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Abstract: In this work, we investigate the correspondence between the Erez–Rosen and Hartle–Thorne
solutions. We explicitly show how to establish the relationship and find the coordinate transformations
between the two metrics. For this purpose the two metrics must have the same approximation and
describe the gravitational field of static objects. Since both the Erez–Rosen and the Hartle–Thorne
solutions are particular solutions of a more general solution, the Zipoy–Voorhees transformation
is applied to the exact Erez–Rosen metric in order to obtain a generalized solution in terms of the
Zipoy–Voorhees parameter δ = 1 + sq. The Geroch–Hansen multipole moments of the generalized
Erez–Rosen metric are calculated to find the definition of the total mass and quadrupole moment in
terms of the mass m, quadrupole q and Zipoy–Voorhees δ parameters. The coordinate transformations
between the metrics are found in the approximation of ∼q. It is shown that the Zipoy–Voorhees
parameter is equal to δ = 1− q with s = −1. This result is in agreement with previous results in
the literature.
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1. Introduction

There exists quite a large number of exact and approximate solutions of the Einstein field equations
(EFE) in the literature [1,2]. We mainly focus here only on two exterior solutions: The exact Erez–Rosen
(ER) [3] and approximate Hartle–Thorne (HT) [4,5] solutions. Both of them describe the gravitational
field of astrophysical objects. Though the ER metric is exact and describes only the exterior part of
the static deformed object, in turn, the HT metric is approximate and can be used to investigate both
interior and exterior fields of slowly rotating and slightly deformed astrophysical objects in the strong
field regime. In this regard, it is interesting to show the relationship between these solutions in the
limiting static case with a small deformation.

Erez and Rosen obtained their solution in 1959 [3] by using the Weyl method [6]. This metric
was also analyzed by applying the spheroidal coordinates, which are adapted to characterize the
gravitational field of non-spherically symmetric bodies. The original solution contained some typos
and misprints, which were later corrected in several numerical coefficients by Doroshkevich (1966) [7],
Winicour et al. (1968) [8] and Young and Coulter (1969) [9]. The physical properties of the ER metric
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were investigated by Zeldovich and Novikov [10] and later by Quevedo and Parkes [11]. More general
solutions involving multipole moments were obtained by Quevedo [12,13], Quevedo and Mashhoon
(QM) [14,15].

The QM solution is an exact exterior metric describing the gravitational field of a rotating
deformed mass [15], which is a stationary axisymmetric solution of the vacuum Einstein equations
belonging to the class of Weyl–Lewis–Papapetrou [6,16,17]. The QM solution involving only the mass
parameter m, quadrupole parameter q and rotation parameter a (angular momentum per unit mass) is
a generalization of the Kerr metric [18], so it reduces to the exact Kerr solution when the quadrupole
parameter vanishes q→ 0, and to the ER spacetime when the rotation parameter vanishes a→ 0 [19].
It has been also shown that the general form of the QM solution with the Zipoy–Voorhees parameter
in the limiting case is equivalent to the exterior HT solution up to the first order in the quadrupole
parameter q and to the second order terms in the rotation parameter a [2,19].

Hartle developed his formalism in order to investigate the physical properties of slowly
rotating relativistic stars in his pioneering paper in 1967 [4]. All physical quantities describing
the equilibrium configurations of rotating stars such as the change in mass, gravitational potential,
eccentricity, binding energy, quadrupole moment, etc., were proportional to the square of the star’s
angular velocity Ω2. Hartle and Thorne tested the formalism for different equations of state of
relativistic objects [5]. Since then the solution has been known as the Hartle–Thorne solution in the
literature. Unlike well-known exact solutions, the HT solution possesses an internal counterpart[4,20],
which makes it more practical in the astrophysical context to investigate the equilibrium structure
and physical characteristics of relativistic compact objects such as white dwarfs, neutron stars
and hypothetical quark stars [21–24]. Recently, the HT metric has been extended up to an Ω4

approximation [25].
The purpose of this work is to find the relationship between the ER and HT solutions and show

their equivalence in the limiting static case with a small deformation. The signature of the line elements
throughout this article is adopted as (– + + +) and the geometrical units are used (G = c = 1).

It should be emphasized that the relationship between the ER and HT solutions was established
by Mashhoon and Theiss in 1991 [26]. However, in this work we derive the same result in an instructive
way, providing all technical details. The paper pursues pure scientific and academic purposes.

The work is organized as follows. We review the main properties of the ER solution in Section 2.
The linearized, up to the first order in q, Erez–Rosen solution in terms of the Zipoy–Voorhees parameter
δ = 1 + sq is considered in Section 3. The main physical characteristics of the exterior Hartle–Thorne
solution are discussed in Section 4. Using the perturbation method, the coordinate transformations are
sought in Section 5. Finally, we summarize our conclusions and discuss future prospects.

2. The Erez–Rosen Metric

The Erez–Rosen metric is an exact exterior solution with mass and quadrupole parameters that
describes the gravitational field of static deformed objects in the strong field regime [27]. It belongs to
the Weyl class of static axisymmetric vacuum solutions in prolate spheroidal coordinates (t, x, y, ϕ),
with x ≥ 1 and −1 ≤ y ≤ 1

ds2 = −e2ψdt2 + m2e−2ψ

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1− y2

)
+ (x2 − 1)(1− y2)dϕ2

]
, (1)

where the metric functions ψ and γ depend on the spatial coordinates x and y, only, and m represents
the mass parameter.

The solution found by Erez and Rosen has the following form [28]

ψ =
1
2

ln
(

x− 1
x + 1

)
+

1
2

q(3y2 − 1)
[

1
4
(3x2 − 1) ln

(
x− 1
x + 1

)
+

3
2

x
]

(2)
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and

γ =
1
2
(1 + q)2 ln

(
x2 − 1
x2 − y2

)
− 3

2
q(1− y2)

[
x ln

(
x− 1
x + 1

)
+ 2
]

+
9

16
q2(1− y2)

[
x2 + 4y2 − 9x2y2 − 4

3
+ x

(
x2 + 7y2 − 9x2y2 − 5

3

)
ln
(

x− 1
x + 1

)
(3)

+
1
4
(x2 − 1)(x2 + y2 − 9x2y2 − 1) ln2

(
x− 1
x + 1

) ]
.

However, nowadays, it is considered to be one particular type of a more general class of solutions
of the field equations.

To generate a more general solution the Zipoy–Voorhees [29,30] transformation is applied to the
Erez–Rosen metric with line element (1) as ψ→ δψ and γ→ δ2γ. For this new generalized Erez–Rosen
solution with the Zipoy–Voorhees parameter δ, the Geroch–Hansen multiples [12,13,31–35] are given by

M2k+1 = 0, k = 0, 1, 2, ..., (4)

M0 = mδ, M2 =
1

15
m3δ(5 + 2q− 5δ2), ... (5)

Furthermore, if we adopt that δ = 1 + sq, then

M0 = m(1 + sq), M2 =
1

15
m3q(1 + sq)(2− 10s− 5s2q), ... (6)

For vanishing s = 0 or, equivalently, δ = 1 we obtain the multipole moments of the original
Erez–Rosen solution. If we retain only linear terms in the quadrupole parameter q then (6) becomes

M0 = m(1 + sq), M2 =
2

15
m3q(1− 5s), ... (7)

3. The Linearized Erez–Rosen Solution in Terms of the Zipoy–Voorhees Parameter

The new generalized Erez–Rosen metric with δ is linearized up to the first order in q and the final
result is written in spherical-like coordinates x = r/m− 1 and y = cos θ

ds2 = −
(

1− 2m
r

)
[1 + 2q(ψ1 + sψ0)] dt2

+ [1 + 2q(γ1 − ψ1 + 2sγ0 − sψ0)]

(
dr2

1− 2m
r

+ r2dθ2

)
+ [1− 2q(ψ1 + sψ0)] r2 sin2 θdφ2 ,

(8)

where

ψ0 =
1
2

ln
(

x− 1
x + 1

)
, ψ1 =

1
2
(3y2 − 1)

[
1
4
(3x2 − 1) ln

(
x− 1
x + 1

)
+

3
2

x
]

, (9)

and

γ0 =
1
2

ln
(

x2 − 1
x2 − y2

)
, γ1 = ln

(
x2 − 1
x2 − y2

)
− 3

2
(1− y2)

[
x ln

(
x− 1
x + 1

)
+ 2
]

. (10)

In the limiting case q = 0, we recover from here the Schwarzschild solution:

ds2 = −
(

1− 2m
r

)
dt2 +

dr2

1− 2m
r

+ r2dθ2 + r2 sin2 θdφ2 . (11)
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Consequently, the linearized Equation (8) can be considered as a generalization of the
Schwarzschild metric, which includes the quadrupole contribution of the Erez–Rosen solution up to
the first order in q.

4. The Exterior Hartle–Thorne Solution

The general form of the exterior approximate HT metric [4,5] in spherical (t, R, Θ, φ) coordinates
is given by

ds2 = −
(

1− 2M
R

) [
1 + 2k1P2(cos Θ)− 2

(
1− 2M

R

)−1 J2

R4 (2 cos2 Θ− 1)
]

dt2

+

(
1− 2M

R

)−1 [
1− 2

(
k1 −

6J2

R4

)
P2(cos Θ)− 2

(
1− 2M

R

)−1 J2

R4

]
dR2 (12)

+ R2[1− 2k2P2(cos Θ)](dΘ2 + sin2 Θdφ2)− 4J
R

sin2 Θdtdφ

where

k1 =
J2

MR3

(
1 +

M
R

)
+

5
8

Q− J2/M
M3 Q2

2(x) ,

k2 = k1 +
J2

R4 +
5
4

Q− J2/M
M2R

(
1− 2M

R

)−1/2
Q1

2(x) ,

and

Q1
2(x) = (x2 − 1)1/2

[
3x
2

ln
(

x + 1
x− 1

)
− 3x2 − 2

x2 − 1

]
,

Q2
2(x) = (x2 − 1)

[
3
2

ln
(

x + 1
x− 1

)
− 3x3 − 5x

(x2 − 1)2

]
,

are the associated Legendre functions of the second kind, being P2(cos Θ) = (1/2)(3 cos2 Θ− 1) the
Legendre polynomial, and x = R/M− 1. This form of the metric is known in the literature as the
Hartle–Thorne metric. The constants M, J and Q are the total mass, angular momentum and mass
quadrupole moment of the rotating object, respectively. To obtain the exact numerical values of M, J
and Q, the exterior and interior line elements have to be matched at the surface of the star [5,19,36].

For vanishing angular momentum the HT solution reduces to

ds2 = −
(

1− 2M
R

) [
1 + 2k1P2(cos Θ)

]
dt2 +

(
1− 2M

R

)−1 [
1− 2k1P2(cos Θ)

]
dR2

+ R2[1− 2k2P2(cos Θ)](dΘ2 + sin2 Θdφ2) ,

(13)

where k1 and k2 now are

k1 =
5
8

Q
M3 Q2

2(x) , k2 = k1 +
5
4

Q
M2R

(
1− 2M

R

)−1/2
Q1

2(x) , (14)

To find the relationship with the ER solution, we will use Equation (8). The Geroch–Hansen
multipole moments for the HT metric are

M0 = M, M2 = −Q, ... (15)

where Q has positive sign for oblate objects and negative for prolate objects, according to
Hartle’s definition.
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5. Coordinate Transformations

To obtain the correspondence between the ER solution, with coordinates (t, r, θ, φ), and the HT
solution, with coordinates (t, R, Θ, φ), both solutions must be written in the same coordinates. We search
for a coordinate transformation of the following form

r → R + q f1(R, Θ) θ → Θ + q f2(R, Θ) (16)

where f1(R, Θ) and f2(R, Θ) are the unknown functions. The total differentials of the coordinates are
given by

dr =
∂r
∂R

dR +
∂r
∂Θ

dΘ =

(
1 + q

∂ f1(R, Θ)

∂R

)
dR + q

(
∂ f1(R, Θ)

∂Θ

)
dΘ , (17)

dθ =
∂θ

∂R
dR +

∂θ

∂Θ
dΘ = q

(
∂ f2(R, Θ)

∂R

)
dR +

(
1 + q

∂ f2(R, Θ)

∂Θ

)
dΘ . (18)

These expressions should be plugged into Equation (8), taking into account
Equations (7) and (15), i.e.,

m = M(1− sq) , q = − 15
2(1− 5s)

Q
M3 . (19)

Then, only linear terms in the quadrupole moment Q must be retained. We thus obtain the
linearized ER metric in the same coordinates as the HT solution. Furthermore, if we compare the
components of the metric tensor gtt of the ER and HT solutions, we find the value of the sought
function f1(R, Θ) as

f1(R, Θ) = f10(R, Θ) + (1 + s) [ f11(R) + f12(R, Θ)] , (20)

where

f10(R, Θ) = M +
3
2

M sin2 Θ
[

R
M
− 1 +

R
M

(
R

2M
− 1
)

ln
(

1− 2M
R

)]
,

f11(R) = −M
[

5
6
+

8R
3M
− 15R2

4M2 +
5R3

4M3 −
R
M

(
1− 3R

M
+

5R2

2M2 −
5R3

8M3

)
ln
(

1− 2M
R

)]
,

f12(R, Θ) = M sin2 Θ
[

5
4
+

5R
2M
− 45R2

8M2 +
15R3

8M3 +
15R2

4M2

(
1− R

M
+

R2

4M2

)
ln
(

1− 2M
R

)]
.

Analogously, by comparing only the azimuthal components of the metric tensor gφφ of the ER
and HT solutions, we find the value of the sought function f2(R, Θ) as

f2(R, Θ) = f20(R, Θ) + (1 + s) [ f21(R) + f22(R, Θ)] , (21)

where

f20(R, Θ) = −3
2

cos Θ sin Θ
[

2 +
(

R
M
− 1
)

ln
(

1− 2M
R

)]
,

f21(R) =
47
12
− 5R

2M
+

5R2

4M2 +

(
−7

4
+

3R
M
− 15R2

8M2 +
5R3

8M3

)
ln
(

1− 2M
R

)
,

f22(R, Θ) = − sin2 Θ
[

35
8
− 15R

4M
+

15R2

8M2 −
(

15
8
− 15R

4M
+

45R2

16M2 −
15R3

16M3

)
ln
(

1− 2M
R

)]
.
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We need to find also the exact value of s. To this end, we equate the mixed component of the
metric tensor gRΘ of the ER solution, written in (R, Θ) coordinates, to zero as it is absent in the HT
solution. This gives the following condition(

1− 2M
R

)−1 ∂ f1(R, Θ)

∂Θ
+ R2 ∂ f2(R, Θ)

∂R
= 0 . (22)

As a result, we find from this condition that s = −1 . Correspondingly, the multipole moments
will be

M = m(1− q), Q = −4
5

m3q , ... (23)

and the coordinate transformations will have the following form

r → R + q
{

M +
3
2

M sin2 Θ
[

R
M
− 1 +

R
M

(
R

2M
− 1
)

ln
(

1− 2M
R

)]}
, (24)

θ → Θ− 3
2

q cos Θ sin Θ
[

2 +
(

R
M
− 1
)

ln
(

1− 2M
R

)]
. (25)

These coordinate transformations were originally obtained by Mashhoon and Theiss [26]. Here,
we simply reproduced their results including all intermediate calculations. In the limit of linear
quadrupole moment, to our knowledge, the only way to find the relationship between the two
solutions is to consider the Zipoy–Voorhees transformation. However, recently Frutos-Alfaro and
Soffel [37] showed that in the limit of∼ M2 and∼ Q (negleting also terms∼ M2Q) the Zipoy–Voorhees
transformation is not needed. They obtained the following transformations

r → R− 1
9

M
R3 Q

[
5P2

2 − 4P2 − 1
]

, (26)

θ → Θ +
1
6

M
R4 Q [5P2 − 2] cos Θ sin Θ , (27)

where P2 = P2(cos Θ) and

M = m, Q = − 2
15

m3q , ... (28)

Obviously, Equations (26) and (27) are different from Equations (24) and (25) even in the limiting
case. Indeed, there is no any agreement between Equations (24) and (25) and Equations (26) and (27)
in any given limit. However, Equations (26) and (27) are valid only in the limit of ∼ M2 and
∼ Q and Equations (24) and (25) are correct in the limit of ∼ Q when no other approximation
is made. This means that the explicit form of the coordinate transformation depends upon the
approximation, which is adopted in each particular case, and the use of the Zipoy–Voorhees
transformation. This can be already seen from the definitions of the Geroch–Hansen multipole
moments (see Equations (23) and (28)).

6. Conclusions

In this work, we investigated the Erez–Rosen and Hartle–Thorne metrics for small quadrupole
moment and found their relationship in the absence of rotation by using the perturbation method.
We showed that the approximate Erez–Rosen line element coincides with the Hartle–Thorne solution,
in the limit of ∼ q, when the former is considered with a Zipoy–Voorhees transformation. Accordingly,
using the invariant definition proposed by Geroch and Hansen, we have shown that the corresponding
mass monopole and quadrupole moment coincide in this approximation as well.

To find the explicit form of the coordinate transformation, we compared the metric functions
and obtained that the Zipoy–Voorhees transformation should be subject to the condition s = −1.
We showed that the condition s = −1 is a direct consequence of gRΘ = 0, though the procedure
to obtain this value was obscure and unclear in the literature. Moreover, we found that the explicit



Symmetry 2019, 11, 1324 7 of 8

form of the coordinate transformation depends entirely on the approximation which is used in each
particular case.

In view of the results obtained recently in [38–41], it would be interesting to establish the
relationship between the Erez–Rosen and q-metrics. This will be the issue of future studies.

Author Contributions: The individual contributions of each author was made as follows: supervision H.Q.;
conceptualization H.Q. and K.B.; methodology K.B.; validation K.B. and G.N.; formal analysis A.M.; investigation
G.N. and A.U.; writing—original draft preparation K.B. and G.N.; writing—review and editing H.Q. and K.B.;
project administration K.B.; funding acquisition K.B.

Funding: This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan,
Program IRN: BR05236494 and Grant IRN: AP05135753.

Acknowledgments: The authors thank the journal editorial board for the invitation to publish the paper and
anonymous referees for useful comments and remarks, which improved the presentation of the work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field
Equations; Cambridge University Press: Cambridge, UK, 2003.

2. Boshkayev, K.; Quevedo, H.; Ruffini, R. Gravitational field of compact objects in general relativity.
Phys. Rev. D 2012, 86, 064043. [CrossRef]

3. Erez, G.; Rosen, N. The gravitational field of a particle possessing a quadripole moment. Bull. Res.
Counc. Israel 1959, 8, 47.

4. Hartle, J.B. Slowly rotating relativistic stars. I. Equations of structure. Astrophys. J. 1967, 150, 1005. [CrossRef]
5. Hartle, J.B.; Thorne, K.S. Slowly rotating relativistic stars. II. Models for neutron stars and supermassive

stars. Astrophys. J. 1968, 153, 807. [CrossRef]
6. Weyl, H. Zur gravitationstheorie. Annalen der Physik 1917, 359, 117–145. [CrossRef]
7. Doroshkevich, A.G.; Zel’Dovich, Y.B.; Novikov, I.D. Gravitational collapse of nonsymmetric and rotating

masses. Sov. J. Exp. Theor. Phys. 1966, 22, 122.
8. Winicour, J.; Janis, A.I.; Newman, E.T. Static, axially symmetric point horizons. Phys. Rev.

1968, 176, 1507–1513. [CrossRef]
9. Young, J.H.; Coulter, C.A. Exact metric for a nonrotating mass with a quadrupole moment. Phys. Rev.

1969, 184, 1313–1315. [CrossRef]
10. Zeldovich, Y.B.; Novikov, I.D. Relativistic Astrophysics. Volume 1: Stars and Relativity; University of Chicago

Press: Chicago, IL, USA, 1971.
11. Quevedo, H.; Parkes, L. Geodesies in the Erez-Rosen space-time. Gen. Relativ. Gravit. 1989, 21, 1047–1072.

[CrossRef]
12. Quevedo, H. General static axisymmetric solution of Einstein’s vacuum field equations in prolate spheroidal

coordinates. Phys. Rev. D 1989, 39, 2904–2911. [CrossRef]
13. Quevedo, H. Multipole moments in general relativity static and stationary vacuum Solutions.

Fortschritte der Physik 1990, 38, 733–840. [CrossRef]
14. Quevedo, H.; Mashhoon, B. Exterior gravitational field of a rotating deformed mass. Phys. Lett. A

1985, 109, 13–18. [CrossRef]
15. Quevedo, H.; Mashhoon, B. Exterior gravitational field of a charged rotating mass with arbitrary quadrupole

moment. Phys. Lett. A 1990, 148, 149–153. [CrossRef]
16. Lewis, T. Some Special Solutions of the Equations of Axially Symmetric Gravitational Fields. Proc. R. Soc.

Lon. Ser. A 1932, 136, 176–192. [CrossRef]
17. Papapetrou, A. Eine rotationssymmetrische Lösung in der allgemeinen Relativitätstheorie. Annalen der Physik

1953, 447, 309–315. [CrossRef]
18. Kerr, R.P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett.

1963, 11, 237–238. [CrossRef]
19. Bini, D.; Geralico, A.; Luongo, O.; Quevedo, H. Generalized Kerr spacetime with an arbitrary mass

quadrupole moment: geometric properties versus particle motion. Class. Quantum Gravity 2009, 26, 225006.
[CrossRef]

http://dx.doi.org/10.1103/PhysRevD.86.064043
http://dx.doi.org/10.1086/149400
http://dx.doi.org/10.1086/149707
http://dx.doi.org/10.1002/andp.19173591804
http://dx.doi.org/10.1103/PhysRev.176.1507
http://dx.doi.org/10.1103/PhysRev.184.1313
http://dx.doi.org/10.1007/BF00774088
http://dx.doi.org/10.1103/PhysRevD.39.2904
http://dx.doi.org/10.1002/prop.2190381002
http://dx.doi.org/10.1016/0375-9601(85)90381-0
http://dx.doi.org/10.1016/0375-9601(90)90770-O
http://dx.doi.org/10.1098/rspa.1932.0073
http://dx.doi.org/10.1002/andp.19534470412
http://dx.doi.org/10.1103/PhysRevLett.11.237
http://dx.doi.org/10.1088/0264-9381/26/22/225006


Symmetry 2019, 11, 1324 8 of 8

20. Stergioulas, N. Rotating stars in relativity. Living Rev. Relativ. 2003, 6, 3. [CrossRef]
21. Boshkayev, K.; Rueda, J.A.; Ruffini, R.; Siutsou, I. On general relativistic uniformly rotating white dwarfs.

Astrophys. J. 2013, 762, 117. [CrossRef]
22. Belvedere, R.; Boshkayev, K.; Rueda, J.A.; Ruffini, R. Uniformly rotating neutron stars in the global and local

charge neutrality cases. Nuclear Phys. A 2014, 921, 33–59. [CrossRef]
23. Weber, F.; Glendenning, N.K. Application of the improved Hartle method for the construction of general

relativistic rotating neutron star models. Astrophys. J. 1992, 390, 541–549. [CrossRef]
24. Urbanec, M.; Miller, J.C.; Stuchlík, Z. Quadrupole moments of rotating neutron stars and strange stars.

Mon. Not. Roy. Astr. Soc. 2013, 433, 1903–1909. [CrossRef]
25. Yagi, K.; Kyutoku, K.; Pappas, G.; Yunes, N.; Apostolatos, T.A. Effective no-hair relations for neutron stars

and quark stars: Relativistic results. Phys. Rev. D 2014, 89, 124013. [CrossRef]
26. Mashhoon, B.; Theiss, D.S. Relativistic lunar theory. Nuovo Cimento B Serie 1991, 106, 545–571. [CrossRef]
27. Quevedo, H.; Toktarbay, S.; Aimuratov, Y. Quadrupolar gravitational fields described by the q-metric.

arXiv 2013, arXiv:1310.5339.
28. Quevedo, H. Multipolar solutions. arXiv 2012, arXiv:1201.1608.
29. Zipoy, D.M. Topology of some spheroidal metrics. J. Math. Phys. 1966, 7, 1137–1143. [CrossRef]
30. Voorhees, B.H. Static axially symmetric gravitational fields. Phys. Rev. D 1970, 2, 2119–2122. [CrossRef]
31. Geroch, R. Multipole moments. I. Flat space. J. Math. Phys. 1970, 11, 1955–1961. [CrossRef]
32. Hansen, R.O. Multipole moments of stationary space-times. J. Math. Phys. 1974, 15, 46–52. [CrossRef]
33. Ernst, F.J. New formulation of the axially symmetric gravitational field problem. Phys. Rev.

1968, 167, 1175–1177. [CrossRef]
34. Frutos-Alfaro, F.; Quevedo, H.; Sanchez, P.A. Comparison of vacuum static quadrupolar metrics. R. Soc.

Open Sci. 2018, 5, 170826. [CrossRef] [PubMed]
35. Frutos-Alfaro, F.; Soffel, M. On relativistic multipole moments of stationary space-times. R. Soc. Open Sci.

2018, 5, 180640. [CrossRef] [PubMed]
36. Bini, D.; Boshkayev, K.; Ruffini, R.; Siutsou, I. Equatorial Circular Geodesics in the Hartle-Thorne Spacetime.

il Nuovo Cimento C 2013, 36, 31.
37. Frutos-Alfaro, F.; Soffel, M. On the post-linear quadrupole-quadrupole metric. Rev. Mat. Teoria Apli. 2017,

24, 239. [CrossRef]
38. Boshkayev, K.A.; Quevedo, H.; Abutalip, M.S.; Kalymova, Z.A.; Suleymanova, S.S. Geodesics in the field of

a rotating deformed gravitational source. Int. J. Mod. Phys. A 2016, 31, 1641006. [CrossRef]
39. Boshkayev, K.; Gasperín, E.; Gutiérrez-Piñeres, A.C.; Quevedo, H.; Toktarbay, S. Motion of test particles in

the field of a naked singularity. Phys. Rev. D 2016, 93, 024024. [CrossRef]
40. Allahyari, A.; Firouzjahi, H.; Mashhoon, B. Quasinormal modes of a black hole with quadrupole moment.

Phys. Rev. D 2019, 99, 044005. [CrossRef]
41. Allahyari, A.; Firouzjahi, H.; Mashhoon, B. Quasinormal modes of generalized black holes: Delta-Kerr

spacetime. arXiv 2019, arXiv:1908.10813.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.12942/lrr-2003-3
http://dx.doi.org/10.1088/0004-637X/762/2/117
http://dx.doi.org/10.1016/j.nuclphysa.2013.11.001
http://dx.doi.org/10.1086/171304
http://dx.doi.org/10.1093/mnras/stt858
http://dx.doi.org/10.1103/PhysRevD.89.124013
http://dx.doi.org/10.1007/BF02726789
http://dx.doi.org/10.1063/1.1705005
http://dx.doi.org/10.1103/PhysRevD.2.2119
http://dx.doi.org/10.1063/1.1665348
http://dx.doi.org/10.1063/1.1666501
http://dx.doi.org/10.1103/PhysRev.167.1175
http://dx.doi.org/10.1098/rsos.170826
http://www.ncbi.nlm.nih.gov/pubmed/29892343
http://dx.doi.org/10.1098/rsos.180640
http://www.ncbi.nlm.nih.gov/pubmed/30109108
http://dx.doi.org/10.15517/rmta.v24i2.29856
http://dx.doi.org/10.1142/S0217751X16410062
http://dx.doi.org/10.1103/PhysRevD.93.024024
http://dx.doi.org/10.1103/PhysRevD.99.044005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Erez–Rosen Metric
	The Linearized Erez–Rosen Solution in Terms of the Zipoy–Voorhees Parameter
	The Exterior Hartle–Thorne Solution
	Coordinate Transformations
	Conclusions
	References

