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Abstract: In this work, we propose an efficient multi-stage homotopy perturbation method to find
an analytic solution to the fractional Lotka-Volterra model. We obtain its order of accuracy, and we
study the stability of the system. Moreover, we present several examples to show of the effectiveness
of this method, and we conclude that the value of the derivative order plays an important role in the
trajectories velocity.
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1. Introduction

The well-known predator-prey model was introduced by Lotka [1] and Volterra [2]. The resulting
model is the classical Lotka-Volterra system of ordinary differential equations, which is proposed to
provide a model for two-species competition. This model has potential applications in various fields of
science like biology, sociology, medicine, history, economics, and ecology, among others. In addition,
competition between more than two species has been studied in the field of mathematical biology
using Lotka-Volterra-type systems, describing multispecies population dynamics. Many interesting
results on the dynamical behavior for the solutions have been found in [3–7], such as the existence and
uniqueness of solutions, asymptotic behavior, and bifurcations of the system.

On the other hand, fractional differential equations have been highly attractive to many scientists
due to the fact that these equations have many applications in a wide range of phenomena (see [8–13]).
In comparison with standard derivatives of integer order, the fractional order derivatives are
characterized by their memory; i.e., the rate of change of a function near a point is affected by
the history in the time domain of definition rather than just near the point itself.

In this note, we study the fractional Lotka-Volterra model

Dαx(t) = ax(t)− bx(t)y(t), (1)

Dβy(t) = −cy(t) + dx(t)y(t),

where a, b, c, and d are non-negative constants, α, β ∈ (0, 1], and Dα, and Dβ is the Caputo fractional
derivative. Javeed et al. [14] use the homotopy perturbation method (HPM) (see [15]) to solve fractional
partial differential equations. Rafei et al. [16], using HPM, found an approximation to the solution for
the classic Lotka-Volterra model (α = β = 1). In addition, Kadem and Baleanu [17] use HPM to find
an analytic approximate solution for the coupled Lotka-Volterra equations. On the other hand, HPM
was implemented by Chowdhury et al. [18] to subintervals of equal length from a partition of total
time evolution. This algorithm is known as the multistage homotopy perturbation method (MHPM).
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Moreover, the model (1) was studied by Das and Gupta [19] applying HPM, where the parameters
a, b, c, y d depend on time. However, its solution is valid only for a small time interval. Other numerical
methods have been used to study nonlinear fractional differential equations (see [20–22]); for example,
Pilar et al. [23], using Diethelm’s numerical algorithm, find solutions when a = b = c = d = 1 and
α = rβ, r ∈ N.

In this work, we propose to implement an MHPM to the fractional Lotka-Volterra model defined
in (1) in order to obtain an analytical solution for the model, and an expression for the truncation error
is given. Through Lemma 2, the stability of the system is guaranteed, which is analogous to the results
obtained by Ahmed et al. [8] and Elsadany et al. [9]. Finally, several examples are presented to show
the effectiveness of this method.

2. Preliminaries

In this section, we give some basic definitions and properties of fractional calculus theory that are
used in this work.

Definition 1. The Riemann–Liouville fractional integral of order α ∈ R+ is defined by

(Iα
a x)(t) =

1
Γ(α)

∫ t

a

x(τ)
(t− τ)1−α

dτ,

where Γ is the gamma function.

It can be directly verified that

(Iα
0 trα) =

Γ(1 + rα)

Γ(1 + (1 + r)α)
t(1+r)α, (2)

where r ≥ 0.

Definition 2. The Caputo fractional derivative of order α ∈ R+ is defined by

(Dα
a x)(t) = (Im−α

a Dm
a x)(t),

where D = d/dt, m = [α] + 1 for α /∈ N and m = α for α ∈ N.

Lemma 1. Let α ∈ (0, 1] and x(t) be a differentiable function in R. Then (Iα
a Dα

a x)(t) = x(t)− x(a).

Proof. The proof can be found in [24].

Lemma 2. We consider the fractional-order system

Dα1 x(t) = f1(x(t), y(t)), (3)

Dα2 y(t) = f2(x(t), y(t)),

where α1 6= α2. Suppose that m is the least common multiple of the denominators ui of αi, where αi =

vi/ui, vi, ui ∈ Z+ for i = 1, 2, and we set γ = 1
m . System (3) is asymptotically stable at the equilibrium point

(x∗, y∗) if
|arg(λ)| > γ

π

2

for all roots λ of the following equation det(diag([λmα1 , λmα2 ])− J) = 0, and J = ∂ f /∂x is the Jacobian
matrix evaluated in (x∗, y∗), where f = [ f1, f2]

T .

Proof. The proof can be found in [25].
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3. Main Result

Theorem 1. Let t0 = 0 < t1 < t2 < · · · < tm = T be a partition of [0, T], such that

tk = k
T
m

, for each k = 1, · · · , m,

and let (xk(t), yk(t)), where t ∈ [tk−1, tk], be solutions for the following initial value problems:

Dα
tk−1

xk(t) = axk(t)− bxk(t)yk(t), (4)

Dβ
tk−1

yk(t) = −cyk(t) + dxk(t)yk(t),

with x0k = xk(tk) and y0k = yk(tk), for k = 0, 1, · · · , m. Therefore, the solution for the system (1) is

x(t) =
m

∑
k=1

I[tk−1,tk ]

∞

∑
j=0

vjk,

y(t) =
m

∑
k=1

I[tk−1,tk ]

∞

∑
j=0

wjk, (5)

where

I[tk−1,tk ]
=

{
1, if t ∈ [tk−1, tk],

0, if t /∈ [tk−1, tk].

Proof. In order to solve (4) for each k, we apply the homotopy perturbation method (see [15]). First,
we define the homotopy

(1− p)
(

Dα
tk−1

vk − Dα
tk−1

xk(tk)
)
+ p

(
Dα

tk−1
vk − avk + bvkwk

)
= 0,

(1− p)
(

Dβ
tk−1

wk − Dβ
tk−1

yk(tk)
)
+ p

(
Dβ

tk−1
wk + cvk − dvkwk

)
= 0, (6)

where p ∈ [0, 1]. Let us suppose that the solution to (4) is given by

vk = v0k + pv1k + p2v2k + p3v3k + · · · ,

wk = w0k + pw1k + p2w2k + p3w3k + · · · , (7)

where vik, wik, i ∈ N are functions to be determined. Therefore, the solution will be

xk = lim
p→1

vk = v0k + v1k + v2k + v3k + · · · ,

yk = lim
p→1

wk = w0k + w1k + w2k + w3k + · · · .

In order to find the functions vik and wik, since the Caputo’s fractional derivative of a constant is
zero, Dα

tk−1
xk(tk) = 0 and Dβ

tk−1
yk(tk) = 0, we note that from the system (6), it follows that

Dα
tk−1

vk = p(avk − bvkwk),

Dβ
tk−1

wk = p(−cvk + dvkwk). (8)
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Substituting (7) in the above system, we get

∞

∑
i=0

pi Dα
tk−1

vik = ap
∞

∑
i=0

pivik − bp
(

v0kw0k + p[v0kw1k + v1kw0k]

+ · · ·+ pn
n

∑
j=0

vjkw(n−j)k · · ·
)

,

∞

∑
i=0

pi Dα
tk−1

wik = −cp
∞

∑
i=0

piwik + dp
(

v0kw0k + p[v0kw1k + v1kw0k]

+ · · ·+ pn
n

∑
j=0

vjkw(n−j)k · · ·
)

.

Then, matching the coefficients, we obtain the following differential equations for vik and wik:

Dα
tk−1

v0k = 0,

Dα
tk−1

v1k = av0k − bv0kw0k,

Dα
tk−1

v2k = av1k − b(v0kw1k + v1kw0k),

Dα
tk−1

v3k = av2k − b(v0kw2k + v1kw1k + v2kw0k),

· · ·

Dα
tk−1

v(n+1)k = avnk − b
n

∑
j=0

vjkw(n−j)k,

and

Dα
tk−1

w0k = 0,

Dα
tk−1

w1k = −cw0k + dv0kw0k,

Dα
tk−1

w2k = −cw1k + d(v0kw1k + v1kw0k),

Dα
tk−1

w3k = −cw2k + d(v0kw2k + v1kw1k + v2kw0k),

· · ·

Dα
tk−1

w(n+1)k = −cwnk + d
n

∑
j=0

vjkw(n−j)k.

Applying Lemma 1, we get explicit expressions for vik y wik. For example,

v1k =
v0k(a− bw0k)

Γ(1 + α)
(t− tk−1)

α,

v2k =
v0k(a− bw0k)

2

Γ(1 + 2α)
(t− tk−1)

2α − bv0kw0k(−c + dv0k)

Γ(1 + α + β)
(t− tk−1)

α+β,

v3k =
v0k(a− bw0k)

3

Γ(1 + 3α)
(t− tk−1)

3α +
bv0kw0k(−a + bw0k)

Γ(1 + 2α + β)

[
− c + 2dv0k

+
Γ(1 + α + β)(−c + dv0k)

Γ(1 + α)Γ(1 + β)

]
(t− tk−1)

2α+β

− (c− dv0k)
2w0kbv0k

Γ(1 + α + 2β)
(t− tk−1)

α+2β,
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and

w1k =
w0k(−c + dv0k)

Γ(1 + β)
(t− tk−1)

β,

w2k =
w0k(−c + dv0k)

2

Γ(1 + 2β)
(t− tk−1)

2β +
dv0kw0k(a− bw0k)

Γ(1 + α + β)
(t− tk−1)

α+β,

w3k =
w0k(−c + dv0k)

3

Γ(1 + 3β)
(t− tk−1)

3β +
dv0kw0k(−c + dv0k)

Γ(1 + α + 2β)[
Γ(1 + α + β)(a− bw0k)

Γ(1 + α)Γ(1 + β)
+ a− 2bw0k

]
(t− tk−1)

α+2β

+
dv0kw0k(a− bw0k)

2

Γ(1 + 2α + β)
(t− tk−1)

2α+β.

Therefore, from the above calculations, Equation (5) follows.

Now, if we only take the first n terms for the series in (5), the order of accuracy for the solution is
O((∆t)nβ+α) and O((∆t)nα+β), when ∆t→ 0, for x(t) and y(t), respectively. That is,

x(t) =
m

∑
k=1

I[tk−1,tk ]

n

∑
j=0

vjk + O((∆t)nβ+α),

y(t) =
m

∑
k=1

I[tk−1,tk ]

n

∑
j=0

wjk + O((∆t)nα+β).

Here, ∆t is the partition length.

Convergence

In order to demonstrate the efficiency of our method, we carry on an analysis of the series
convergence for various values of the truncation parameters n and m that control the approximation
accuracy. Here, the time step is ∆t = T/m, where T is the total length of the time interval (see Figure 1).
We take T = 1 as a reference value, and α = β.
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Figure 1. Convergence error.

4. Examples

In order to illustrate the proposed method, we present some examples. Let (x0, y0) = (3, 1) be the
initial condition, a = 0.4, b = 0.37, c = 0.3, d = 0.05, m = 200, and n = 50 be the parameter values,
t ∈ [0, 20], and ∆t = 0.1. We consider the following cases for α and β.

Case 1. α = β taking the values 0.25, 0.5, 0.75, and 1.

Case 2. α = 0.25 fixed and β taking the values 0.5, 0.75, 1.

5. Conclusions

In this work, we found an analytic solution for a fractional Lotka-Volterra model using the
multistage homotopy perturbation method. The effectiveness of this method is proven with different
values for the parameters m, n, and α. In Figure 1, we observe that for a given error, we can choose the
partition size and the number of terms for the solution series. We note that when α is getting close
to zero, bigger values for m and n are needed in order to obtain a smaller error. From Figure 2, we
conclude that the velocity trajectories depend of the fractional derivative order; if the order is close
to zero, the trajectories get closer to the critical point faster. Moreover, we can observe that if α and β

tend to one, the trajectories tend to be periodic, as in the classical case. In Figure 3, we take α not equal
to β. A similar behavior to Case 1 is observed for the trajectories. In addition, lets point out that in
the fractional Lotka-Volterra model, the solutions are not periodic. Then, the symmetry present in the
ordinary case is broken when a fractional derivative is considered; this asymmetry is a typical feature
of the fractional order systems of differential equations. Therefore, the model studied complements
and generalizes the symmetric one. Finally, note that the behavior of the solutions depicted in Figures 1
and 2 is consistent with the theoretical result given in Lemma 2.
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(a)α = β = 0.25

(b)α = β = 0.50

(c)α = β = 0.75

(d)α = β = 1

Figure 2. Case 1.
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(a)α = 0.25, β = 0.5

(b)α = 0.25, β = 0.75

(c)α = 0.25, β = 1

Figure 3. Case 2.
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