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Abstract: General Relativity predicts two modes for plane gravitational waves. When a tiny violation
of Lorentz invariance occurs, the two gravitational wave modes are modified. We use perturbation
theory to study the detailed form of the modifications to the two gravitational wave modes from the
minimal Lorentz-violation coupling. The perturbation solution for the metric fluctuation up to the
first order in Lorentz violation is discussed. Then, we investigate the motions of test particles under
the influence of the plane gravitational waves with Lorentz violation. First-order deviations from the
usual motions are found.
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1. Introduction

General Relativity (GR), as the standard classical gravitational theory, has been making predictions
consistent with all the terrestrial experiments and most of the astrophysical observations [1,2]. However,
the fact that it is incompatible with quantum theory motivates ceaseless new tests and a large amount of
alternative theories [3,4]. Lorentz invariance, being one of the fundamental principles in GR, has been
suffering constant tests in various high-precision experiments and observations [5–9]. Especially,
gravitational wave observations, providing us the unique access to strong-field environments,
have recently put new stringent constraints on Lorentz violation based on the analysis of the modified
dispersion relation of gravitational waves in the Standard-Model Extension (SME) framework [10,11].

The SME framework is a tool to study Lorentz violation in a model-independent way [12–18].
It incorporates all possible Lorentz-violation couplings into the Lagrangian density of GR and the
Standard Model by employing the so called Lorentz-violation coefficients which can be measured
or constrained with experimental data. The sector that describes gravity with Lorentz violation in
vacuum is called the pure gravity sector of the SME [19,20], and it is the theoretical basis from which
the modified dispersion relation of gravitational waves is derived [10,21].

Using the modified dispersion relation to constrain Lorentz violation marks the beginning of
testing Lorentz invariance with gravitational wave observations [22]. As the number and sensitivity of
gravitational wave observatories increase [23,24], we can extract more information about the incoming
waves from the observed signals, including the polarization status of them. Recently, a detailed
investigation on plane-wave solutions for arbitrary Lorentz violation in the pure gravitationa SME
is carried out, and the modifications to the two polarization modes of the gravitational waves from
coalescing compact binaries are considered [25]. Here we study a similar question but only with the
simplest Lorentz-violation coupling in the pure gravity sector of the SME so that the calculations are
more transparent. We have to point out that there are much bigger indicators of Lorentz violation [26]
than what is described here. Therefore, our result is mostly pedagogical. In case it is to be used to
constrain Lorentz violation in gravitational wave observations, a more comprehensive treatment to
strain signals in gravitational-wave detectors is required.
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We start with describing the basics of the minimal Lorentz-violation coupling [13,19] and show
that a plane wave ansatz gives a naive modification to the usual plane wave solution in Section 2.
In Section 3, we generalize the naive modification to serve as a rigorous perturbation solution to the
Lorentz-violation field equations. In Section 4, the perturbation solution is used to find the geodesic
deviation of test particles on a ring under the effect of gravitational waves with Lorentz violation.

2. Plane Waves with Minimal Lorentz Violation

The Lorentz-violation couplings in the SME framework are constructed as coordinate scalars of
the Lorentz-violation coefficients and conventional field operators. The simplest term in the pure
gravity sector is [13,19]

L(4) = 1
16πG (−uR + sµνRT

µν + tαβγδCαβγδ), (1)

where u, sµν, and tαβγδ are called the minimal Lorentz-violation coefficients as the coupling involves
no derivatives of the Riemann tensor. sµν and tαβγδ inherit the symetries and traceless property of the
trace-free Ricci tensor, RT

µν, and the Weyl conformal tensor, Cαβγδ, separately. Note that the superscript
4 on L represents the mass dimension of the gravitational operators (including the gravitational
constant factor G). Therefore, the minimal Lorentz-violation coefficients u, sµν, and tαβγδ are also called
the Lorentz-violation coefficients with mass dimension d = 4.

Adding to the Einstein–Hilbert term, the Lagrangian density (1) gives modifications from minimal
Lorentz-violation to the Einstein field equations. The details on linearizing the modified field equations
and expressing them in terms of the background values of u, sµν, and tαβγδ are demonstrated in Ref. [19].
Here we just show the result which is the starting point of our calculation, namely the linearized
vacuum field equations with minimal Lorentz-violation. They are

Rµν = s̄αβRαµνβ, (2)

with s̄αβ being the background value of sµν. Note that the background values of u and tαβγδ do not
appear [19]. We also point out that the word "linearized" has two meanings here. One is the same as
usual, namely the gravitational field is linearized. The second is that Equation (2) holds up to the first
order in s̄αβ. There is no need to keep terms at higher orders in s̄αβ because Lorentz violation should
be tiny to be consistent with the experimental support for Lorentz invariance.

The dispersion relation implied by a generalized form of Equation (2) is studied in Ref. [27]
to predict gravitational Čerenkov radiation from Lorentz violation. They proposed the modified
harmonic gauge condition,

(ηλκ + s̄λκ)∂λhκµ = 1
2 (η

λκ + s̄λκ)∂µhλκ , (3)

that simplifies the field equation (2) to

(ηαβ + s̄αβ)∂α∂βhµν = 0, (4)

where hµν = gµν − ηµν is the fluctuation of the metric. Using the plane wave ansatz

hµν(x) = Aµνeikx, (5)

the modified dispersion relation up to the first order in s̄αβ is found to be

k0 = |~k|+ 1
2

s̄αβkαkβ

|~k|
. (6)
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Namely the wave vector can be written as kµ = (ω + δω,~k) with ω = |~k| and δω = 1
2

s̄αβkαkβ

|~k|
. Thus,

the plane wave solution can be written as

hµν(x) = Aµνe−i(ωt−~k·~x) − i δω t Aµνe−i(ωt−~k·~x) + .... (7)

The first term, Aµνe−i(ωt−~k·x), is apparently the plane wave solution in GR, and the rest consists
of corrections from Lorentz violation. Up to the first order in s̄αβ, the correction is

h(1)µν = −i δω t Aµνe−i(ωt−~k·~x). (8)

As there is a factor of t in the amplitude of h(1)µν , the correction is only valid during a finite time
period. The plane wave solution (7) is insufficient to describe the entire content of the Lorentz-violation
modification to gravitational waves. However, Equation (8) provides us an insight into how the
modification might look. In the next section, we will take the generalized form of Equation (8), which is

h(1)µν = Cµναxαe−i(ωt−~k·~x), (9)

as an ansatz to solve the field equation (4) up to the first order in s̄αβ. The constants Cµνα are going to
be determined by the gauge condition (3) and the field equation (4). Note that the Lorentz-violation
modification shown in Equation (9) applies only to a finite spacetime region as the coordinates xα

appear in the amplitude.

3. The Perturbation Solution

We seek a perturbation solution up to the first order in s̄αβ for the field equation (4). To proceed, we
assume that the zeroth-order plane wave travels along the z direction with the conventional wave vector

k(0)µ = (ω, 0, 0, ω), (10)

and that its amplitude Aµν takes the usual form

Aµν =


0 0 0 0
0 A11 A12 0
0 A12 −A11 0
0 0 0 0

 , (11)

where A11 is the amplitude of the plus wave and A12 is the amplitude of the cross wave. By substituting

hµν(x) = Aµνe−i(ωt−kz) + Cµναxαe−i(ωt−kz), (12)

into the field quation (4) and keeping only the first-order terms, we have

2Cµναik(0)α = s̄αβk(0)α k(0)β Aµν. (13)

Writing the above equations explicitly, they are

Cµν0 + Cµν3 = − iω
2 (s̄00 − 2s̄03 + s̄33)Aµν. (14)

In addition, using Equation (12) in the gauge condition (3), up to the first order we have

ηλκCκµαik(0)λ xα + ηλκCκµλ + s̄λκ ik(0)λ Aκµ = 1
2

(
Cαik(0)µ xα + Cµ + s̄λκ ik(0)µ Aλκ

)
, (15)
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where Cα = ηµνCµνα. The relations (15) imply two sets of equations:

ηλκCκµαk(0)λ −
1
2 Cαk(0)µ = 0, (16)

and

ηλκCκµλ − 1
2 Cµ = i

2 s̄λκk(0)µ Aλκ − is̄λκk(0)λ Aκµ. (17)

Using the expressions (10) and (11), we find that Equation (16) can be simplified to

C00α + 2C03α + C33α = 0,

C11α + C22α = 0, (18)

C01α + C31α = 0,

C02α + C32α = 0,

and that Equation (17) can be simplified to

C011 + C022 = − 1
2 iω

(
(s̄11 − s̄22)A11 + 2s̄12 A12

)
,

C111 + C122 +
1
2 (C001 − C331) = iωA11(s̄01 − s̄31) + iωA12(s̄02 − s̄32), (19)

C121 − C112 +
1
2 (C002 − C332) = iωA12(s̄01 − s̄31)− iωA11(s̄02 − s̄32).

Note that Equation (17) turns out to have only 3 independent equations.
Equation (19) shows that there are 6 independent components in the first-order solution h(1)µν ,

which can be written as

h(1)µν =


h(1)00 h(1)01 h(1)02 − 1

2 (h
(1)
00 + h(1)33 )

h(1)01 h(1)11 h(1)12 −h(1)01

h(1)02 h(1)12 −h(1)11 −h(1)02

− 1
2 (h

(1)
00 + h(1)33 ) −h(1)01 −h(1)02 h(1)33

 . (20)

The 6 independent components are easily divided into 3 groups, {h(1)11 , h(1)12 }, {h
(1)
00 , h(1)33 }, and

{h(1)01 , h(1)02 }. The remaining equations in (14), and (20) are insufficient to determine any of them. This
indicates that the ansatz (9) does not lead to a unique first-order solution. We need extra information
to fix h(1)µν . Next, we discuss the solutions for {h(1)11 , h(1)12 }, {h

(1)
00 , h(1)33 } and {h(1)01 , h(1)02 } separately.

3.1. {h(1)11 , h(1)12 }

We expect these two components recover the correction (8). This is indeed the case if we take all
the components of C11α and C12α to be zero except for

C110 = − iω
2 (s̄00 − 2s̄03 + s̄33)A11,

C120 = − iω
2 (s̄00 − 2s̄03 + s̄33)A12. (21)

In this way, h(1)11 and h(1)12 are fixed, and the dispersion relation (6) can be recovered in the
perturbation solution.
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3.2. {h(1)00 , h(1)33 }

With C111 = C112 = C121 = C122 = 0, we have

C001 − C331 = 2iωA11(s̄01 − s̄31) + 2iωA12(s̄02 − s̄32),

C002 − C332 = 2iωA12(s̄01 − s̄31)− 2iωA11(s̄02 − s̄32). (22)

It turns out the combinations C001 − C331 and C002 − C332 are the only terms involving C00α and C33α in
the first-order Riemann tensor (see the Appendix A). Therefore, without any ambiguity in observables,
we can safely assume all the components of C00α and C33α vanishing except for C001 and C002, which
are given by Equation (22).

3.3. {h(1)01 , h(1)02 }

In the Appendix A, we can see that C010, C013, C020, and C023 do not appear in the first-order
Riemann tensor. Therefore, they can be taken as zero. However, C011 and C022 appear, and they do not
appear as the combination C011 + C022 as shown in Equation (20). In addition, C012 and C021 also show
up in the first-order Riemann tensor. Namely, we have one equation in (20) to use but 4 unknowns,
C011, C012, C021, and C022, to determine. The inadequacy is likely from the fact that we are missing
certain information about the specific dynamic model of the Lorentz-violation coefficient sαβ. In other
words, we expect sαβ to have its own field equations with the metric involved. Then, when sαβ is
approximated by its background value s̄αβ, some of these field equations degenerate to constraints on
the metric though most of them vanish trivially.

Building a specific dynamic model for sαβ simply lies beyond the scope of the present work.
For the calculation in the next section, we decide to choose the simplest solution for h(1)01 and h(1)02 , by
which we mean that all the components of C01α and C02α vanish except for

C011 = − 1
2 iω

(
(s̄11 − s̄22)A11 + 2s̄12 A12

)
. (23)

4. Geodesic Deviation

Now we use the above first-order solution to calculate the effects of Lorentz violation on the
motions of test particles when plane gravitational waves pass through. Similarly to the usual case, it is
illustrative to consider a ring of test particles whose initial positions form a circle

(X(0))2 + (Y(0))2 = d2, (24)

in a local inertial frame with local coordinates {X, Y, Z}. Assuming the local coordinates are aligned
with the general coordinates {x, y, z}, then the nonrelativistic geodesic deviation equations that
determine the motions of the test particles in the local frame are [28]

d2X
dt2 = −R0101X(0)− R0102Y(0)− R0103Z(0),
d2Y
dt2 = −R0201X(0)− R0202Y(0)− R0203Z(0), (25)
d2Z
dt2 = −R0301X(0)− R0302Y(0)− R0303Z(0).

The zeroth-order solution for X(t), Y(t), and Z(t) is the usual deformation

X(0)(t)− X(0) = 1
2
(

A11X(0) + A12Y(0)
)
(e−iωt − 1),

Y(0)(t)−Y(0) = 1
2
(

A12X(0)− A11Y(0)
)
(e−iωt − 1), (26)

Z(0)(t)− Z(0) = 0.
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Note that we have assumed that the local frame is moving along the geodesic x(t) = y(t) = z(t) = 0.
The first-order solution turns out to be

X(1)(t) = − 1
ω2

(
αX + βX(ωt− 2i)

)
e−iωt + 1

ω2 (αX − 2iβX),

Y(1)(t) = − 1
ω2

(
αY + βY(ωt− 2i)

)
e−iωt + 1

ω2 (αY − 2iβY), (27)

Z(1)(t) = − 1
ω2 αZe−iωt + 1

ω2 αZ,

where

αX = −iω(C110 − C011)X(0)− iωC120Y(0) + 1
4 iωC001Z(0),

βX = − 1
2 ωC110X(0)− 1

2 ωC120Y(0),

αY = −iωC120X(0) + iωC110Y(0) + 1
4 iωC002Z(0), (28)

βY = − 1
2 ωC120X(0) + 1

2 ωC110Y(0),

αZ = 1
4 iωC001X(0) + 1

4 iωC002Y(0).

The solution (27) as well as Equation (28) is written with the understanding that only the real parts are
taken.

The most notable correction is that Lorentz violation causes an oscillation along the z direction in
general, which does not happen in the case of the usual plane gravitational waves. Then, for the ring
of the test particles in the XY plane, we find that the shape is still deformed into ellipses. But the semi
axes are corrected by Lorentz violation. Specifically speaking, when A11 is real and A12 = 0, the semi
axes of the ellipse at time t are

a = d
(
1 + 1

2 A11(cos ωt− 1)− 1
2 A11(s̄11 − s̄22)(cos ωt− 1)− 1

4 A11(s̄00 − 2s̄03 + s̄33)ωt sin ωt
)
,

b = d
(
1− 1

2 A11(cos ωt− 1) + 1
4 A11(s̄00 − 2s̄03 + s̄33)ωt sin ωt

)
; (29)

when A12 is real and A11 = 0, the semi axes of the ellipse at time t are

a = d
(
1 + A12(cos ωt− 1)− A12 s̄12(cos ωt− 1)− 1

2 A12(s̄00 − 2s̄03 + s̄33)ωt sin ωt
)
,

b = d
(
1− A12(cos ωt− 1)− A12 s̄12(cos ωt− 1) + 1

2 A12(s̄00 − 2s̄03 + s̄33)ωt sin ωt
)
. (30)

Last but not least, we point out that when A12 is real and A11 = 0, the rotation angle of the ellipses
from the standard position

X2

a2 + Y2

b2 = 1, (31)

is not ±π
4 any more. A time-independent deviation of 1

2 s̄12 occurs in the presence of Lorentz violation.

5. Conclusions

We used the ansatz (9) to find the correction to plane gravitational waves from minimal Lorentz
violation. It was shown that up to the first order in Lorentz violation, the correction, h(1)µν , has 6
independent components, with 4 of them fixed in the SME framework. To determine the remaining two
components, extra information about the dynamics of the Lorentz-violation coefficient sαβ is necessary.
This requires treating sαβ as a dynamic field and assigning it a kinetic term in the Lagrangian density.
This lies beyond the scope of the present work.

Then, to demonstrate the effects of Lorentz violation on the motions of test particles under the
influence of plane gravitational waves, we artificially fixed the two undetermined components of
h(1)µν . Together with the other 4 determined components, two notable effects were found. One is the
oscillation of a test particle along the propagating direction of the gravitational waves, and the other
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is the deviation from ±π
4 for the rotation angle of the deformed ellipse in the presence of the cross

wave. Note that the amplitude of the oscillation along the Z-direction is proportional to the amplitude
of the zeroth-order gravitational wave but suppressed by the components of the Lorentz-violation
coefficient s̄αβ. Taking the current best bound of 10−15 [11] on s̄αβ into consideration, it is unlikely that
this oscillation provides a viable test of Lorentz violation even in the near future. On the other hand, as
we are getting access to the polarization information of incoming gravitational waves with more and
more detectors in construction, the deviation of the rotation angle suggests a Lorentz-violation phase
difference between the two polarization modes to test in future observations of polarized gravitational
waves. To conduct such tests, a more comprehensive treatment in the context of existing and future
gravitational-wave detectors is required, which deserves another paper for investigation.
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Appendix A. The First-Order Riemann Tensor

The first-order Riemann tensor is calculated by

R(1)
αβγδ =

1
2 (∂γ∂βh(1)αδ + ∂α∂δh(1)βγ − ∂γ∂αh(1)βδ − ∂δ∂βh(1)αγ ). (A1)

Plugging Equation (9) into it, and using~k = (0, 0, ω), we find

R(1)
0101 = 1

2
(
2iω(C110 − C011) + ω2C11αxα

)
e−i(ωt−~k·~x),

R(1)
0102 = 1

2
(
iω(2C120 − C021 − C012) + ω2C12αxα

)
e−i(ωt−~k·~x),

R(1)
0103 = − 1

4 iω(C001 − C331)e−i(ωt−~k·~x), (A2)

R(1)
0202 = − 1

2
(
2iω(C110 + C022) + ω2C11αxα

)
e−i(ωt−~k·~x),

R(1)
0203 = − 1

4 iω(C002 − C332)e−i(ωt−~k·~x),

R(1)
0303 = 0,

R(1)
0112 = − 1

2 iω(C112 − C121)e−i(ωt−~k·~x),

R(1)
0113 = 1

2
(
iω(C110 − C113 − 2C011) + ω2C11αxα

)
e−i(ωt−~k·~x),

R(1)
0123 = − 1

2 iωC012e−i(ωt−~k·~x),

R(1)
0212 = − 1

2 iω(C111 + C122)e−i(ωt−~k·~x),

R(1)
0213 = 1

2
(
iω(C120 − C123 − C021 − C012) + ω2C12αxα

)
e−i(ωt−~k·~x), (A3)

R(1)
0223 = 1

2
(
− iω(C110 − C113 + 2C022)−ω2C11αxα)e−i(ωt−~k·~x),

R(1)
0313 = − 1

4 iω(C001 − C331)e−i(ωt−~k·~x),

R(1)
0323 = − 1

4 iω(C002 − C332)e−i(ωt−~k·~x),
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and

R(1)
1212 = 0,

R(1)
1213 = − 1

2 iω(C112 − C121)e−i(ωt−~k·~x),

R(1)
1223 = − 1

2 iω(C111 + C122)e−i(ωt−~k·~x),

R(1)
1313 = 1

2
(
− 2iω(C113 + C011) + ω2C11αxα

)
e−i(ωt−~k·~x), (A4)

R(1)
1323 = 1

2
(
− iω(C012 + C021 + 2C123) + ω2C12αxα

)
e−i(ωt−~k·~x),

R(1)
2323 = 1

2
(
2iω(C113 − C022)−ω2C11αxα

)
e−i(ωt−~k·~x).
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