
Article

Certain Results for the Twice-Iterated 2D
q-Appell Polynomials

Hari M. Srivastava 1,2,*, Ghazala Yasmin 3, Abdulghani Muhyi 3 and Serkan Araci 4

1 Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
2 Department of Medical Research, China Medical University Hospital, China Medical University,

Taichung 40402, Taiwan
3 Department of Applied Mathematics, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India;

ghazala30@gmail.com (G.Y.); muhyi2007@gmail.com (A.M.)
4 Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu

University, TR-27410 Gaziantep, Turkey; serkan.araci@hku.edu.tr
* Correspondence: harimsri@math.uvic.ca; Tel.: +1-250-472-5313 (Office); +1-250-477-6960 (Home)

Received: 16 September 2019; Accepted: 12 October 2019; Published: 16 October 2019
����������
�������

Abstract: In this paper, the class of the twice-iterated 2D q-Appell polynomials is introduced.
The generating function, series definition and some relations including the recurrence relations and
partial q-difference equations of this polynomial class are established. The determinant expression for the
twice-iterated 2D q-Appell polynomials is also derived. Further, certain twice-iterated 2D q-Appell and
mixed type special q-polynomials are considered as members of this polynomial class. The determinant
expressions and some other properties of these associated members are also obtained. The graphs and
surface plots of some twice-iterated 2D q-Appell and mixed type 2D q-Appell polynomials are presented
for different values of indices by using Matlab. Moreover, some areas of potential applications of the
subject matter of, and the results derived in, this paper are indicated.

Keywords: 2D q-Appell polynomials; twice-iterated 2D q-Appell polynomials; determinant expressions;
recurrence relations; 2D q-Bernoulli polynomials; 2D q-Euler polynomials; 2D q-Genocchi polynomials;
Apostol type Bernoulli; Euler and Genocchi polynomials
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1. Introduction, Definitions and Preliminaries

The subject of q-calculus leads to a new method for computations and classifications of q-series
and q-polynomials. In fact, the subject of q-calculus was initiated in the 1920s. However, it has gained
considerable popularity and importance during the last three decades or so. In the past decade, q-calculus
was developed into an interdisciplinary subject and it served as a bridge between mathematics and physics.
The field has been expanded explosively due mainly to its applications in diverse areas of physics such as
cosmic strings and black holes [1], conformal quantum mechanics [2], nuclear and high energy physics [3],
fluid mechanics, combinatorics, having connection with commutativity relations, number theory, and Lie
algebra. The definitions and notations of the q-calculus reviewed here are taken from [4] (see also [5,6]).
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The q-analogue of the Pochhammer symbol (α)m, which is also called the q-shifted factorial, defined by

(α; q)0 = 1 and (α; q)m =
m−1

∏
r=0

(1− αqr) (m ∈ N; α ∈ C). (1)

The q-analogues of a complex number α and of the factorial function are defined as follows:

[α]q =
1− qα

1− q
(q ∈ C \ {1}; α ∈ C) (2)

and

[m]q =
m

∑
s=1

qs−1, [0]q = 0, [m]q! =
m

∏
s=1

[s]q = [1]q[2]q[3]q · · · [m]q and [0]q! = 1

(m ∈ N; q ∈ C \ {0, 1}),
(3)

where N is the set of positive integers.
The q-binomial coefficients [ms ]q are defined by

[
m
s

]
q
=

(q; q)m

(q; q)s(q; q)m−s
=

[m]q!
[s]q! [m− s]q!

(s = 0, 1, 2, · · · , m). (4)

The q-analogue of the classical derivative D f or d
dt f of a function f at a point t ∈ C\{0} is defined by

Dq f (t) =
f (t)− f (qt)
(1− q)t

(0 < |q| < 1; t 6= 0). (5)

We also note that

(i) lim
q→1

Dq f (t) =
d f (t)

dt
, where

d
dt

denotes the classical ordinary derivative,

(ii) Dq
(
a1 f (t) + a2 g(t)

)
= a1Dq f (t) + a2Dqg(t),

(iii) Dq( f g)(t) = f (qt)Dqg(t) + g(t)Dq f (t) = f (t)Dqg(t) + Dq f (t)g(qt),

(vi) Dq

(
f (t)
g(t)

)
=

g(t)Dq f (t)− f (t)Dqg(t)
g(t)g(qt)

=
g(qt)Dq f (t)− f (qt)Dqg(t)

g(t)g(qt)
.

The two familiar q-analogues of the exponential function et are given by

eq(t) :=
∞

∑
m=0

tm

[m]q!
=

1(
(1− q)x; q

)
∞

, 0 < |q| < 1, |x| < |1− q|−1 (6)

and

Eq(t) :=
∞

∑
m=0

q
1
2 m(m−1) tm

[m]q!
= (−(1− q); q)∞ (0 < |q| < 1; t ∈ C). (7)

The above-defined q-exponential functions eq(t) and Eq(t) satisfy the following properties:

Dqeq(t) = eq(t), DqEq(t) = Eq(qt), (8)

eq(t)Eq(−t) = Eq(t)eq(−t) = 1. (9)
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The class of Appell polynomials was introduced and characterized completely by Appell [7] in 1880.
Further, Throne [8], Sheffer [9] and Varma [10] studied this class of polynomials from different points of
view. For some subsequent and recent developments associated with the Appell polynomials, one may
refer to the works [11–14].

In the year 1954, Sharma and Chak [15] introduced a q-analogue of the Appell polynomials and called
this sequence of polynomials as q-Harmonics. Later, in the year 1967, Al-Salam [16] introduced the class
of the q-Appell polynomials {Am,q(x)}∞

m=0 and studied some of their properties. Some characterizations
of the q-Appell polynomials were presented by Srivastava [17] in the year 1982. These polynomials arise
in numerous problems of applied mathematics, theoretical physics, approximation theory and many
other branches of the mathematical sciences [7,18–20]. The polynomials Am,q(x) (of degree m) are called
q-Appell polynomials, provided that they satisfy the following q-differential equation:

Dq,x{Am,q(x)} = [m]qAm−1,q(x) (m ∈ N0 = N∪ {0}; q ∈ C; 0 < |q| < 1). (10)

Recently, Keleshteri and Mahmudov [21] introduced the 2D q-Appell polynomials (2DqAP){
Am,q(x1, x2)

}∞
m=0 which are defined by means of the following generating function:

Aq(t) eq(x1t)Eq(x2t) =
∞

∑
m=0
Am,q(x1, x2)

tm

[m]q!
(0 < q < 1), (11)

where

Aq(t) =
∞

∑
m=0
Am,q

tm

[m]q!
, Aq(t) 6= 0 and A0,q = 1. (12)

We write
Am,q := Am,q(0, 0),

where Am,q denotes the 2D q-Appell numbers.
For x2 = 0, the 2DqAP Am,q(x1, x2) reduce to the q-Appell polynomials Am,q(x) (see, for

example, [16,17,22]), that is,
Am,q(x1, 0) = Am,q(x1), (13)

where Am,q(x) are defined by

Aq(t) eq(xt) =
∞

∑
m=0
Am,q(x)

tm

[m]q!
(0 < q < 1) (14)

and Am,q given by
Am,q := Am,q(0)

denotes the q-Appell numbers.
The explicit form of the 2DqAP Am,q(x1, x2) in terms qAP Am,q(x) is given as follows (see [21]):

Am,q(x1, x2) =
m

∑
s=0

[
m
s

]
q

q
1
2 (m−s)(m−s−1)As,q(x1)xm−s

2 . (15)

The function Aq(t) may be called the determining function for the set Am,q(x1, x2). Based on suitable
selections for the function Aq(t), the following different members belonging to the family of the 2D
q-Appell polynomials Am,q(x1, x2) can be obtained:
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I. If Aq(t) = t
eq(t)−1 , the 2DqAP Am,q(x1, x2) reduce to the 2D q-Bernoulli polynomials (2DqBP)

Bm,q(x1, x2) (see [23,24]), that is,

Am,q(x1, x2) = Bm,q(x1, x2),

where Bm,q(x1, x2) are defined by

t
eq(t)− 1

eq(x1t)Eq(x2t) =
∞

∑
m=0

Bm,q(x1, x2)
tm

[m]q!
(16)

and Bm,q given by
Bm,q := Bm,q(0, 0)

denotes the 2D q-Bernoulli numbers.

II. If Aq(t) = 2
eq(t)+1 , the 2DqAP Am,q(x1, x2) reduce to the 2D q-Euler polynomials (2DqEP) Em,q(x1, x2)

(see [23,24]), that is,
Am,q(x1, x2) = Em,q(x1, x2),

where Em,q(x1, x2) are defined by

2
eq(t) + 1

eq(x1t)Eq(x2t) =
∞

∑
m=0
Em,q(x1, x2)

tm

[m]q!
(17)

and Em,q given by
Em,q := Em,q(0, 0)

denotes the 2D q-Euler numbers.

III. If Aq(t) = 2t
eq(t)+1 , the 2DqAP Am,q(x1, x2) reduce to the 2D q-Genocchi polynomials (2DqGP)

Gm,q(x1, x2) (see [23,24]; see also [25]), that is,

Am,q(x1, x2) = Gm,q(x1, x2),

where Gm,q(x1, x2) are defined by

2t
eq(t) + 1

eq(x1t)Eq(x2t) =
∞

∑
m=0
Gm,q(x1, x2)

tm

[m]q!
(18)

and Gm,q := Gm,q(0, 0) denotes the 2D q-Genocchi numbers.

We recall here that, in a recent paper, Khan and Riyasat [26] introduced the twice-iterated q-Appell
polynomials A[2]

m,q(x) which are defined by means of the following generating function:

Ȧq(t)Äq(t) eq(xt) =
∞

∑
m=0
A[2]

m,q(x)
tm

[m]q!
(0 < q < 1). (19)

In this paper, the class of the twice-iterated 2D q-Appell polynomials is introduced by means of
generating functions, recurrence relations, partial q-difference equations, and series and determinant
expressions. Further, several results are obtained for the members corresponding to this polynomial
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family. In Section 2, the twice-iterated 2D q-Appell polynomials are introduced by means of the generating
functions and series definition. Also, the recurrence relation and q-difference equations involving the
twice-iterated 2D q-Appell polynomials are derived. In Section 3, a determinant expression for the
twice-iterated 2D q-Appell polynomials is established. In Section 4, the determinant expressions and some
other properties of the members belonging to the family of the twice-iterated 2D q-Appell polynomials
are obtained. Section 5 provides several graphical representations and surface plots associated with
several members of families of q-polynomials which have investigated in this paper. Finally, in Section 6,
we present some concluding remarks and observations.

2. Twice-Iterated 2D q-Appell Polynomials

In order to introduce the twice-iterated 2D q-Appell polynomials (2I2DqAP), we consider two different
sets of the 2D q-Appell polynomials Ȧm,q(x1, x2) and Äm,q(x1, x2) such that

Ȧq(t) eq(x1t)Eq(x2t) =
∞

∑
m=0
Ȧm,q(x1, x2)

tm

[m]q!
(0 < q < 1), (20)

where

Ȧq(t) =
∞

∑
m=0
Ȧm,q

tm

[m]q!
, Ȧq(t) 6= 0 and Ȧ0,q = 1; (21)

Äq(t) eq(x1t)Eq(x2t) =
∞

∑
m=0
Äm,q(x1, x2)

tm

[m]q!
(0 < q < 1), (22)

where

Äq(t) =
∞

∑
m=0
Äm,q

tm

[m]q!
, Äq(t) 6= 0 and Ä0,q = 1; (23)

Äq(t) eq(x1t) =
∞

∑
m=0
Äm,q(x1)

tm

[m]q!
(0 < q < 1). (24)

The generating function for the 2I2DqAP is asserted by the following result.

Theorem 1. The generating function for the twice-iterated 2D q-Appell polynomials A[2]
m,q(x1, x2) is given by

Ȧq(t)Äq(t) eq(x1t)Eq(x2t) =
∞

∑
m=0
A[2]

m,q(x1, x2)
tm

[m]q!
(0 < q < 1). (25)

Proof. By expanding the first q-exponential function eq(x1t) in the left-hand side of the Equation (20)
and then replacing the powers of x, that is, x0

1, x1, x2
1, · · · , xm

1 by the polynomials Ä0,q(x1), Ä1,q(x1),
Ä2,q(x1), · · · , Äm,q(x1) in the left-hand side and x1 by Ä1,q(x1) in the right-hand side of the resultant
equation, we have

Ȧq(t)
(

1 + Ä1,q(x1)
t

[1]q !
+ Ä2,q(x1)

t2

[2]q !
+ · · ·+ Äm,q(x1)

tm

[m]q !
+ · · ·

)
Eq(x2t) =

∞

∑
m=0
Ȧm,q(Ä1,q(x1), x2)

tm

[m]q !
. (26)

Moreover, by summing up the series in the left-hand side and then using the Equation (24) in the
resulting equation, we get

Ȧq(t) Äq(t) eq(x1t)Eq(x2t) =
∞

∑
m=0
Ȧm,q(Ä1,q(x1), x2)

tm

[m]q!
. (27)
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Finally, denoting the resulting 2I2DqAP in the right-hand side of the above equation by A[2]
m,q(x1, x2),

that is,
Ȧm,q(Ä1,q(x1), x2) = A

[2]
m,q(x1, x2), (28)

the assertion (25) of Theorem 1 is proved.

Remark 1. For x2 = 0, the 2I2DqAP A[2]
m,q(x1, x2) reduce to the twice-iterated q-Appell polynomials (see [26])

such that
A[2]

m,q(x1) := A[2]
m,q(x1, 0). (29)

It is also noted that
Am,q := Am,q(0) = Am,q(0, 0). (30)

We next give the series definition for the 2I2DqAP A[2]
m,q(x1, x2) by proving the following result.

Theorem 2. The twice-iterated 2D q-Appell polynomials A[2]
m,q(x1, x2) are given by the following series expression:

A[2]
m,q(x1, x2) =

m

∑
s=0

[
m
s

]
q
Ȧs,qÄm−s,q(x1, x2). (31)

Proof. In view of the Equations (21) and (22), the Equation (25) can be written as follows:

∞

∑
s=0
Ȧs,q

ts

[s]q!

∞

∑
m=0
Äm,q(x1, x2)

tm

[m]q!
=

∞

∑
m=0
A[2]

m,q(x1, x2)
tm

[m]q!
, (32)

which, on using the Cauchy product rule, gives

∞

∑
m=0

m

∑
s=0

[
m
s

]
q
Ȧs,q Äm−s,q(x1, x2)

tm

[m]q!
=

∞

∑
m=0
A[2]

m,q(x1, x2)
tm

[m]q!
. (33)

Equating the coefficients of like powers of t in both sides of the above equation, we arrive at the
assertion (31) of Theorem 2.

Remark 2. For x2 = 0, the series expression (31) becomes

A[2]
m,q(x1) =

m

∑
s=0

[
m
s

]
q
Ȧs,qÄm−s,q(x1), (34)

which is a known result [26] (p. 5, Equation (2.8)).

We now state and prove the following result.

Theorem 3. The following relation between the twice-iterated 2D q-Appell polynomials A[2]
m,q(x1, x2) and the

twice-iterated q-Appell polynomials Am,q(x1) holds true:

A[2]
m,q(x1, x2) =

m

∑
s=0

[
m
s

]
q

q
1
2 s(s−1)xs

2 A
[2]
m−s,q(x1). (35)
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Proof. Using the Equations (7) and (19) in the left-hand side of the generating function (25), we get

∞

∑
m=0
A[2]

m,q(x1, x2)
tm

[m]q!
=

(
∞

∑
m=0
A[2]

m,q(x1)
tm

[m]q!

)(
∞

∑
m=0

q
1
2 m(m−1) (x2t)m

[m]q!

)
, (36)

which, on applying the Cauchy product rule in the left-hand side, yields

∞

∑
m=0
A[2]

m,q(x1, x2)
tm

[m]q!
=

∞

∑
m=0

m

∑
s=0

[
m
s

]
q
q

1
2 s(s−1)xs

2 A
[2]
m−s,q(x1)

tm

[m]q!
. (37)

Finally, equating the coefficients of like powers of t on both sides of this last equation, we obtain the
assertion (35) of Theorem 3.

Remark 3. By taking x2 = 1 in the result (35), we get

A[2]
m,q(x1, 1) =

m

∑
s=0

[
m
s

]
q

q
1
2 s(s−1) A[2]

m−s,q(x1). (38)

Remark 4. The following statements are equivalent:

(a) A[2]
m,q(x1,−x2) = (−1)mA[2]

m,q(0, x2) (39)

and
(b) A[2]

m,q(x1) = (−1)mA[2]
m,q(0) (40)

In order to derive the q-recurrence relations and the q-difference equations for the twice-iterated 2D
q-Appell polynomials by using the lowering operators that are, in fact, the q-derivative operator Dq, we
first prove the following lemma.

Lemma 1. The twice-iterated 2D q-Appell polynomials A[2]
m,q(x1, x2) satisfy the following operational relations:

Dq,x1

(
A[2]

m,q(x1, x2)
)
= [m]q A[2]

m−1,q(x1, x2), (41)

Dq,x2

(
A[2]

m,q(x1, x2)
)
= [m]q A[2]

m−1,q(x1, qx2), (42)

A[2]
m−s,q(x1, x2) =

[m− s]q!
[m]q!

Ds
q,x1
A[2]

m,q(x1, x2) (43)

and

q
s(s−1)

2 A[2]
m−s,q(x1, qsx2) =

[m− s]q!
[m]q!

Ds
q,x2
A[2]

m,q(x1, x2). (44)

Proof. In view of the Equation (25), the proof of the above lemma requires a direct use of the identity (5).
We, therefore, skip the details involved.

We now derive the q-recurrence relations for the 2I2DqAP A[2]
m,q(x1, x2).
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Theorem 4. The twice-iterated 2D q-Appell polynomials A[2]
m,q(x1, x2) satisfy the following linear homogeneous

recurrence relation:

A[2]
m,q(qx1, x2) =

1
[m]q

m

∑
s=0

[
m
s

]
q
qm−s(αs + x2βs + γs)A[2]

m−s,q(x1, x2) + x1qm A[2]
m−1,q(x1, x2), (45)

where

t
Äq(t)Dq,tȦq(t)
Ȧq(qt)Äq(qt)

=
∞

∑
m=0

αm
tm

[m]q!
, t

Ȧq(t)Äq(t)
Ȧq(qt)Äq(qt)

=
∞

∑
m=0

βm
tm

[m]q!
,

t
Dq,tÄq(t)
Äq(qt)

=
∞

∑
m=0

γm
tm

[m]q!
.

(46)

Proof. Consider the following generating function:

Gq(qx1, x2, t) = Ȧq(t)Äq(t) eq(qx1t)Eq(x2t) =
∞

∑
m=0
A[2]

m,q(qx1, x2)
tm

[m]q!
. (47)

By taking the q-derivative of the Equation (47) partially with respect to t, we get

Dq,t
(
Gq(qx1, x2, t)

)
= x2Ȧq(t)Äq(t) eq(qxt) Eq(qx2t) + qx1Ȧq(qt) Äq(qt) eq(qxt) Eq(qx2t)

+
(

Dq,tȦq(t)
)
Äq(t)eq(qxt) Eq(qx2t) + Ȧq(qt)

(
Dq,tÄq(t)

)
eq(qxt) Eq(qx2t).

(48)

Thus, upon factorizing Gq(qx1, x2, t) occurring in the left-hand side and multiplying both sides of the
identity (48) by t, we find that

tDq,t
(
Gq(qx1, x2, t)

)
= Gq(qx1, x2, t)

(
t
Äq(t)Dq,tȦq(t)
Ȧt(qt)Äq(qt)

+ x2t
Ȧq(t)Äq(t)
Ȧq(qt)Äq(qt)

+ t
Dq,tÄq(t)
Äq(qt)

+ qtx1

)
.

(49)

In view of the assumption (46) and the Equation (47), the Equation (49) becomes

∞

∑
m=0

[m]q A[2]
m,q(qx1, x2)

tm

[m]q!

=
∞

∑
m=0

qmA[2]
m,q(x1, x2)

tm

[m]q!

(
∞

∑
m=0

αm
tm

[m]q!
+ x2

∞

∑
m=0

βm
tm

[m]q!
+

∞

∑
m=0

γm
tm

[m]q!
+ qx1

)
,

(50)

which, on using the Cauchy product rule, gives

∞

∑
m=0

[m]q A[2]
m,q(qx1, x2)

tm

[m]q!

=
∞

∑
m=0

m

∑
s=0

[
m
s

]
q
qm−s(αs + x2βs + γs)A[2]

m−s,q(x1, x2)
tm

[m]q!

+ x1

∞

∑
m=0

[m]qqmA[2]
m−1,q(x1, x2)

tm

[m]q!
.

(51)

Finally, upon equating the coefficients of like powers of t on both sides of the above equation and
dividing both sides of the resulting equation by [m]q, we get the assertion (45) of Theorem 4.
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We now state and prove the following result.

Theorem 5. The following recurrence relation for the twice-iterated 2D q-Appell polynomials A[2]
m,q(x1, x2)

holds true:

A[2]
m,q(qx1, x2) = qm−1

(
Äq(t)Dq,tȦq(t)
Ȧq(qt)Äq(qt)

+ x2
Ȧq(t)Äq(t)
Ȧq(qt) Äq(qt)

+
Dq,tÄq(t)
Äq(qt)

+ qx1

)
A[2]

m−1,q(x1, x2). (52)

Proof. We first use the Equation (47) in both sides of the Equation (49). Then, after some simplification,
by equating the coefficients of like powers of t on both sides of the resulting equation, we arrive at the
assertion (52) of Theorem 5.

We next derive the q-difference equations which are satisfied by the twice-iterated 2D q-Appell
polynomials.

Theorem 6. The twice-iterated 2D q-Appell polynomialsA[2]
m,q(x1, x2) are the solutions of the following q-difference

equations: (
m

∑
s=0

qm−s

[s]q
(αs + x2βs + γs)Ds

q,x1
+ x1qmDq,x1

)
A[2]

m,q(x1, x2)− [m]qA[2]
m,q(qx1, x2) = 0 (53)

or
m

∑
s=0

qm−s

[s]q

(
αs + x2

βs

qs + γs

)
Ds

q,x2
A[2]

m,q

(
x1,

x2
qs

)
+ x1qmDq,x2A

[2]
m,q

(
x1,

x2
q

)
− [m]qA[2]

m,q(qx1, x2) = 0. (54)

Proof. The proof of the assertions (53) and (54) of Theorem 6 would follow directly upon using the
Equations (43) and (44), respectively, in the recurrence relation (45).

In the next section (Section 3 below), the determinant forms for the 2I2DqAP are established.

3. The Twice-Iterated 2D q-Appell Polynomials from the Determinant Viewpoint

One of the important aspects of the study of any polynomial system is to find its potentially
useful determinant representation. Recently, Keleshteri and Mahmudov [21] introduced the determinant
definitions for the q-Appell polynomials and the 2D q-Appell polynomials. These polynomials are useful in
finding the solutions of some general linear interpolation problems and can also be used for computational
purposes. Khan and Riyasat [26], on the other hand, established the determinant expressions for the
twice-iterated q-Appell polynomials. This fact provides motivation for us to establish the determinant
definitions and the determinant expressions for the twice-iterated 2D q-Appell polynomials 2I2DqAP by
proving the following result.
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Theorem 7. The 2I2DqAP A[2]
m,q(x1, x2) of degree m are defined by

A[2]
0,q(x1, x2) =

1
B0,q

, (55)

A[2]
m,q(x1, x2) =

(−1)m

(B0,q)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Ä1,q(x1, x2) Ä2,q(x1, x2) · · · Äm−1,q(x1, x2) Äm(x1, x2)

B0,q B1,q B2,q · · · Bm−1,q Bm,q

0 B0,q [21]qB1,q · · · [m−1
1 ]qBm−2,q [m1 ]qBm−1,q

0 0 B0,q · · · [m−1
2 ]qBm−3,q [m2 ]q Bm−2,q

...
...

...
. . .

...
...

0 0 0 · · · B0,q [ m
m−1]qB1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (56)

Bm,q = − 1
Ȧ0,q

(
m

∑
s=1

[
m
s

]
q
Ȧs,qBm−s,q

)
(m ∈ N),

where B0,q 6= 0, B0,q = 1
Ȧ0,q

and Äm,q(x1, x2) (m ∈ N0) are the q-Appell polynomials of degree m.

Proof. ConsiderA[2]
m,q(x1, x2) as a sequence of the 2I2DqAP defined by the Equation (25). Also let Ȧm,q and

Bm,q be two numerical sequences (the coefficients of the q-Taylor series expansions of functions) such that

Ȧq(t) = Ȧ0,q + Ȧ1,q
t

[1]q!
+ Ȧ2,q

t2

[2]q!
+ · · ·+ Ȧm,q

tm

[m]q!
+ · · · (m ∈ N0; Ȧ0,q 6= 0) (57)

and
ˆ̇Aq(t) = B0,q + B1,q

t
[1]q!

+ B2,q
t2

[2]q!
+ · · ·+ Bm,q

tm

[m]q!
+ · · · (m ∈ N0; B0,q 6= 0), (58)

also satisfying the following condition:
Ȧq(t) ˆ̇Aq(t) = 1. (59)

On using the Cauchy product rule for the two-series product Ȧq(t) ˆ̇Aq(t), we get

Ȧq(t) ˆ̇Aq(t) =
∞

∑
m=0
Ȧm,q

tm

[m]q!

∞

∑
m=0
Bm,q

tm

[m]q!

=
∞

∑
m=0

m

∑
s=0

[
m
s

]
q
Ȧs,q Bm−s,q

tm

[m]q!
.

Consequently, we have
m

∑
s=0

[
m
s

]
q
Ȧs,qBm−s,q =

{
1, i f m = 0,

0, i f m ∈ N.
(60)

that is, 
B0,q = 1

Ȧ0,q
;

Bm,q = − 1
Ȧ0,q

(
∑m

s=1 [
m
s ]q Ȧs,q Bm−s,q

)
(m ∈ N0).

(61)

Next, upon multiplying both sides of the Equation (25) by ˆ̇Aq(t), we get

Ȧq(t)
ˆ̇Aq(t) Äq(t) eq(x1t)Eq(x2t) = ˆ̇Aq(t)

∞

∑
m=0
A[2]

m,q(x1, x2)
tm

[m]q!
. (62)
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Further, in view of the Equations (22), (58) and (59), the above Equation (62) becomes

∞

∑
m=0
Äm,q(x1, x2)

tm

[m]q!
=

∞

∑
m=0
Bm,q

tm

[m]q!

∞

∑
m=0
A[2]

m,q(x1, x2)
tm

[m]q!
. (63)

Now, on using the Cauchy product rule for the two series in the right-hand side of the Equation (63),
we obtain the following infinite system for the unknowns A[2]

m,q(x1, x2):

B0,q A
[2]
0,q(x1, x2) = 1;

B1,q A
[2]
0,q(x1, x2) + B0,q A

[2]
1,q(x1, x2) = Ä1,q(x1, x2),

B2,q A
[2]
0,q(x1, x2) + [21]qB1,q A

[2]
1,q(x1, x2) + B0,q A

[2]
2,q(x1, x2) = Ä2,q(x1, x2),

...

Bm−1,q A
[2]
0,q(x1, x2) + [m−1

1 ]qBm−2,q A
[2]
1,q(x1, x2) + · · ·+ B0,q A

[2]
m−1,q(x1, x2) = Äm−1,q(x1, x2),

Bm,q A[2]
0,q(x1, x2) + [m1 ]q Bm−1,q A

[2]
1,q(x1, x2) + · · ·+ B0,q A

[2]
m,q(x1, x2) = Äm,q(x1, x2),

...

(64)

Obviously, the first equation of the system (64) leads to our first assertion (55). The coefficient matrix
of the system (64) is lower triangular, so this helps us to obtain the unknowns A[2]

m,q(x1, x2) by applying the
Cramer rule to the first m + 1 equations of the system (64). Accordingly, we can obtain

A[2]
m,q(x1, x2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,q 0 0 · · · 0 1

B1,q B0,q 0 · · · 0 Ä1,q(x1, x2)

B2,q [21]qB1,q B0,q · · · 0 Ä2,q(x1, x2)

...
...

...
. . .

...
...

Bm−1,q [m−1
1 ]qBm−2,q [m−1

2 ]qBm−3,q · · · B0,q Äm−1,q(x1, x2)

Bm,q [m1 ]qBm−1,q [m2 ]qBm−2,q · · · [ m
m−1]qB1,q Äm,q(x1, x2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,q 0 0 · · · 0 1

B1,q B0,q 0 · · · 0 0

B2,q [21]qB1,q B0,q · · · 0 0

...
...

...
. . .

...
...

Bm−1,q [m−1
1 ]qBm−2,q [m−1

2 ]qBm−3,q · · · B0,q 0

Bm,q [m1 ]qBm−1,q [m2 ]qBm−2,q · · · [ m
m−1]qB1,q B0,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (65)
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where m ∈ N. Thus, upon expanding the determinant in the denominator and taking the transpose of the
determinant in the numerator, we get

A[2]
m,q(x1, x2) =

1
(B0,q)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,q B1,q B2,q · · · Bm−1,q Bn,q

0 B0,q [21]qB1,q · · · [m−1
1 ]qBm−2,q [m1 ]qBm−1,q

0 0 B0,q · · · [m−1
2 ]qBm−3,q [m2 ]qBm−2,q

...
...

...
. . .

...
...

0 0 0 · · · B0,q [ m
m−1]qB1,q

1 Ä1,q(x1, x2) Ä2,q(x1, x2) · · · Äm−1,q(x1, x2) Äm,q(x1, x2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (66)

Finally, after m circular row exchanges, that is, after moving the jth row to the (j + 1)st position for
j = 1, 2, 3, · · · , m− 1, we arrive at our assertion (56) of Theorem 7.

Theorem 8. The following identity for the 2I2DqAP A[2]
m,q(x1, x2) holds true:

A[2]
m,q(x1, x2) =

1
B0,q

(
Äm,q(x1, x2)−

m−1

∑
s=0

[
m
s

]
q
Bm−s,q A[2]

s,q(x1, x2)

)
(m ∈ N). (67)

Proof. Expanding the determinant in the Equation (56) with respect to the (m + 1)st row, we get

A[2]
m,q(x1, x2) =

(−1)m

(B0,q)m+1

[
m

m− 1

]
q
B1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Ä1,q(x1, x2) Ä2,q(x1, x2) · · · · · · Äm−1,q(x1, x2)

B0,q B1,q B2,q · · · · · · Bm−1,q

0 B0,q [21]qB1,q · · · · · · [m−1
1 ]qBm−2,q

0 0 B0,q · · · · · · [m−1
2 ]qBm−3,q

...
...

...
. . .

...
...

0 0 0 · · · B0,q [m−1
m−2]qB1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+
(−1)m

(B0,q)m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Ä1,q(x1, x2) Ä2,q(x1, x2) · · · · · · Äm−2,q(x1, x2) Äm,q(x1, x2)

B0,q B1,q B2,q · · · · · · Bm−1,q Bm−1,q

0 B0,q [21]qB1,q · · · · · · [m−2
1 ]qBm−3,q [m−1

1 ]qBm−2,q

0 0 B0,q · · · · · · [m−2
2 ]qBm−4,q [m−1

2 ]qBm−3,q

...
...

...
. . .

...
...

...

0 0 0 · · · · · · B0,q [m−1
m−2]qB1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=
−1
B0,q

[
m

m− 1

]
q
B1,qA

[2]
m−1,q(x1, x2) +

(−1)m

(B0,q)m∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Ä1,q(x1, x2) Ä2,q(x1, x2) · · · · · · Äm−2,q(x1, x2) Äm,q(x1, x2)

B0,q B1,q B2,q · · · · · · Bm−1,q Bm−1,q

0 B0,q [21]qB1,q · · · · · · [m−2
1 ]qBm−3,q [m−1

1 ]qBm−2,q

0 0 B0,q · · · · · · [m−2
2 ]qBm−4,q [m−1

2 ]qBm−3,q

...
...

...
. . .

...
...

...

0 0 0 · · · · · · B0,q [m−1
m−2]qB1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Next, by applying the same argument for the last determinant, we find that

A[2]
m,q(x1, x2) =

−1
B0,q

[
m

m− 1

]
q
B1,qA

[2]
m−1,q(x1, x2) +

(−1)m

(B0,q)m

[
m− 1
m− 2

]
q
B2,q∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Ä1,q(x1, x2) Ä2,q(x1, x2) · · · · · · Äm−3,q(x1, x2) Äm−2,q(x1, x2)

B0,q B1,q B2,q · · · · · · Bm−3,q Bm−2,q

0 B0,q [21]qB1,q · · · · · · [m−3
1 ]qBm−4,q [m−2

1 ]qBm−3,q

0 0 B0,q · · · · · · [m−3
2 ]qBm−5,q [m−2

2 ]qBm−4,q

...
...

...
. . .

...
...

...

0 0 0 · · · · · · B0,q [m−2
m−3]qB1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+
(−1)m+2

(B0,q)m B0,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Ä1,q(x1, x2) Ä2,q(x1, x2) · · · · · · Äm−3,q(x1, x2) Äm,q(x1, x2)

B0,q B1,q B2,q · · · · · · Bm−3,q Bm−1,q

0 B0,q [21]qB1,q · · · · · · [m−3
1 ]qBm−4,q [m1 ]qBm−2,q

0 0 B0,q · · · · · · [m−3
2 ]qBm−5,q [m2 ]qBm−2,q

...
...

...
. . .

...
...

...

0 0 0 · · · · · · B0,q [m−1
m−2]qB2,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=
−1
B0,q

[
m

m− 1

]
q
B1,qA

[2]
m−1,q(x1, x2)−

−1
(B0,q)

[
m− 1
m− 2

]
q
B2,qA[2]

m−2,q(x1, x2) +
(−1)m−2

(B0,q)m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Ä1,q(x1, x2) Ä2,q(x1, x2) · · · · · · Äm−3,q(x1, x2) Äm,q(x1, x2)

B0,q B1,q B2,q · · · · · · Bm−3,q Bm−1,q

0 B0,q [21]qB1,q · · · · · · [m−3
1 ]qBm−4,q [m1 ]qBm−2,q

0 0 B0,q · · · · · · [m−3
2 ]qBm−5,q [m2 ]qBm−2,q

...
...

...
. . .

...
...

...

0 0 0 · · · · · · B0,q [m−1
m−2]qB2,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Again, we apply the same technique recursively until we arrive at the following consequence:

A[2]
m,q(x1, x2) =

−1
B0,q

[
m

m− 1

]
q
B1,qA

[2]
m−1,q(x1, x2)−

1
(B0,q)

[
m− 1
m− 2

]
q
B2,qA

[2]
m−2,q(x1, x2)

− · · · − 1
(B0,q)2

∣∣∣∣∣∣∣
1 Än,q(x1, x2)

B0,q Bm,q

∣∣∣∣∣∣∣
=
−1
B0,q

[
m

m− 1

]
q
B1,qA

[2]
m−1,q(x1, x2)−

1
(B0,q)

[
m− 1
m− 2

]
q
B2,qA

[2]
m−2,q(x1, x2)

− · · · − 1
(B0,q)

Bm,qA[2]
0,q(x1, x2) +

1
B0,q
Än,q(x1, x2). (68)

Finally, upon summing up the series in the left-hand side of the Equation (68), we arrive at the
assertion (67) of Theorem 8.

Corollary 1. The following identity for the 2DqAP Än,q(x1, x2) holds true:

Äm,q(x1, x2) =
m

∑
s=0

[
m
s

]
q
Bm−s,q A[2]

k,q(x1, x2) (m ∈ N). (69)

4. Several Members of the Twice-Iterated 2D q-Appell Polynomials

During the last two decades, much research work has been done for different members of the
family of the q-Appell polynomials and the 2D q-Appell polynomials. By making suitable selections for
the functions Ȧq(t) and Äq(t), the members belonging to the family of the twice-iterated 2D q-Appell

polynomials A[2]
k,q(x1, x2) can be obtained. The 2D q-Bernoulli polynomials Bm,q(x1, x2), the 2D q-Euler

polynomials Em,q(x1, x2) and the 2D q-Genocchi polynomials Gm,q(x1, x2) are important members of the 2D
q-Appell family. Therefore, in this section, we first introduce the 2D q-Euler based Bernoulli polynomials
(2DqEBP) EBm,q(x1, x2) and the 2D q-Genocchi based Bernoulli polynomials (2DqGBP) GBm,q(x1, x2) by
means of their respective generating functions and series definitions. We then explore other properties of
these members.
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4.1. The 2D q-Euler–Bernoulli Polynomials

Since, for

Aq(t) =
2

eq(t) + 1
and Aq(t) =

t
eq(t)− 1

,

the 2DqAP Am,q(x1, x2) reduce to the 2DqEP Em,q(x1, x2) and the 2DqBP Bm,q(x1, x2), respectively.
Therefore, for the same choices of Aq(t), that is,

Ȧq(t) =
2

eq(t) + 1
and Äq(t) =

t
eq(t)− 1

,

the 2I2DqAP reduce to 2DqEBP EBm,q(x1, x2) and are defined by means of generating functions as follows:

2t(
eq(t) + 1

)(
eq(t)− 1

) eq(x1t)Eq(x2t) =
∞

∑
m=0

EBm,q(x1, x2)
tm

[m]q!
(0 < q < 1). (70)

The 2DqEBP EBm,q(x1, x2) of degree m are defined by the following series:

EBm,q(x1, x2) =
m

∑
s=0

[
m
s

]
q
Bs,qEm−s,q(x1, x2). (71)

The following relation between the 2DqEBP EBm,q(x1, x2) and the qEBP EBm,q(x1) holds true:

EBm,q(x1, x2) =
m

∑
s=0

[
m
s

]
q

q
1
2 s(s−1)xs

2 EBm−s,q(x1), (72)

which, for x2 = 1, yields

EBm,q(x1, 1) =
m

∑
s=0

[
m
s

]
q

q
1
2 s(s−1)

EBm−s,q(x1). (73)

The 2DqEBP EBm,q(x1, x2) satisfy the following recurrence relation:

EBm,q(qx1, x2) = qm−2

·
(

t
(
eq(qt)− 1

)(
x2
(
eq(qt) + 1

)
− eq(t)

)
+
(
eq(t)− teq(t)− 1

)(
eq(t) + 1

)
t
(
eq(t) + 1

)(
eq(t)− 1

) + q2x1

)
EBm−1,q(x1, x2). (74)

Further, by taking
B0,q = 1,

Bj,q =
1

[j + 1]
(j ∈ N)

and
Äm,q(x1, x2) = Em,q(x1, x2)

in the Equation (56), we obtain the determinant definition of the 2DqEBP EBm,q(x1, x2) as given below.
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Definition 1. The 2D q-Euler–Bernoulli polynomials EBm,q(x1, x2) of degree m are defined by

EB0,q(x1, x2) = 1, (75)

EBm,q(x1, x2) = (−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 E1,q(x1, x2) E2,q(x1, x2) · · · Em−1,q(x1, x2) Em(x1, x2)

1 1
[2]q

1
[3]q

· · · 1
[m]q

1
[m+1]q

0 1 [21]q
1

[2]q
· · · [m−1

1 ]q
1

[m−1]q
[m1 ]q

1
[m]q

0 0 1 · · · [m−1
2 ]q

1
[m−2]q

[m2 ]q
1

[m−1]q

...
...

...
. . .

...
...

0 0 0 · · · 1 [ m
m−1]q

1
[2]q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(76)

(m ∈ N),

where Em,q(x1, x2) (m ∈ N0) are the 2D q-Euler polynomials of degree m.

4.2. The 2D q-Genocchi–Bernoulli Polynomials

Since, for

Aq(t) =
2t

eq(t) + 1
and Aq(t) =

t
eq(t)− 1

,

the 2DqAP Am,q(x1, x2) reduce to the 2DqGP Gm,q(x1, x2) and the 2DqBP Bm,q(x1, x2), respectively.
Therefore, for the same choices of Aq(t), that is,

Ȧq(t) =
2t

eq(t) + 1
and Äq(t) =

t
eq(t)− 1

,

the 2I2DqAP reduce to 2DqGBP GBm,q(x1, x2) and are defined by means of generating functions as follows:

2t2(
eq(t) + 1

)(
eq(t)− 1

) eq(x1t)Eq(x2t) =
∞

∑
m=0

GBm,q(x1, x2)
tm

[m]q!
(0 < q < 1). (77)

The 2DqGBP GBm,q(x1, x2) of degree m are defined by the following series:

GBm,q(x1, x2) =
m

∑
s=0

[
m
s

]
q
Bs,q Gm−s,q(x1, x2). (78)

The following relation between the 2DqGBP GBm,q(x1, x2) and the qGBP GBm,q(x1) holds true:

GBm,q(x1, x2) =
m

∑
s=0

[
m
s

]
q

q
1
2 s(s−1)xs

2 GBm−s,q(x1), (79)

which, for x2 = 1, gives

GBm,q(x1, 1) =
m

∑
s=0

[
m
s

]
q

q
1
2 s(s−1)

GBm−s,q(x1). (80)
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The 2DqGBP GBm,q(x1, x2) satisfy the following recurrence relation:

GBm,q(qx1, x2) = qm−3 ·
((

eq(qt) + 1
)(

eq(t)− teq(t) + 1 + x2t
(
eq(qt) + 1

))
t
(
eq(t) + 1

)(
eq(t)− 1

)
+

q
(
eq(t)− teq(t)− 1

)(
eq(t) + 1

)
t
(
eq(t) + 1

)(
eq(t)− 1

) + q3x1

)
GBm−1,q(x1, x2). (81)

In the next section (Section 5 below), we give some graphical representations and the surface plots of
some of the members of the twice-iterated 2D q-Appell polynomials.

5. Graphical Representations and Surface Plots

Here, in this section, the graphs of the q-Euler–Bernoulli polynomials (qEBP) EBm,q(x), q-Genocchi-
Bernoulli polynomials (qGBP) GBm,q(x) and the surface plots of the 2DqEBP EBm,q(x1, x2) and the 2DqGBP

GBm,q(x1, x2) are presented.
To draw the plot of the qEBP EBm,q(x) and the qGBP GBm,q(x), we choose q = 1

2 and consider
the values of the first four q-Euler–Bernoulli polynomials and of the first four q-Genocchi–Bernoulli
polynomials, the expressions of these polynomials are given in Table 1.

Table 1. Expressions of the first four EBm, 1
2
(x) and GBm, 1

2
(x).

m 0 1 2 3 3

EBm, 1
2
(x) 1 x− 7

6 x2 − 7
4 x + 79

168 x3 − 49
24 x2 + 79

96 x + 379
2880 x4 − 35

16 x3 + 145
192 x2 + 379

1536 x + .0213

GBm, 1
2
(x) 0 1 3

2 x− 7
4

7
4 x2 − 49

16 x + 121
96

15
8 x3 − 45

16 x2 + 815
256 x + 379

1536

Further, by setting m = 4 and q = 1
2 in the series definitions (72) and (79) of EBm, 1

2
(x1, x2) and

GBm,q(x1, x2) and using the particular values of EBm, 1
2
(x) and GBm, 1

2
(x) from Table 1, we find that

EB4, 1
2
(x1, x2) =x4

1 −
35
16

x3
1 +

145
192

x2
1 +

379
1536

x1 + 0.0213 +
15
8

x3
1x2 −

245
64

x2
1x2 +

395
256

x1x2

+
379

1536
x2 +

35
32

x2
1x2

2 −
245
128

x1x2
2 +

395
768

x2
2 +

15
64

x1x3
2 −

35
128

x3
2 +

1
64

x4
2

(82)

and

GB3, 1
2
(x1, x2) =

15
8

x3 − 45
16

x2 +
815
256

x +
379
1536

+
105
32

x2
1x2 −

735
128

x1x2 −
605
256

x2

+
105
64

x1x2
2 −

245
128

x2
2 +

15
64

x3
2.

(83)

Next, by using the expression given in Table 1 and the Equations (82) and (83), with the help of Matlab,
we get the Figures 1–4 below.
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Figure 4. Surface plot of GB4, 1
2
(x1, x2).

Further, with the help of Matlab, we compute the real and complex zeros of EBm, 1
2
(x) and GBm, 1

2
(x)

for m = 1, 2, 3, 4 and x ∈ C. These zeros are mentioned in Tables 2 and 3.

Table 2. Real zeros of EBm, 1
2
(x) and GBm, 1

2
(x).

m EBm, 1
2
(x) GBm, 1

2
(x)

1 1.1667 0
2 0.3315, 1.4185 1.1667
3 −0.1213, 0.7910, 1.3719 0.6620, 1.0880
4 0.7878, 1.6239 −0.0726

Table 3. Complex zeros of EBm, 1
2
(x) and GBm, 1

2
(x).

m EBm, 1
2
(x) GBm, 1

2
(x)

1 − −
2 − −
3 − −
4 −0.1121− 0.0639i,−0.1121 + 0.0639i 0.7863− 1.0926i, 0.7863 + 1.0926i

Also, with the help of Matlab, the zeros mentioned in Tables 2 and 3 are shown in the Figures 5 and 6.
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6. Concluding Remarks and Observations

As long ago as 1910, Jackson [27] studied the q-definite integral of an arbitrary function f (t), which is
defined as follows: ∫ a

0
f (t) dqt = (1− q)a

∞

∑
m=0

qm f (aqm) (0 < q < 1; a ∈ R) (84)

and ∫ b

a
f (t)dqt =

∫ b

0
f (t)dqt−

∫ a

0
f (t) dqt. (85)

We note also that

Dq

∫ t

0
f (x)dqx = f (t). (86)
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Applying the double q-integral to both sides of the Equation (42), that is,∫ x1

0

∫ x2

0
[m]q A[2]

m−1,q(t1, qt2) dqt1 dqt2 =
∫ x1

0

∫ x2

0
Dq,t2A

[2]
m,q(t1, t2) dqt1 dqt2, (87)

we have
[m]q

∫ x1

0

∫ x2

0
A[2]

m−1,q(t1, qt2) dqt1 dqt2 =
∫ x1

0

(
A[2]

m,q(t1, x2)−A
[2]
m,q(t1, 0)

)
dqt1. (88)

In view of the Equation (41), the above Equation (88) yields

[m]q

∫ x1

0

∫ x2

0
A[2]

m−1,q(t1, qt2) dqt1dqt2

=
∫ x1

0

1
[m + 1]q

(
Dq,t1A

[2]
m+1,q(t1, x2)− Dq,t1A

[2]
m+1,q(t1, 0)

)
dqt1 (89)

=
1

[m + 1]q

(
A[2]

m+1,q(x1, x2)−A
[2]
m+1,q(0, x2)−A

[2]
m+1,q(x1, 0) +A[2]

m+1,q(0, 0)
)

,

which, on using the Equations (13) and (39), becomes∫ x1
0

∫ x2
0 A[2]

m,q(t1, qt2) dqt1dqt2

= 1
[m+1]q [m+2]q

(
A[2]

m+2,q(x1, x2)− (−1)mA[2]
m+2,q(x1,−x2)−A

[2]
m+2,q(x1) +A

[2]
m+2,q

)
.

(90)

Further, in view of the Equations (31) and (34), the Equations (90) yields

∫ x1
0

∫ x2
0 A[2]

m,q(t1, qt2) dqt1dqt2 = 1
[m+1]q [m+2]q

·∑m+2
s=0 [m+2

s ]qȦs,q

(
Äm+2−s,q(x1, x2)− (−1)mÄm+2−s,q(x1, x2)− Äm+2−s,q(x1) + Äm+2−s,q

)
.

(91)

In conclusion, we choose to reiterate the now well-understood fact that the results for the q-analogues,
which we have considered in this article for 0 < q < 1, can easily be translated into the corresponding
results for the so-called (p, q)-analogues (with 0 < q < p 5 1) by applying some obviously trivial
parametric and argument variations, the additional parameter p being redundant. In fact, the so-called
(p, q)-number [n]p,q is given (for 0 < q < p 5 1) by (see also [28])

[n]p,q :=


pn − qn

p− q
(n ∈ {1, 2, 3, · · · })

0 (n = 0)

=: pn−1 [n] q
p
,

(92)

where, for the classical q-number [n]q, we have

[n]q :=
1− qn

1− q

= p1−n
(

pn − (pq)n

p− (pq)

)
= p1−n [n]p,pq.

(93)
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Consequently, any claimed extensions of most (including the present) investigations involving
the classical q-calculus to the corresponding obviously straightforward investigations involving the
(p, q)-calculus are truly inconsequential.

Further investigations along the lines presented in this paper, which are associated with the various
recent generalizations and extensions of the Apostol type Bernoulli, Euler and Genocchi polynomials
introduced by, for example, Srivastava et al. (see [29,30]) may be worthy of consideration by the
targeted readers.
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