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Abstract: In this paper, we introduce the notion of quadratic quasicontractive mapping and prove
two generalizations of some classical fixed point theorems. Furthermore, we present some examples
to support our main results.
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1. Introduction

In 1962, Edelstein [1] proved the following fixed point theorem.

Theorem 1. Let (X, d) be a compact metric space and let T : X — X be a mapping such that d (Tx, Ty) <
d(x,y) forall x,y € X with x # y. Then, T has a unique fixed point.

In 1973, Hardy and Rogers [2] extended Theorem 1. They proved the following theorem.

Theorem 2. Let (X, d) be a compact metric space and let T : X — X be a mapping satisfying inequality

d(Tx,Ty) < A-d(x,Tx)+B-d(y, Ty) + C-d (x,y) 1)
forall x,y € X and x # y, where A, B, C are positive and A + B 4+ C = 1. Then, T has a unique fixed point.

Other generalizations of Theorem 1 have appeared in recent years, see [3-8].
Let X be a Banach space and C a closed convex subset of X. Gregu$ [9] proved the
following theorem.

Theorem 3. Let T : X — X be a mapping satisfying inequality
ITx = Ty|| < allx = y[l +blx = Tx|[ + c[ly — Ty|| 2
forall x,y € C,where0 <a <1,b>0,c >0anda+b+c = 1. Then, T has a unique fixed point.

Many theorems that are closely related to Gregus’s Theorem can be found in [10-21]. In this paper,
we will prove two generalizations of Theorem 1, Theorem 2, and Theorem 3.
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2. Main Results

Before stating the main results, we introduce the following type of quasicontraction.

Definition 1. A mapping T : X — X of a metric space X into itself is said to be a quadratic quasicontractive if
there exists a € (O, %) such that

d*(Tx,Ty) < a-d*(x, Tx) +a-d* (y, Ty) + (1 —2a) - d* (x,y) 3)

forall x,y € X and a strict quadratic quasicontraction if in Relation (3) we have the strict inequality for all
x,y € X with x # y.

Lemmal. Ifa,B,v€R, a,8,7v>0,a € (0,%) and b € (0,1), then

(i) ba+ (1—0b)B < \/ba?+ (1—D)B?, 4)

(il)aw +ap + (1 —2a) vy < \/azxz—l—aﬁ2+(1—2a) 2. )
Proof. (i) Inequality (4) is equivalent to
b2a® +2b (1 —b)ap+ (1 —b)* B> < ba® + (1 —b) B (6)

or

b(1-b)(x—p)* >0, (7)

which is obvious.
(if) We have by (i)

aa+aﬁ+(1—2a)fy:2a.#Jr(l—Za)'y

\/2a~ (a;‘B>2+(1—2a)'yz< \/211-“242_[;2+(1—2a)72

= \/azxz +ap?+(1—2a)y2

IN

O

Remark 1. If T satisfies Inequality (1), then T is a strict quadratic quasicontraction. Indeed, suppose that T
satisfies Inequality (1). Then, we have by symmetry

d(Tx,Ty) < A-d(y,Ty)+B-d(x,Tx)+C-d(x,y). 8)
By Inequalities (1) and (8), we obtain that

A+B
2

d(Tx, Ty) < [d(x, Tx) +d (y, Ty)] + C-d(x,y) 9)

and 448 + 438 L C= A+ B+C=1
By Inequality (9) and Lemma 1 taking « = d (x, Tx), B =d (y, Ty) and v = d (x,y) , we obtain

ATB 2+ 258 2Ty e (), (10)

d* (Tx, Ty) < 5

hence T satisfies Inequality (3) .
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Remark 2. We denote by
E,(x,y)=a-d"(x,Tx)+a-d" (y,Ty) + (1 —2a) -d" (x,y),

forn e {1,2}, x,y € X.
By Lemma 1, we have that d* (Tx, Ty) < Ex (x,y) ifd (Tx, Ty) < E1 (x,y).

The following example shows that not every strict quadratic quasicontraction satisfies Inequality (1).

Example 1. Let X = [—1,1],d (x,y) = |x —y|and T: X — X, Tx = 0for -1 < x < L and Tx = —1 for
3 < x < 1. Then, T satisfies Inequality (3) but does not verify Inequality (1).

Ifx,y e [—1, %} orx,y € (%, 1} , then d (Tx, Ty) = 0 and Inequality (3) is obvious.
Ifx € [—1, ﬂ andy € (%,1}, then d (Tx, Ty) = 1 and

4 4 1
B (vy) = 5 dTo)+g-d Ty +5 4 (vy)
_ 4.4 2, 1,

= 5% +9(y+1) +9(y x)

> éx2+il 1+1 2+1 1—x i
-9 9\2 9\2

4 1/1 2

Hence, Inequality (3) holds with a = §.
Forx=0andy = 3, we have d (Tx, Ty) = 1 and

Ei(x,y) = a-d(x,Tx)4+a-d(y,Ty)+ (1—2a)-d(x,y)
7a, 3(1-20) _a+3
4 4 T4

<1,
so Inequality (1) is not satisfied.

Theorem 4. Let (X, d) be a compact metric space and let T : X — X be a strict quadratic quasicontraction.
Then, T has a unique fixed point v € X. Moreover, if T is continuous, then, for each x € X, the sequence of
iterates {T"x} converges to v.

Proof. Taking y = Tx in Inequality (3), we have for all x € X with x # Tx
d? (Tx, sz) <a-d*(x,Tx) +a-d? (Tx, sz) +(1—2a)-d*(x,Tx).

This implies d (Tx, T?x) < d (x, Tx).
Let B = inf {d (x, Tx) : x € X}. By compactness of X, there exists a sequence {x,} C X such that
xp >ueX, Txy, >veXand = lgnd(xn,Txn) =d(u,v).
n—oo
If there exists a subsequence {xn(k)} of {x, } such that x,;) = v for every k € N, then u = vand

Tv = v. Otherwise, there exists N € N such that x,, # v for every n > N. Taking x = x, and y = v in
Inequality (3), we obtain

d* (Tx,, Tv) < a-d* (xy, Txy) +a-d* (v, To) + (1 —2a) - d* (xn,0).



Symmetry 2019, 11, 1329 40f12

Asn — oo, we get
d* (v, Tv) < a-d* (u,0) +a-d* (v, To) + (1 —2a) - d* (u,v).

This implies d (v, Tv) < d (u,v) = B. By definition of 8, we have d (v, Tv) = B.
If B > 0, since d (Tzv, Tv) < d (v, Tv) = B, we have a contradiction. Therefore, = 0, so u = v.
If w is another fixed point of T, by Inequality (3), we have

d* (To, Tw) < a-d* (v, To) +a - d* (w, Tw) + (1 — 2a) - d* (v, w),

where
% (v,w) < (1—2a) -d* (v,w),

which is a contradiction.

Now suppose T is continuous. Take any xy € X and define a sequence {x, = T"xg}. If there
exists N € NU {0} such that x5 = v, then x,, = v for all # > N and then x,, — v. Otherwise, we have
x, #vforalln € NU{0}.

Since v is unique, we have x, # x,4; for every n € NU {0}. Therefore, d (x,11,x,) =
d(Txp, Txy—1) < d(xn,x,-1) for every n € N, so sequence {d (x,,11, )} is decreasing and positive.
Letb = nlglgo d (xy+1,Xn). The assumption that b > 0 leads to the contradiction. By compactness of X,

sequence {x,} contains a subsequence {xn(k)} such that x,,j) — z € Xask — o.

Because T is continuous, we have

0<b= limd (xn(k)+1,xn(k)) =d(Tz,z),

n—oo
and
0<b= nlglc}od (xn(k)+2/ xn(k)+1) =d (T2z, Tz) .
Then, we get d (T2z, Tz) =d(Tzz) = b > 0, which is a contradiction. Thus, b = 0.
Since
d2 (xn—i—l/ U) = d2 (T.Xn, TU) <a- d2 (xn, Txn) +a- d2 (U, T'U) + (1 . Za) ) dz (xn, v) ,
we obtain

< (1-2a)-c2+a-b2,

where ¢, = d (x,,0) and by, = d (x4, X 11)-
Since d (xp,,v) < d (xp41,0) +d (xn, Xy41), we get ¢y < ¢y41 + by, hence

Chp1 < (1—2a) - (cny1 +bu)* +a- by

1—2a 2 1-2a\2
(Cn+1—2[1'bn> < 1_ﬂ+< 2[,1 >‘|b%

Taking the limit as n — oo, we obtain lgr1 cpt1 =0, hence x, —v. O
n e

This implies

Remark 3. In Example 1, X is a compact metric space and T is a strict quadratic quasicontraction and
asymptotic regular.

In the following example, T is a strict quadratic quasicontraction and not asymptotic regular.
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Example 2. Let X = [-2,-1]U{0}U[1,2],d (x,y) =[x —y|and T : X = X,

X, ifxe[-2,-1),
Tx = 0, ifx € {—1,0},
=2 ifxe[1,2].

Then, T is not asymptotic reqular and satisfies the hypothesis of Theorem (4).
It is obvious that (X, d) is a compact metric space. By induction, it is easy to prove that

2" 4+1

T"2 = (_1)11 on

for everyn > 1.

Thus,
2l 41 2741
= >

d (172, 112) = S5 5 > 2

so T is not asymptotic regular.

Ifx,y € [-2,—1), x #y, then

2
2 _ (x—y) 1
ac(Tx, Ty) = ) <1 and

2 2
Ez(x,y):w(l 23x> +a-(123y> +(1—2a) (y — x)* > 4a + 4a = 8a.

Fora > 35, we have d* (x,y) < E; (x,y).
Ifxe[-2,-1),y = —1, then

d(Tx, Ty) = 1_xand
Ei(x,y)=a- <1_3x>+a+(1—2a)(x+l):2_27a~x+2;a.
Taking a > 3, we have =% > —1 > x,s0 (7a—3)-x <1—a,then1—x < (2—7a) - x+2—a.

Hence, d (Tx, Ty) < E1 (x,y) and by Remark (2) we get d* (x,y) < Ea (x,y).
Ifxe[-2,-1),y =0, then

X
and

d(Tx, Ty) = 1-

1-—-3x a—2 a
5 +(1—-2a) (—x) = 7 ~x+§.
Sincex < —landa < §, wehave (1 —a)-x <a—1,501—x < (a—2)-x+a. Thus, d (Tx, Ty) <
E1 (x,y), and then d* (x,y) < E3 (x,y).
Ifxe[-2,-1),y € [1,2], then

Ei(x,y)=a-

1-x —-1-y 24y—x

5 5 > and

d(Tx, Ty) =

1—3x+a_1+3y 2-a+(2—a)-(y—x)
2 2 2 '
Sincey —x >2anda < 1, wehave2a—2 > (a—1)-(y —x),s02+y—x<2-a+(2—a)-(y —x).
Thus, d (Tx, Ty) < E1 (x,y), and then d* (x,y) < Ez (x,y).
Ifx,y € {—1,0}, x #y, we have d* (x,y) = 0 < E (x,y).
Ifx=—1,y € [1,2], then

+(1-2a)-(y—x) =

Ei(x,y)=a-

11y,

d(Tx, Ty) = nd
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2-a)(y+1)
> .
Sincey > landa < }, we have 1 +y < (2—a) (y+1). Thus, d (Tx, Ty) < Ey (x,y), and then
4 (x,y) < E2 (x,y)-
Ifx=0,y € [1,2], then

Ey(x,y)=a+a-

143
o (1-20) (y+1) =

d(Tx, Ty) = 1—;y and

2-a)y+a

> .

Fory > 1, wehavel —a < (1—a)y,sol+y < (2—a)y+a. Thus, d(Tx,Ty) < Eq(x,y), and
then d? (x,y) < Ep (x,y). Fory = 1, we have d (Tx, Ty) = 1 = E; (x,y), but Ey (x,y) = 4a+1—2a =
1+ 2a > d*(Tx, Ty).

Ifx,y € [1,2], x #y, then

+(1—-2a)-y=

1+3
Ei(x,y)=a- > Y

d(Tx, Ty) = ly — x| <

1
> Eand
El(x,y):a~1+23x—0—a~1+23y (1—-2a)-|y—x| > 4a.

Tuking a > %, we get d (Tx, Ty) < Eq (x,y), and then d* (x,y) < Ex (x,v).
We note that, for a = %, we have that T is a strict quadratic quasicontraction.

Lemma 2. Let C be a nonempty closed subset of a complete metric space (X,d) and let T : C — Cbea
quadratic quasicontraction mapping. Assume that there exist constants a,b € R such that 0 < a < 1 and
b > 0. If for arbitrary x € C there exists u € C such that d (u, Tu) < a-d(x,Tx)andd (u,x) < b-d(x,Tx),
then T has a unique fixed point.

Proof. Let xy € C be an arbitrary point. Consider a sequence {x,} C C satisfying

d (Txﬂ+1lx7l+l) S a- d (Txl’l/ xi’l) 7
d(xp41,%0) <b-d(Txy,x,),n=0,1,2,..

Since
d(xps1,%n) <b-d(Txp,xn) <b-a-d(Tx,_1,%,-1) < .. <b-a"-d(Txg,x0), (11)

it is easy to see that {x, } is a Cauchy sequence. Because C is complete, there exists v € C such that

nlgn X, = v. By Inequalities (11) and the sandwich theorem, we get nlgn d(xy, Txy) = 0 and then

lim Tx, = v and we have
n—oo

d* (Tx,, To) < a-d* (xy, Txy) +a-d* (v, To) + (1 —2a) d* (x,,v).
Taking the limit as n — oo, we obtain
d? (v, Tv) < ad? (v, Tv).

This implies d (v, Tv) = 0,s0 Tv = v.
If u is another fixed point of T, then we have

d* (Tu, To) < a-d* (u, Tu) +a-d* (v, Tv) + (1 —2a) d* (u,0),

hence
d? (u,0) < (1—2a)d* (u,0).
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Therefore, d (u,v) = 0 and v is the unique fixed point of T. [J

Theorem 5. Let X be a Banach space and C be a closed convex subset of X. Let T : C — C be a mapping
satisfying the inequality:

2 2 2 2
ITx = Ty||* < a-[lx = Tx[|" +a- [ly = Ty[|" + b lx —y| (12)
forall x,y € C, where0 < a < %, b =1—2a. Then, T has a unique fixed point.

Proof. Taking y = Tx in Inequality (12), we have
2 |1? 2 2 |1? 2
Tx—Tx|| <a-|x—Tx||"+a-||Tx—Tx|| +b-|x—Tx||".
Then,

1—a)- || x— 12 < b)-||lx—Tx||* = (1—a)-||x— Tx|?
(I—a)- |[Tx=Tx|| <(a+Db)-[lx—Tx|"=1—a)-|x—Tx[,

SO
HTxszxH < |lx - Tx| (13)

forall x € C.
Let x € Cfixed and z = %sz + %T3x. Since C is convex, we have z € C. Then, by Inequalities
(12) and (13) , we get

2 2 2
HTx - T3xH < a-||lx—Tx|*+a- HT2x - T3xH +b- Hx— szH
2
< 2a-|x—Tx|*+b- (||x— Tx|| + HTx— szH)
< (2a+4b)-|x — Tx|J?
= (1+3b)[lx—Tx|?,
so
HTx - T3xH <V1+43b-|[x—Tx|.
Therefore,
ITx —z|| = 1 (Tx— sz) + E (Tx - T3x)
2 2
< 1 HTxf szH +1 ‘Txf T3xH
- 2 2
1 1
< 5 |lx — Tx| + E\/l +3b-||x — Tx||

1++/14+3b
S - T (14)

In addition,

1 1
Hsz—zH :§HT2X_T3xH < §||x—TxH. (15)
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Now, by Inequalities (12), (13) and (14), we obtain

2 2
Hsz—TzH < a-HTx—T2xH +a-|z—Tz|> +b-||Tx —z|?

< a-|x—=Tx|*+a-|z—Tz|?
2
+b.<1+¢21+*3b> =Tl
= a-|lz—Tz|
+ [a+b~<1+\/21+73b>2 lx - T

In addition, by Inequalities (12), (13) and (15), we have

2 2
HT‘Q’x—TzH < a-Hsz—T?’xH +a-||z—Tz||2+b-HT2x—zH
b
< @ fx=Txf? +a- ||z = Tz|* + 3 - [lx = Ta?
b
= (a+4)-||x—Tx|2+a-||z—Tz|2.
Since
lz—Tz|| = 1(sz—Tz)—i—1<T3x—Tz)
2 2
< EHTZX—TZH—FEHT?)JC—TZ
— 2 2 7
by Inequalities (16) and (17), we obtain
2
1 14++v1+3b
le=Tel| < 2-Ya-fe—TzP+ a+b~<2> g
1 b :
+5- [a- |z — Tz|* + (a+4> = Txﬂ .
If x = Tx, then x is a fixed point of T.
Otherwise, dividing Inequality (18) by % - ||x — Tx||, we get
272
2
Z_HZ Tz|| < a~HZ TZHz—i—a—i—b- 1++v1+43b
[Jx — Tx|| l|x — Tx|| 2
1
|z — Tz|)* b\?
+la——5tat+ ;] .
[l = Tx| 4
2
Denoting M = t, we obtain
[lx=Tx]|
272
b- (1+v1+30) b 3
2VE< |a-t+a+ 1 +<a~t+a+4) :

N|—

x — Tx|?

8of 12

(16)

(17)

(18)
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where

NI—=

2
o b-(1+VI+3D) 0 b\?
m +(a+ > .

Let

1
9l
4 b~(1+\/1+3b) i a b\ 2
f(t) = a%—?—+ m +(a )

for all t > 0. Obviously, f is a decreasing function and

2713 )
()= 2a+b'(1+ H%) +<2a+b>2

4

NI=

= 1-b+

b.(1+\il+73b)2 +( 3b>§‘

We claim that f (1) < 2
Let &« = +/1 4 3b. Obviously, since b € (0,1), we have a € (1,2) and

W2 — a2 —
f(1) = [1— 3 L 121) (1+a)?

1
(ot +20% — 4% — 20+ 15 P 5—a%)?
B 12 4 '

Now,
1
f(1)<2®<¢x + 203 — 442 —20c+15> ( az)z
ot +20% —4a® — 20+ 15 5
) <4+ 5—u

0t 20 — 40% — 20 < 24 (2—\/5—a2)

2_1)< 24 (a® - 1)
2+V5—a?
24
2 -2 < ——. 1
<~ 2++5 “<a(zx+2) (19)

== a(a+2) (oc

Leth:[1,2] >R, h(a) =2+ v5—a?2 le

To prove Inequality (19), we will show that h is an increasing function and # (2) = 0.
2, 12 - 12 12

Wehaveh (¢) =2+ V5 —a2 — 2 4 A& and 1/ (@) = ﬁ—k e P yed

However,

W (&) >0<=48(a+1)V5—0a2 > a®(a+2)°

3 22 5 44 43
DRI/ Sl Gl M e e e 20)
a+1 a+1
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Since ¢ : [1,2] — R, ¢ («) = 48v/5 — a? is a decreasing function with ¢ (2) =48,and y : [1,2] —
R, ¢ (a) = % is an increasing function with ¢ (2) = 128 < 48, we obtain Inequality (20). This
implies Inequality (19), so f (1) < 2. Since f is a decreasing function and f (t) > 2, there exists ¢ < 1
such that t < c. Therefore, ||z — Tz|| < v/c|x — Tx]||.

Now, since

Iz = ]|

AN
|
~
N
=
|
=
_l’_
|
~
@
=
|
a0

IN

1 2
2 (HT x— TxH + || Tx — x||)
1
+= (HT:J’x - szH + HTZx - TxH +||Tx — xH)
2
< Slx-T,
applying Lemma 2, we get that T has a unique fixed point. O

Example 3. Let X = [* (R) be the set of bounded sequences of real numbers and ||x|| = sup |x,|, where
neN

x = {xn},cn- It is known that (X, ||-||) is a Banach space. Let C = {x € X : ||x|| <1} and T: C — C,
%r l:fx - _1/
Tx=4q —1, ifx, € {%,1} foreveryn € N,

0, otherwise,

where x = {xn},cn, ¢ = {c,¢,c,...}. It is obvious that C is closed, convex and not compact. Since T" (—1) =
3 if nis odd and T" (—1) = —1 if n is even, we note that T is not asymptotic regular.

Ifx=—1andy = {yn},cy where y, € [%,1} for every n € N, then

d(Tx, Ty) = gand

3
Ei(x,y) = §a+a-su§(1+yn)+(1—2a)-sug(l—i—yn)
ne ne
3 3 3 3
= — —_ . > _ — — —
2(1—{—(1 a) :1;5(14—%1)*211—%2(1 a) 5

sod (Tx,Ty) < E1 (x,y), and then d* (x,y) < E» (x,v).
Ifx = —1andy = {yn},cn where there exists ng such that y,, ¢ {%, 1} , then

d(Tx, Ty) = %and

3 3
Ei(x,y)=za+a-sup|ys|+ (1 —2a) -sup (1 +yn) > =a.
2 neN neN 2

Hence, for a > L we have d (Tx, Ty) < Eq (x,y), and then d2 (x,y) < Ex (%,y).
If x = {Xn},cn Where x, € [%, 1} foreveryn € Nand y = {yn},cy where there exists ny such that

Yng & {%,1}, then
d(Tx,Ty) =1and

E> (x,y) = a-sup (x, + 1)2 +a- supy%l + (1 —2a) - sup (x, — yn)2 > g,

neN neN neN

1 \O
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Hence, for a > §, we have d* (Tx, Ty) < Ep (x,y). We note that x = % and y = 0, and we have
E1(x,y) =3a+ 3 (1—2a) = 2 <1 =d(Tx, Ty). Therefore, T does not satisfy Theorem (3).
In other cases d* (Tx, Ty) = 0 < E3 (x, ).

3. Conclusions

We have introduced the class of quadratic quasicontractive mapping and prove two
generalizations of some classical fixed point theorems: Edelstein’s theorem, Hardy-Rogers’s theorem
and Gregus’s theorem. Furthermore, we have presented some examples to support our main results.
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