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Abstract: Transitivity is a key element in a chaotic dynamical system. In this paper, we present some
relations between transitivity, stronger and alternative notions of it on compact and dendrite spaces.
The relation between Auslander and Yorke chaos and Devaney chaos on dendrites is also discussed.
Moreover, we prove that Devaney chaos implies strong dense periodicity on dendrites while the converse
is not true.
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1. Introduction

It is worth mentioning some important notions for our work. By the pair (X, f ), we mean a dynamical
system where X is a compact metric space and f is a continuous function (map) on X. The symbols N
and R represent the set of natural and real numbers, respectively. The orbit of a point x ∈ X, denoted
by Orb(x), is the set { f m(x) : m ∈ N∪ {0}} and a point that has a dense orbit is called a transitive point.
In addition, the boundary (resp. cardinality) of a set A ⊆ X will be denoted by ∂A (resp. |A|).

During the last few decades, chaos has become one of the most crucial topics in the dynamical system.
And therefore, many concepts of chaos were presented . However, there is no global agreement on the
most accurate chaos concept to describe chaotic behavior. It turns out that Devaney chaos [1] is the most
frequently used definition of chaos. In this concept, the Devaney chaotic dynamical system (X, f ) poses
three conditions:

1. transitive (for any non-empty open sets U and V, ∃m ∈ N s.t f m(U) ∩V 6= ∅),
2. contains a dense set of periodic points,
3. sensitive dependence on initial conditions (SDIC) (∃α > 0, s.t ∀x ∈ X and ∀β > 0, ∃y ∈ X and

∃m ∈ N s.t d(x, y) < β but d( f m(x), f m(y)) ≥ α).

It was proven that SDIC is redundant on Devaney chaos whenever X is an infinite compact space [2].
Moreover, Vellekoop and Berglund [3] proved that Devaney chaos coincides to transitive on the interval.
Another remarkable chaos notion is Auslander and Yorke chaos [4]. The dynamical system (X, f ) is called
Auslander and Yorke chaos if it is transitive and SDIC.

Since transitivity is the main ingredient in a chaotic dynamical system, many stronger or alternative
concepts to it were constructed. Some examples of definitions are stronger than transitivity: locally
everywhere onto (for every non-empty open set U ⊆ X, ∃m ∈ N s.t f m(U) = X), mixing (for any
non-empty open sets U, V ⊆ X, ∃M ∈ N s.t f m(U)∩V 6= ∅, ∀m ≥ M), weakly mixing ( f × f is transitive)

Symmetry 2019, 11, 1309; doi:10.3390/sym11101309 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-8823-5936
https://orcid.org/0000-0002-1677-2983
http://dx.doi.org/10.3390/sym11101309
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/10/1309?type=check_update&version=2


Symmetry 2019, 11, 1309 2 of 10

and totally transitive ( f m is transitive ∀m ∈ N). The following implication is obvious in any compact
metric space:

Locally everywhere onto⇒ Mixing⇒Weakly mixing⇒ Totally transitive⇒ Transitive.

In [5], the definitions of strongly and weakly blending were defined as alternative concepts to
transitivity, since they are more intuitive. We said that the dynamical system (X, f ) is weakly blending if,
for any non-empty open sets U and V, ∃m ∈ N s.t f m(U) ∩ f m(V) 6= ∅ and it is strongly blending when
f m(U) ∩ f m(V) contains a non-empty open set. On the interval, neither strongly blending nor weakly
blending implies transitivity and the converse is also not true [5,6].

A stronger notion of dense periodicity, strong dense periodicity, was introduced by Dzul-Kifli [7].
We say that the system (X, f ) has strong dense periodicity, if ∀m ∈ N, the set

Pm( f ) = {x : x is periodic point of period greater than or equal to m}

is dense. The works in [6–11] discussed the relation between strong dense periodicity and other notions of
chaos on intervals, circles and shift of finite space.

Studying which concepts imply the others and finding the minimal sufficient conditions for the
relations to be held is one of the most important ideas in dynamical systems. It was proven that a totally
transitive map on a compact space that has a dense set of periodic points implies weakly mixing [12].
According to [5], a strongly blending map on a subset A ⊆ Rn, whose set of periodic points is dense,
implies transitivity. Moreover, on compact space, locally everywhere onto implies strongly blending [10],
while mixing is sufficient to imply weakly blending [6]. On the other hand, Banks and Trotta [13] proved
that weakly mixing implies strongly blending on the graph.

By a continuum, we mean a non-empty compact connected metric space. A metric space (X, d) is
said to be a Peano space if, for any point x ∈ X and every neighborhood N of x, there exists an open
connected set U ⊆ N containing x. A Peano continuum space that contains no simple closed curve is
called a dendrite (D). Refs. [14,15] are two important works talking about dendrites. Let α be a cardinal
number and let x ∈ D. We said that the point x is of order α, denoted by Ord(x, D) = α, if, for any open
set V containing x and any cardinal number β < α, there is an open set U containing x contained in V such
that β < |∂U| ≤ α. In dendrites, the order of x is equal to the number of components of D \ {x} whenever
one of them is finite. The point x ∈ D whose Ord(x, D) = 1 is called an endpoint where x is a cut point if
Ord(x, D) ≥ 2 and branch point if Ord(x, D) ≥ 3.

The two most familiar examples of dendrites are the closed interval and tree (a dendrite with a finite
set of endpoints) which are also special cases of graphs. By an arc, we mean any space homeomorphic to
the closed interval [0, 1]. We denote the arc that has two endpoints x and y as xy. Every dendrite D admits a
taxicab metric, a metric where for every arc xy in D and every point z ∈ xy, d(x, y) = d(x, z)+ d(z, y). A set
E of topological space X is called a free interval if it is open in X and homeomorphic to an open interval
in R. A subset H of a connected space X is a disconnecting interval if it is a free interval and ∀x ∈ H,
X\{x} has only two components [16]. A dendrite whose set of branch points is not dense (equivalently,
the set of endpoints is not dense) is an example of a space containing a disconnecting interval.

In the study of a one-dimensional dynamical system, it is natural to ask whether we can extend
any existing results on the interval to more general spaces. In literature, some results on trees, circles,
graphs and dendrites have been discussed as an analogue to the results on intervals. The interest in the
study of chaotic behaviour on dendrites has been increasing for a few years. For examples, researches
focus on shadowing [17], distributional chaos [18], induced map [19], and relations between some chaotic
notions [20–23]. It turns out that most of the results on the interval do not necessarily hold true on
dendrites. However, this is not the case for dendrites with special properties (which relate to its endpoints).
For example, on the interval mixing and weakly mixing are equivalent and transitivity implies dense
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periodic points. However, there is a counterexample on a dendrite, which proved that these results do not
hold true on dendrites [22,23]. Surprisingly, these results are true on dendrites whose set of branch points
is not dense [16,21]. For dendrites whose set of endpoints is countable, transitivity = Devaney chaos [20].

Let f be a map on the interval [a, b]. The endpoint a (resp. b) is said to be accessible if ∃x /∈ {a, b} and
m ∈ N s. t f m(x) = a (resp. f m(x) = b). Blokh [24] constructed a relation between mixing and locally
everywhere onto an interval map. He proved that a mixing map on [a, b] is locally everywhere onto if and
only if a and b are accessible. In [25], Ruette pointed out that this result can be extended to a graph.

Motivated by these studies, in this paper, we discuss the generalization of Blokh’s result on a
dendrite map. We prove that locally everywhere onto implies accessibility of endpoints if the set of branch
points of dendrites is not dense and provide a counterexample to show that it is not true in general. For the
converse, we give a prove to show that, if f is a tree mixing map and the set of endpoints is accessible,
then f is locally everywhere onto. As far as we are concerned, our proof is a new proof for this result on
intervals. Furthermore, we generalize the previous result to any dendrite with a taxicab metric. Our main
results are about some chaotic concepts on compact and dendrite spaces. On compact space, we prove
that the existence of a transitive point, whose every open set containing it covers the space after some
iterations, is sufficient for the space to be locally everywhere onto. We also found that transitivity and
strongly blending are sufficient for a compact map to be mixing. We also show that weakly mixing implies
weakly blending on any dendrite and weakly mixing implies strongly blending for dendrites that do not
have a dense set of branch points. In addition, the relation between Devaney chaos and Auslander and
Yorke chaos on dendrites is also discussed. It is well known that Devaney chaos implies Auslander and
Yorke chaos for any compact space. We show that the converse is not true on dendrites or compact space.
Finally, we prove that Devaney chaos implies strong dense periodicity on dendrites, but the converse is
not true. These results are contained in the next section.

This paper is arranged as follows. Section 2 contains our results while the conclusion is presented
in Section 3.

2. Results

Our contributions in this paper are some implication relations of chaos notions on dendrites.
In some cases, the implications only hold true for special cases of dendrites: dendrites whose set of branch
points is not dense, interval, and tree. Some examples are also provided to show untrue implications.
However, we also prove some implications on more general space: compact space.

Relations we are going to discuss are between locally everywhere onto, mixing and accessibility
of endpoints.

Definition 1. Let f : D → D be a dendrite map and e be an endpoint of D. Then, e is said to be accessible if
∃x ∈ D \ End(D) and m ∈ N such that f m(x) = e.

Theorem 1. Let f : D → D be a map on a dendrite whose set of branch points is not dense. Then, locally everywhere
onto implies the accessibility of each endpoint of D.

Proof. Let D be a dendrite whose set of branch points is not dense. Then, the set of endpoints is also
not dense. Thus, there exists a non-empty open set U in D such that U does not contain any endpoint of D.
Since f is locally everywhere onto then ∀x ∈ D, ∃a ∈ U and m ∈ N s.t f m(a) = x. For each endpoint of D,
such a is a cut point. Therefore, each endpoint is accessible.

Now, we illustrate that the previous theorem is not valid in general.
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Proposition 1. Let f : D → D be a dendrite map. Then, locally everywhere onto does not imply that every endpoint
of D is accessible.

Proof. In [23], the authors constructed a locally everywhere onto map on a dendrite whose set of transitive
points (points with dense orbit) is a subset from the set of endpoints. We claim that there exist some
endpoints in that example which are not accessible. Assume that every endpoint is accessible. Let e be a
transitive endpoint, since e is accessible then ∃a ∈ D\End(D) and m ∈ N such that f m(a) = e. Since e is a
transitive point, so is a, which contradicts the fact that every transitive point is an endpoint.

Ruette [25] pointed out that the mixing graph map whose every endpoint is accessible implies locally
everywhere onto. In the following part, we will construct a proof for this theorem on tree map. Our proof
can also be used on an interval map.

Theorem 2. Let f : T → T be a mixing tree map. f is locally everywhere onto if and only if every endpoint of T
is accessible.

Proof. First, suppose T contains n endpoints. Let

End(T) = {ei : i = 1, 2, ..., n}

be the set of endpoints of T and

A = {ai : i = 1, 2, ..., n}

be a set of cut points, where ∀i = 1, 2, ..., n, ∃ni ∈ N s.t ni is the least natural number that satisfies
f ni (ai) = ei. Since T is normal, for each ei : i = 1, 2, ..., n, we can find an open set Ui containing ei and
disjoint with the set A

⋃
End(T)\{ei}. Now, choose W to be any non-empty open set, f is mixing so,

for every open set Ui, ∃mi ∈ N s.t

f Mi (W) ∩Ui 6= ∅, ∀Mi ≥ mi.

Next, let k = max{mi : i = 1, 2, .., n}. Then, ∀l ≥ k, f l(W) is a connected set containing the set
A. Finally, if t = max{ni : i = 1, 2, .., n}, then f k+t(W) = T. Conversely, the same way as the proof in
Theorem 1.

Theorem 3 ([22]). Let f be a map on a continuum space X. f is mixing if and only if ∀ε > 0 and for all non-empty
open set U, ∃M ∈ N such that

dH( f m(U), X) < ε, ∀m ≥ M,

where dH( f m(U), X) is the Hausdorff distance.

Theorem 4. Let d be a taxicab metric on a dendrite D and f be a mixing map on D. If every endpoint of D is
accessible, then f is locally everywhere onto.

Proof. Without loss of generality, let U be any non-empty open connected set in D with a taxicab metric,
A be a set defined as

A = {x ∈ D \ End(D) : f n(x) ∈ End(D) for some n ∈ N}

and δ = min{d(e, A) : e ∈ End(D)}.
Choose ε = δ/2. Then, since f is mixing, ∃M ∈ N s.t

dH( f m(U), X) < ε, ∀m ≥ M.
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Claim A ⊆ f m(U), ∀m ≥ M. Assuming not, ∃a ∈ A and a /∈ f m(U) for some m ≥ M. Then, there
exists an endpoint e such that ea ∩ f m(U) = ∅. e /∈ f m(U), therefore ∃y ∈ f m(U) s.t d(e, y) < ε. Now, e, a
and y are in the same arc (otherwise, ea ∪ ay ∪ ey is a closed curve in D). Since d is taxicab,

d(e, y) = d(e, a) + d(a, y).

We know that

d(e, y) < ε where d(e, a) + d(a, y) > 2ε + d(a, y).

This implies that

2ε < d(e, y) < ε,

which is a contradiction. Therefore,

A ⊆ f m(U), ∀m ≥ M.

Thus,

∃n ∈ N s.t f n(U) = D.

In the next part, we construct a theorem connecting transitivity and locally everywhere onto on a
compact space.

Theorem 5. Let (X, f ) be a transitive dynamical system on a compact space and x ∈ X be a transitive point.
If, for each open set V containing x, there exists n ∈ N such that f n(V) = X, then f is locally everywhere onto.

Proof. Let U be any non-empty open set in D and x is a transitive point satisfying the condition in the
theorem. Since the orbit of x is dense, there exist n ∈ N such that f n(x) ∈ U. Thus, V = f−n(U) is an open
set containing x. Therefore, ∃m ∈ N such that

X = f m(V) = f m( f−n(U)) ⊆ f m−n(U).

Thus, f is locally everywhere onto.

The following theorem, which is related to weakly mixing, is due to Banks [26].

Theorem 6 ([26]). Let f be a map on a space X. f is weakly mixing if and only if, for any non-empty open sets U
and V, ∃m ∈ N s.t f m(V) ∩U 6= ∅ and f m(V) ∩V 6= ∅.

Next, there are relations among mixing, blending and transitivity.

Theorem 7. Let f be a map on a compact metric space X. If f is transitive and strongly blending, then f is
weakly mixing.

Proof. Let U and V be two non-empty open sets. f is strongly blending, so there exists k ∈ N such that
f k(U) ∩ f k(V) ⊇ M, where M is a non-empty open set. Now, f is transitive and M, V are two non-empty
open sets; therefore, there exists l ∈ N such that f l(M) ∩V 6= ∅. Since

M ⊆ f k(U) ∩ f k(V),

we have

f l(M) ⊆ f l( f k(U) ∩ f k(V)) ⊆ f l+k(U) ∩ f l+k(V).
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Hence,

f l+k(U) ∩ f l+k(V) ∩V 6= ∅.

It follows that

f l+k(U) ∩V 6= ∅ and f l+k(V) ∩V 6= ∅.

Thus, f is weakly mixing.

Since weakly mixing and mixing are equivalent on dendrites whose branch points are not dense,
we get the following theorem.

Theorem 8. Let f be a transitive map on a dendrite whose set of branch points is not dense. Then, strongly blending
implies mixing.

The following example will be important for our work.

Example 1. Let h : [0, 1]→ [0, 1] be defined as

h(x) =


2x + 2, if −1 ≤ x < −1

2 ,
−2x, if −1

2 ≤ x < 1
2 ,

2x− 2, if 1
2 ≤ x ≤ 1.

Remark 1. Strongly blending is essential in Theorem 7 and can not be replaced by weakly blending. To illustrate
this, let h(x) be the map defined on Example 1. Crannell [5] investigated that h is transitive weakly blending but not
a strongly blending map. It follows that, since h does not have a periodic point of odd period greater than 1, h is not
weakly mixing. Therefore, transitive weakly blending compact map is not weakly mixing.

Now, two crucial definitions for our following work will be presented.

Definition 2. Let A and B be two non-empty connected disjoint sets in a dendrite. An arc C is called a connected
arc of A and B if A ∪ B ∪ C is a connected set.

Definition 3. Let A and B be two non-empty connected disjoint sets in a dendrite. An arc H is called the minimal
connected arc of A and B if H is a connected arc of A and B and, for any connected arc C of A and B, H ⊆ C.

We will now show that the minimal connected arc defined in Definition 3 is unique.

Lemma 1. Let A, B be two non-empty connected disjoint sets in a dendrite D and for any x ∈ D, A ∪ B ∪ {x} is a
disconnected set. Then, A and B has a minimal connected arc and it is unique.

Proof. Let A and B be two non-empty connected disjoint sets in a dendrite D. Define the set

H = {∩Jα : α ∈ ∆, Jα is a connected arc of A and B}.

Claim, if H 6= {x}, where x ∈ D, then it is the minimal connected arc of A and B.
Notation: Sometimes, we will write the connected arc Jα of A and B as xy, where x, y ∈ D.
First, we will show that H 6= ∅. To do this, we need to prove that every two connected arcs of A and

B are not disjoint. Now, let xy and x1y1 be two disjoint connecting arcs of A and B. Then,

[A ∪ B ∪ xy] ∪ [A ∪ B ∪ x1y1]
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is a connected set. Thus, there exists two arcs xx1 and yy1 in it. Now,

xy ∪ xx1 ∪ x1y1 ∪ yy1

is a closed curve, which contradicts the definition of dendrites.
Now, to prove that H 6= ∅. Assume the opposite i.e., H = ∅. Then, ∃x ∈ ab, where ab is a connected

arc of A and B, a ∈ A, b ∈ B and x /∈ A ∪ B. We can find another connected arc of A and B say a1b1, where
a1 ∈ A, b1 ∈ B and x /∈ a1b1. Since any two arcs are not mutually disjoint, ∃y ∈ a1b1 ∩ ab. Three cases for
the position of y can be found.

Case 1: y ∈ A, in this case, we get the closed curve yb ∪ bb1 ∪ yb1 in A ∪ B ∪ ab ∪ a1b1, which is a
contradiction.

Case 2: y ∈ B, in this case, we get the closed curve ya ∪ aa1 ∪ ya1 in A ∪ B ∪ ab ∪ a1b1, which is a
contradiction.

Finally: if y /∈ A ∪ B, then either we have yb ∪ bb1 ∪ yb1 or ya ∪ aa1 ∪ ya1 as a closed curve in
A ∪ B ∪ ab ∪ a1b1, which is also a contradiction. Therefore, H 6= ∅.

Next, to prove that H is connected, suppose that H is a disconnected set. Then, H = U ∪V, where
U ∩ V = ∅. Let u ∈ U and v ∈ V. Since u and v ∈ H, then u, v ∈ Jα, ∀α ∈ ∆, which is a connected set
so there exists an arc uv ⊆ Jα, ∀α ∈ ∆. It follows, since the arc uv is unique in D, that uv ⊆ H = U ∪V,
which contradicts the fact that U and V are disjoint and their union is disconnected. Hence, H is connected.
Clearly, H is a closed set.

We proved that H is a continuum set in D so it is a subdendrite since every subcontinuum of dendrite
is a dendrite. Now, we need to show that C is an arc. By the fact, if Y is a subdendrite of D, then
|End(Y)| ≤ |End(D)|; we can say that, for all α, |End(H)| ≤ |End(Jα)|. Therefore, |End(H)| ≤ 2, which
implies that H is an arc.

To prove that H is connected arc of A and B, we need to show that L = A ∪ B ∪ H is a connected set:

L = A ∪ B ∪ H = A ∪ B ∪⋂α∈∆ Jα =
⋂

α∈∆(A ∪ B ∪ Jα) =
⋂

α∈∆ Lα.

For each α ∈ ∆, Lα is a connected set and any two sets are not disjoint. Thus, by the same strategy
which was used to prove that H is connected, we can prove that L is also connected.

Finally, we will show the uniqueness of H. Suppose that H and I are two minimal connected arcs of
A and B. H is minimal; then, H ⊆ I and also I is minimal, so H ⊆ I. Thus, H = I.

The next theorem that relates to weakly mixing is due to Furstenberg [27].

Theorem 9 ([27]). Let f be a weakly mixing map on a space X; then,

∀m ∈ N,
(

X× X× . . .× X︸ ︷︷ ︸
m

, f × f × . . .× f︸ ︷︷ ︸
m

)

is transitive.

Next, we prove that weakly mixing implies weakly blending on dendrites.

Theorem 10. On dendrites, weakly mixing implies weakly blending.

Proof. Let U and V be two non-empty open sets and, without loss of generality, assume they are disjoint
connected sets (If U ∩V 6= ∅, then f n(U) ∩ f n(V) 6= ∅, ∀n ∈ N). f is weakly mixing, so there exists k ∈ N
such that

( f × f × f × f )k(U ×U ×V ×V) ∩U ×V ×U ×V 6= ∅.
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We obtain that

f k(U) ∩U 6= ∅ and f k(U) ∩V 6= ∅,

f k(V) ∩U 6= ∅ and f k(V) ∩V 6= ∅.

Therefore, f k(U) is a connected set that intersects the two connected sets U and V. Thus, it contains
the point x ∈ D which satisfies that U ∪V ∪ {x} is a connected set or the minimal connected arc of U and
V. It is the same situation for f k(V). We thus have f k(U) ∩ f k(V) 6= ∅. Hence, f is weakly blending.

Remark 2. On dendrites, weakly mixing does not imply strongly blending. To illustrate this, we use (Example 17)
in [22], which is a weakly mixing but not mixing dendrite map. Without loss of generality, let U and V be two open,
connected and disjoint sets. According to the definition of the map, ∀m ∈ N, f m(U) ∩ f m(V) = ∅ or {o}, where o
is the only periodic point of the map. Therefore, the map is not strongly blending.

Now, we show that weakly mixing does not only imply weakly blending but also strongly blending
whenever D is a dendrite whose branch points are not dense.

Theorem 11. On dendrites whose sets of branch points is not dense, weakly mixing implies strongly blending.

Proof. Without loss of generality, assume that U and V are two non-empty connected open sets in D
whose branch points are not dense. Let E be a disconnecting interval in D and E1, E2 and E3 are three
disjoint open sets in E, where E2 lies between E1 and E3. Since f is weakly mixing, there exists m ∈ N
such that

( f × f × f × f )m(U ×U ×V ×V) ∩ E1 × E3 × E1 × E3 6= ∅.

This implies that

f m(U) ∩ Ei 6= ∅ and f m(V) ∩ Ei 6= ∅ for i = 1, 3.

Now, f m(U) is a connected set that intersects the two connected sets E1 and E3 so it contains
E2. It is the same case for f m(V). Therefore, f m(U) ∩ f m(V) ⊇ E2, which is an open set. Thus, f is
strongly blending.

Theorem 12. Let f be an interval map. Then, f is weakly mixing if and only if f is strongly blending and transitive.

Proof. From Theorems 7 and 11.

Finally, some results relate to Devaney chaos.

Theorem 13 ([28] ). Let (X, f ) be a non-trivial dynamical system. Then, weakly mixing implies SDIC.

Proposition 2. On dendrites, Auslander and Yorke chaos does not imply Devaney chaos.

Proof. In [22], Hohen and Mouron constructed a weakly mixing dendrite map that contains only one
periodic point [23]. This map is chaotic in the sense of Auslander and Yorke, since it is transitive and has
SDIC by Theorem 13. Therefore, Auslander Yorke chaos does not imply Devaney chaos.

Theorem 14 ([8]). Let f be a map on a compact metric space with no isolated points. Then, Devaney chaos implies
strong dense periodicity.
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Theorem 15. On dendrites, Devaney chaos implies strong dense periodicity.

Proof. Since D is infinite, compact and f is transitive, the space D has no isolated points. By Theorem 14,
f has a strong dense periodicity.

Proposition 3. On dendrites, strong dense periodicity does not imply Devaney chaos.

Proof. Let f (x) = −h(x), which was represented in Example 1. f |[0,1] and f |[−1,0] are Devaney chaotic, so
Pm( f |[0,1]) and Pm( f |[−1,0]) are dense ∀m ∈ N on [0, 1] and [−1, 0], respectively. Hence,

Pm( f ) = Pm( f |[0,1])
⋃

Pm( f |[−1,0])

is dense ∀m ∈ N on [−1, 1]. It was proven that f is not transitive, since f ([0, 1]) = [0, 1]), which means
that [0, 1] is invariant under f [7]. Therefore, f is not Devaney chaotic.

3. Conclusions

We know that, on interval maps, mixing coincides with locally everywhere onto if and only if the
endpoints of the interval are accessible. In our paper, we discussed this relation on dendrites. We proved
that locally everywhere onto implies mixing and accessibility of endpoints for dendrites that do not have a
dense set of branch points. A counterexample was given to show that this result does not hold for every
dendrite. The converse was proven on trees, intervals and also on dendrites with a taxicab metric.

For compact space, we proved that any map has a transitive point whose every open set containing it
covers all the space after some iteration is locally everywhere onto. Moreover, we showed that a strongly
blending transitive compact map implies weakly mixing.

On dendrites, we investigated that weakly mixing implies weakly blending and strongly blending
on dendrites whose branch points are not dense. In addition, we concluded that Devaney chaos implies
strong dense periodicity while the converse is not true, which is the same as intervals. However, unlike
intervals, Auslander and Yorke chaos does not imply Devaney chaos on dendrites.
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