τ(t)
p(s) ds <

1
e

, (6)

or, more generally, if ∫ t

t−τ(t)
p(s) ds ≤ 1

e
for all large t, (7)

then Equation (1) has a nonoscillatory solution.

After these central results, many works have focused on filling the gap between Conditions (2) and (3),
as well as between the necessary and the sufficient conditions given by Theorem 1 and Condition (4). For
more on such results, see, e.g., the recent survey by Moremedi and Stavroulakis [10].

It is worth mentioning that, in case the functions τ and p are constant, then both Conditions (5) and (2)
reduce to condition τp > 1/e, which is in this case not only sufficient, but—in view of Inequality (3)—also
necessary for the oscillation of all solutions. Another immediate corollary of Theorem 1 is that, if τ(t) is
constant τ > 0, and p is τ-periodic, then

∫ t
t−τ(t) p(s) ds is constant and Condition (7) is sharp.
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Motivated by these facts, Pituk [14] recently proved that, for constant delay τ, there is a class of
functions p, for which the ‘almost necessary’ condition τ lim supt→∞ p(t) > 1/e is sufficient for the
oscillation of all solutions of Equation (1). More precisely, he showed in Theorem 1 of [14] that, if p is
slowly varying at infinity with lim inft→∞ p(t) > 0, then

τ lim sup
t→∞

p(t) >
1
e

(8)

implies that all solutions of Equation (1) are oscillatory, where a function f : [t0, ∞)→ R is called slowly
varying at infinity if, for every s ≥ 0,

f (t + s)− f (t)→ 0 as t→ ∞. (9)

In a subsequent paper, Pituk, Stavroulakis, and the present author [15] generalized the above result
and gave a class of functions p—broader than τ-periodic—for which Condition (6) is ‘almost sharp’. More
precisely, the following theorem was proved.

Theorem 2 ([15]). Let the function τ in Equation (1) be constant, and function p be nonnegative, bounded and
uniformly continuous. Assume further that the function t 7→

∫ t
t−τ p(s) ds is slowly varying at infinity. Then,

lim inf
t→∞

∫ t

t−τ
p(s) ds > 0 and lim sup

t→∞

∫ t

t−τ
p(s) ds >

1
e

(10)

imply that all solutions of Equation (1) are oscillatory.

The purpose of this paper is to show that Theorem 2 remains valid in case of variable delay, provided
τ is uniformly continuous and bounded. The proof is similar to that of Theorem 2; nevertheless, some
technical difficulties also arise due to the variable delay.

In the next section, we present our main theorems and give some hints to support applicability of the
results. Then, in Section 3, we provide an illustrative example. Section 4 is devoted to conclusions.

2. Results

The following theorem is our main result.

Theorem 3. For some positive numbers M and κ, let p : [t0, ∞)→ [0, M] and τ : [t0, ∞)→ (0, κ] be uniformly
continuous functions, and suppose that the function

A : [t0 + κ, ∞)→ [0, ∞), A(t) :=
∫ t

t−τ(t)
p(s) ds (11)

is slowly varying at infinity. Then,

lim inf
t→∞

A(t) > 0 and lim sup
t→∞

A(t) >
1
e

(12)

imply that all solutions of Equation (1) are oscillatory.

Before we prove the theorem, we make some comments, mainly to support applicability of the result.
From Theorem 1, it is apparent that condition lim supt→∞ A(t) ≥ 1/e is necessary for the oscillation

of all solutions, so Theorem 3 is sharp in this sense. Example 9 of [15] showed that the slowly varying
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assumption is important: even in the constant delay case, the theorem does not hold if we omit that
assumption.

We remark that uniform continuity of p and τ are guaranteed, if they are globally Lipschitz continuous,
which is the case if they are differentiable with their derivatives bounded on (t0, ∞).

Let us also devote some comments to functions that are slowly varying at infinity—we shall call them
slowly varying for brevity.

The class of slowly varying functions was studied already by Karamata [16] in a multiplicative form.
For more information about slowly varying functions and their characterization, we refer the reader to the
monograph by Seneta [17]. In particular, for the relation between the two terminologies, see the remark
below Theorem 1.2 in Chapter 1 of [17].

Here, let us mention only one characterization of slowly varying functions given by Pituk [14] (in
the additive form, see Formula (9)): a continuous function f : [t0, ∞)→ R is slowly varying if and only if
there exists t1 ≥ t0, such that f can be written in the form

f (t) = c(t) + d(t), for all t ≥ t1, (13)

where c : [t1, ∞)→ R is a continuous function which tends to some finite limit as t→ ∞, and d : [t1, ∞)→
R is a continuously differentiable function for which limt→∞ d′(t) = 0 holds.

The next lemma will be essential in our proof.

Lemma 1 ([13]). Suppose that p : [t0, ∞)→ [0, ∞) is a continuous function satisfying

lim inf
t→∞

∫ t

t−τ(t)
p(s) ds > 0.

If x is an eventually positive solution of Equation (1), then, for all sufficiently large T,

sup
t≥T

x(t− τ(t))
x(t)

< ∞.

Proof of Theorem 3. Assume to the contrary that x is an eventually positive solution and all assumptions
of the theorem hold (if the solution x is eventually negative, then take the solution −x).

By virtue of Lemma 1, there exists T ≥ t0 + κ such that x(t) > 0 holds for all t ∈ T − κ and

K := sup
t≥T

x(t− τ(t))
x(t)

< ∞. (14)

Then, there exists a sequence {tn}n∈N ⊂ [T, ∞), such that limn→∞ tn = ∞ and

lim
n→∞

A(tn) = lim sup
t→∞

A(t) =: B.

Let us introduce the following sequence of functions:

yn(t) :=
x(tn + t)

x(tn)
, pn(t) := p(tn + t) and τn(t) := τ(tn + t) for all t ≥ −κ and n ∈ N. (15)
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Then, applying (1) leads to the equation

y′n(t) =
x′(tn + t)

x(tn)
=
−p(tn + t)x(tn + t− τ(tn + t))

x(tn)

= −p(tn + t)yn(t− τ(tn + t)) (16)

= −pn(t)yn(t− τn(t)). (17)

Now, we would like to pass to the limit by applying the Arzelà–Ascoli theorem for the above sequences
of functions {yn}n∈N, {pn}n∈N and {τn}n∈N, hence we need to establish their uniform boundedness and
equicontinuity. Uniform boundedness, respectively equicontinuity of {pn}n∈N and {τn}n∈N follow from
the boundedness, respectively uniform-continuity of functions p and τ.

It remains to check these properties for {yn}n∈N. For this, note that by virtue of Equation (1) and
Equation (14) we obtain that the inequality

x′(tn + t) = −p(tn + t)
x(tn + t− τ(tn + t))

x(tn + t)
x(tn + t) ≥ −KMx(tn + t)

holds for all t ≥ 0 and n ∈ N. This immediately implies

y′n(t) =
x′(tn + t)

x(tn)
≥ −KMx(tn + t)

x(tn)
= −KMyn(t).

As yn is positive on [−κ, ∞), we obtain inequalities

− KM ≤ y′n(t)
yn(t)

≤ 0 for all t ≥ 0 and n ∈ N. (18)

Integration leads to

− KMt ≤ ln
yn(t)
yn(0)

≤ 0 for all t ≥ 0 and n ∈ N. (19)

Taking into account that yn(0) = 1 for all n ∈ N, we obtain that

e−KMt ≤ yn(t) ≤ 1 (20)

holds for all t ≥ 0 and n ∈ N. Now, Inequalities (20) and (18) imply that {yn}n∈N and {y′n}n∈N are
uniformly bounded on [0, ∞). Furthermore, the uniform boundedness of {y′n} yields that functions
yn are globally Lipschitz continuous with a common Lipschitz constant, and consequently {yn}n∈N is
uniformly equicontinuous.

In view of the above, by the Arzelà–Ascoli theorem, we may assume (by passing to a subsequence
without changing notation) that the limits

y(t) := lim
n→∞

yn(t), q(t) := lim
n→∞

pn(t) and σ(t) := lim
n→∞

τn(t) (21)

exist and are continuous on [0, ∞), and the convergence is uniform on every bounded subinterval of [0, ∞).
Note that

e−KMt ≤ y(t) ≤ 1 (22)

also holds for all t ≥ 0 and n ∈ N.
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Furthermore, from Equation (16), together with the uniform continuity of functions p and τ and the
uniform equicontinuity of {yn}n∈N, we obtain that {y′n}n∈N is also equicontinuous on [κ, ∞). Recall that
the sequence {y′n}n∈N is uniformly bounded on [0, ∞). Hence, according to the Arzelà–Ascoli theorem,
we may assume (after passing to a subsequence if necessary) that the limit limn→∞ y′n(t) exists for all
t ∈ [κ, ∞), and the convergence is uniform on all bounded subintervals of [κ, ∞). This combined with the
fact that limn→∞ yn(κ) = y(κ) yields (see, e.g., Theorem 7.17 of [18]) that

y′(t) = lim
n→∞

y′n(t)

holds for all t ≥ κ. By virtue of Equation (17),

y′(t) = − lim
n→∞

pn(t)yn(t− τn(t)) (23)

is satisfied for all t ≥ κ. From Equation (21) and the (uniform) equicontinuity of {yn}n∈N, one can easily
derive that

lim
n→∞

yn(t− τn(t)) = y(t− σ(t))

holds for all t ≥ κ. Thus, Inequality (22) impies that y is a positive solution of equation

y′(t) = −q(t)y(t− σ(t)). (24)

As a final step, we will apply Theorem 1 (i) to show that every solution of Equation (24) is oscillatory,
which is a contradiction. Thus, we need to verify that Equation (24) fulfils the hypotheses imposed on
Equation (1) and that Inequality (5) holds.

First, observe that q(t) ∈ [0, M] and σ(t) ∈ [0, κ] for all t ≥ κ follow immediately from their definitions
and from the assumptions on p and τ, respectively. Note that we have not yet shown that σ(t) is positive
for all t.

Next, we prove that Inequality (5) is satisfied. For this, let us fix t ≥ κ and note that, since pn converges
uniformly to q on the interval [t− σ(t), t], we obtain

∫ t

t−σ(t)
q(s) ds = lim

n→∞

∫ t

t−σ(t)
pn(s) ds = lim

n→∞

(∫ t

t−τn(t)
pn(s) ds +

∫ t−τn(t)

t−σ(t)
pn(s) ds

)
.

The functions pn are uniformly bounded, and τn(t)→ σ(t), as n→ ∞, so the limit of the last integral
vanishes. This in turn leads to∫ t

t−σ(t)
q(s) ds = lim

n→∞

∫ t

t−τ(tn+t)
p(tn + s) ds

= lim
n→∞

∫ tn+t

tn+t−τ(tn+t)
p(u) du

= lim
n→∞

A(tn + t) = lim
n→∞

A(tn) = B >
1
e

.

Here, the last inequality and the last equality hold by assumption, whereas the last but
one equality follows from the slowly varying property of A. Hence,

∫ t
t−σ(t) q(s) ds is constant B,

and thus Inequality (5) holds.
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The only condition that still needs to be verified is that σ is positive for all t ≥ κ. Notice that this
follows immediately from the above formulas: since

0 < B =
∫ t

t−σ(t)
q(s) ds ≤ Mσ(t)

holds for all t ≥ κ, thus σ(t) ≥ B/M for all t ≥ κ.
Therefore, Theorem 1 (i) can be applied for Equation (24) with τ := σ, t0 := κ and p := q to obtain

that every solution of Equation (24) is oscillatory, which contradicts Inequality (22).

The following lemma may be helpful to verify the slowly varying property of A without having to
evaluate it.

Lemma 2. For some t0 ∈ R and positive number κ, let p : [t0, ∞) → R be bounded and locally integrable,
and τ : [t0, ∞)→ [−κ, κ] be any function. If both p and τ are slowly varying at infinity, then so is the function

A : [t0 + κ, ∞)→ R, A(t) :=
∫ t

t−τ(t)
p(s) ds.

To prove this lemma, we first need to state the following result (see Lemma 1.1 of [17]).

Lemma 3. If p : [t0, ∞)→ R is Lebesgue measurable and slowly varying at infinity, then, for all finite interval I,
sups∈I |p(t + s)− p(t)| → 0, as t→ ∞.

Proof of Lemma 2. For t ≥ t0 + κ, we have

A(t) =
∫ t

t−τ(t)
p(s) ds =

∫ 0

−τ(t)
p(t + u) du =

∫ 0

−τ(t)
p(t + u)− p(t) du + τ(t)p(t). (25)

From this and the triangle inequality, we obtain that, for any fixed r ∈ R, the inequalities

|A(t + r)− A(t)| ≤
∣∣∣∣∫ 0

−τ(t+r)
p(t + r + u)− p(t + r) du

∣∣∣∣+ ∣∣∣∣∫ 0

−τ(t)
p(t + u)− p(t) du

∣∣∣∣
+
∣∣τ(t + r)p(t + r)− τ(t)p(t)

∣∣
≤
∫ κ

−κ
|p(t + r + u)− p(t + r)| du +

∫ κ

−κ
|p(t + u)− p(t)| du

+
∣∣τ(t + r)p(t + r)− τ(t)p(t)

∣∣
≤ 2κ

(
sup

u∈[−κ,κ]
|p(t + r + u)− p(t + r)|+ sup

u∈[−κ,κ]
|p(t + u)− p(t)|

)
+ |p(t + r)||τ(t + r)− τ(t)|+ |τ(t)||p(t + r)− p(t)|

hold. Now, if we let t → ∞, then the last two suprema vanish due to Lemma 3 and because p is slowly
varying. On the other hand, the last two terms also tend to 0, thanks to boundedness and to the slowly
varying property of functions τ and p.

Therefore, limt→∞ A(t + r)− A(t) = 0 holds for all r ≥ 0.

Note that, for A to be slowly varying, it is not sufficient to assume merely that at least one of p and τ

is slowly varying. This is the case even under the additional assumptions of Theorem 3 on p and τ. This
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can be readily seen by considering examples p ≡ 1 and τ(t) = 2 + sin t, and τ ≡ π and p(t) := 2 + sin t,
respectively. In both cases, function A will be 2π-periodic, but nonconstant, so it cannot be slowly varying.

Our last theorem is a corollary of Lemma 2 and Theorem 3, and it gives another generalization
of Theorem 1 of [14] in case p is bounded.

Theorem 4. For some positive numbers M and κ let p : [t0, ∞)→ [0, M] and τ : [t0, ∞)→ (0, κ] be continuous
and slowly varying at infinity. Then Condition (12) implies that all solutions of Equation (1) are oscillatory.

Proof. First, Lemma 2 infers that function A from Equation (11) is slowly varying. As already noted after
Theorem 4 of [15], the slowly varying property together with continuity implies uniform continuity. Hence,
p and τ are uniformly continuous, so Theorem 3 applies, which finishes the proof.

Let us briefly consider the case when p is unbounded, and slowly varying. If we further assume that
p(t) > 0 holds for large t, and τ is such that there exists some τ0 ∈ (0, κ], for which lim inft→∞ τ(t) ≥ τ0

holds and t− τ(t) is nondecreasing (note that Theorem 1 of [14] meets these assumptions), then, using
the slowly varying property of p, it can be easily shown that lim supt→∞

∫ t
t−τ(t) p(s) ds = ∞. In particular,

Condition (4) is fulfilled, which yields that all solutions are oscillatory regardless of Condition (12).

3. Example

Before concluding the paper, let us consider the following example, which may look a bit artificial.
This is because our intention was to design it in such a way that—hopefully—no other known results
could guarantee the oscillation of all solutions. Obviously, it is not possible to be aware of all the related
results, and to check whether they are applicable; nevertheless, we shall exclude applicability of many
classical, as well as many recent theorems.

Consider the equation

x′(t) +
(

1
2πe

+ δ sin
√

t
)

x
(
t−
(
2π + ε cos

√
t
))

= 0, t ≥ 0, (26)

where δ ∈ (0, 1
2πe ) and ε ∈ (0, 2π) are small positive constants that will be determined later. Functions p

and τ are clearly positive and bounded, so Equation (26) is a special case of Equation (1) with

p(t) =
1

2πe
+ δ sin

√
t, τ(t) = 2π + ε cos

√
t and t0 = 0.

Note that the functions sin
√

t and cos
√

t are slowly varying at infinity, since their derivatives vanish
there (see Equation (13)). This in turn yields that both p and τ are slowly varying, and, thus, in view of
Lemma 2, A is slowly varying as well.

On the other hand, a direct calculation shows that

A(t) =
2π + ε cos

√
t

2πe
+ δ

∫ t

t−τ(t)
sin
√

s ds.

This immediately implies

2π − ε

2πe
− δ(2π + ε) ≤ lim inf

t→∞
A(t) ≤ lim sup

t→∞
A(t) ≤ 2π + ε

2πe
+ δ(2π + ε). (27)
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Now, by setting tn = (2nπ)2 and t′n = ((2n + 1)π)2 for all n ∈ N, we obtain that

A(tn) =
2π + ε

2πe
+ δ

∫ tn

tn−τ(tn)
sin
√

s ds ≥ 2π + ε

2πe
− δ(2π + ε)

and

A(t′n) =
2π − ε

2πe
+ δ

∫ t′n

t′n−τ(t′n)
sin
√

s ds ≤ 2π − ε

2πe
+ δ(2π + ε)

hold for all n ∈ N. These together with Inequalities (27) yield the estimates

2π + ε

2πe
− δ(2π + ε) ≤ lim sup

t→∞
A(t) ≤ 2π + ε

2πe
+ δ(2π + ε)

and
2π − ε

2πe
− δ(2π + ε) ≤ lim inf

t→∞
A(t) ≤ 2π − ε

2πe
+ δ(2π + ε).

Finally, for γ > 0, let ε := ε(γ) := 4πeγ and δ := δ(γ) := γ
2π+ε . Then, the above estimates

take the form

1
e
+ γ ≤ lim sup

t→∞
A(t) ≤ 1

e
+ 3γ and

1
e
− 3γ ≤ lim inf

t→∞
A(t) ≤ 1

e
− γ.

It is now easy to see that, for all γ ∈
(
0, 1

3e
)
, all assumptions of Theorem 3 (and also of Theorem 4)

are fulfilled, and therefore all solutions are oscillatory. Note also that, since lim supt→∞ A(t) → 1
e as

γ→ 0+, and lim inft→∞ A(t) < 1
e for all γ ∈

(
0, 1

3e
)
, by choosing γ > 0 small enough we can rule out the

application of Conditions (4), (5) and various other sufficient conditions for the oscillation of all solutions
of Equation (26) (see e.g., conditions (C3)–(C12) from [10]). Since function τ is nonconstant, therefore
neither Condition (8) nor Theorem 2 can be applied to guarantee oscillation.

4. Conclusions

It has been known for almost forty years that, for the oscillation of all solutions of equation

x′(t) + p(t)x(t− τ(t))= 0, t ≥ t0,

it is necessary that lim supt→∞ A(t) ≥ 1/e holds, where A(t) :=
∫ t

t−τ(t) p(s) ds (see [13]). In our main result
(see Theorem 3), we showed that, if the function A is slowly varying at infinity (see Formula (9)), then,
under mild additional assumptions on p and τ, the ’almost necessary’ condition lim supt→∞ A(t) > 1/e is
sufficient for the oscillation of all solutions.

In Theorem 4, we formulated a corollary of Theorem 3. The advantage of this theorem is that its
assumptions can be verified more easily.

The applicability and novelty of our results were demonstrated in Section 3.
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