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Abstract: Abstractive text summarization that generates a summary by paraphrasing a long text
remains an open significant problem for natural language processing. In this paper, we present
an abstractive text summarization model, multi-layered attentional peephole convolutional LSTM
(long short-term memory) (MAPCoL) that automatically generates a summary from a long text.
We optimize parameters of MAPCoL using central composite design (CCD) in combination with
the response surface methodology (RSM), which gives the highest accuracy in terms of summary
generation. We record the accuracy of our model (MAPCoL) on a CNN/DailyMail dataset.
We perform a comparative analysis of the accuracy of MAPCoL with that of the state-of-the-art
models in different experimental settings. The MAPCoL also outperforms the traditional LSTM-based
models in respect of semantic coherence in the output summary.

Keywords: abstractive text summarization; deep learning; convolutional neural network; lstm;
design of experiment (DoE)

1. Introduction

At present, it is a challenging task to retrieve useful information from a large text due to the
unseen growth of blogs, article, and reports. Here, an automated text summarization technique gives
an effective solution to extract useful information from the large text. Text summarization is a task of
condensing a text that keeps the actual meaning and important parts of the original text. A concise
and quality summary assists humans in processing and understanding a large text in a short time.
However, automatically summarizing a large text is still an open problem. There are two possible
ways to perform text summarization: extractive and abstractive [1]. The process of copying words
and sentences directly as a summary from the long text is called extractive summarization. Most of
the conventional text summarization models are based on the extractive text summarization (ETS)
technique. Those models are relatively simple and produce grammatically correct sentences while
failing to generate a semantically coherent summary [2,3]. In contrast, abstractive text summarization,
a relatively new concept, has drawn interest among the researchers because of its capability of
generating new words using language generation models. Abstractive text summarization generates
a summary by paraphrasing the text while it keeps the actual meaning in the summary text [4].
Extractive text summarization ensures syntactic structure but fails to guarantee the semantic coherence
in the generated summary. On the other hand, the abstractive text summarization works effectively
for maintaining semantic coherence while failing to ensure the syntactic structure of the generated
summary [5].

The abstractive text summarization has great potential for generating a high-quality summary by
using sequence-to-sequence (seq2seq) modeling [6]. Sequence-to-sequence modeling, a recurrent
neural network model, takes a sequence of text as input and generates a sequence of text as
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output. The encoder–decoder architecture of the seq2seq model can be implemented by an RNN
(recurrent neural network) framework called long short-term memory (LSTM) [7]. It is successfully
applied to a variety of NLP (natural language processing)-based problems like machine translation,
headline generation, text summarization, and speech recognition. The LSTM performs promisingly to
produce a concise abstractive summary although it has some limitations. It does not allow for accessing
the previous cell state when the output gate is closed. This problem is overcome by a variation of
LSTM called Peephole Convolutional LSTM (PCLSTM) that performs efficiently in various types
of classifications and predictions. The PCLSTM allows accessing the previous cell state even when
the output gate is closed [8]. The more utilization of the previous memory cell content assists with
capturing the full dependency that enhances the accuracy of a model. In this work, we develop an
abstractive text summarization model using multi-layered attentional peephole convolutional LSTM.

The performance of a machine learning model highly depends on the optimization of the parameters
of that model. The optimization of parameters is often carried out by the design of experiment (DoE).
The fundamental purpose of the design of experiment is to understand the interaction among parameters,
and optimize the parameters for getting the highest response. Traditionally, the parameter optimization
is done using the conventional methods which do not consider the combined effect of parameters. Hence,
the statistical methods of the design of experiment are used to optimize the parameters of a machine
learning algorithm which eliminates the problems of the conventional methods. The design of experiment
(DoE) has two phases—the first phase is to filter the most significant parameters, and the second phase
is to optimize the parameters [9]. The central composite design (CCD) is widely used for performing
the task of filtering. It reduces the number of parameters by performing statistical analysis, where it
calculates the importance of each parameter to generate a better response [10]. The optimization of
parameters is carried out by applying a response surface method (RSM). The RSM is a statistical method
that uses experimental data to optimize a response that is influenced by independent input parameters.

The evaluation technique of a summary plays a significant role to decide the credibility of the
summarization model. There are two types of evaluation techniques like intrinsic and extrinsic
evaluation [11]. The intrinsic evaluation measures the quality of a summary by direct analysis based on
some factors while the extrinsic evaluation evaluates a summary based on how it affects the completion
of some other tasks [12]. The evaluation techniques based on recall, precision, and F-measure are called
intrinsic evaluation. The intrinsic evaluation techniques like ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) [13] and BLEU [14] are widely used for judging the quality of a summary. In this
paper, we have used the ROUGE method for measuring the quality of our model generated summary.
The quality of a summary also depends on the level of difficulty of reading and understanding. Hence,
readability metrics is also essential for judging the quality of a summary. There exist several techniques
such as ARI (automatic readability index) [15], Flesch reading ease [16], etc. that use a simple linear
equation with two or more language features like lexical and syntactic features to compute the
readability metrics. The lexical feature decides the difficulty of a word while syntactic feature focuses
on the difficulty of a sentence by averaging the sentence length [12]. The word difficulty is measured
by computing the number of syllables in a word, number of characters in a word, and word frequency.
In this paper, we have used ARI and Flesch reading ease techniques to measure the readability metrics.

In this paper, we develop an abstractive text summarization model (MAPCoL) using the peephole
convolutional LSTM (PCLSTM) instead of the traditional LSTM. We add the attention strategy in the
final layer of the model, which helps to select the important word as a summary. We also incorporate the
multiple layers of PCLSTM which assist the model with capturing the complete pattern of training data.
The addition of the multiple layers helps the model to generate syntactically and semantically coherent
summary. The Keras with TensorFlow backend is used to implement the model. The developed model
is also optimized using the central composite design (CCD) in combination with the response surface
method (RSM). Additionally, the value of maximized output has been predicted using the RSM that
has been justified by the experimental results later. We also perform a comparative analysis of the
performance of our model in different internal settings with the abstractive state-of-the-art models.
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The rest of the paper is organized as follows: Related works are discussed in Section 2. Section 3
illustrates the existing traditional LSTM-based model, and develops a peephole convolutional
LSTM-based model and design of experiment (DoE) to optimize our proposed model. The experiment,
data set, and evaluation approach are discussed in Section 4, while experimental results are discussed
in Section 5. Section 6 illustrates the scope of future improvements of this work followed by some
conclusive remarks.

2. Related Works

Abstractive text summarization has drawn special attention since it can generate some novel
words using seq2seq modeling as a summary. Most of the research on text summarization in the past
are based on extractive text summarization, while very few works have been done on abstractive text
summarization. Some significant research on both of the summarization techniques is described below.

The neural network is widely used in the extractive text summarization (ETS). An ETS model using
reinforcement learning was developed that considers the extractive summarization as a sentence ranking
task [17]. They used a CNN-Daily mail data set and obtained a good result. A neural extractive text
summarization model was described that can score and select sentences jointly [18]. An extractive model
using a data-driven approach for text summarization was shown in [19]. They used a feedforward
neural network to build the model. LeadR, a neural model for extractive summarization, produced
a probability distribution over positions of sentences and used that probability to locate a sentence
in a summary [20]. Few recent works on extractive text summarization generate summary in a more
data-driven way. The attention strategy is also incorporated in the extractive summarization. A neural
model with attention mechanism was introduced that focuses on the important parts of the text and
used them as a summary [21]. SummaRuNNer, an ETS model based on a recurrent Neural Network
(RNN) that produced a summary by considering content, salience, and novelty of the source text [22].
Recently, long short-term memory (LSTM) is applied to build the extractive summarization model.
An LSTM-based neural model for ETS was developed that shows promising improvement in the quality
of summary [23]. A comparative analysis was conducted that reveals the superiority of RNN-based
extractive summarization over the traditional extractive summarization techniques [22].

Deep learning has a wide application in the abstractive text summarization (ATS). Abstractive
summarization based on the attentive recurrent neural network works effectively for summary
generation [24,25]. The RNN based ATS model generates a summary with a better ROUGE score.
Another abstractive text summarization model based on the sequence-to-sequence modeling was
developed [6] that uses GRU (Gated Recurrent Unit) with a bidirectional neural network for building
the model. In recent works, the encoder–decoder seq2seq modeling of RNN is used to build
the abstractive text summarization model. An abstractive summarization based on attentional
encoder–decoder was implemented by using long short-term memory (LSTM) [26]. Another work
using long short-term memory (LSTM) was proposed that uses both bidirectional or unidirectional
encoder–decoders [27]. LSTM with a combination of convolutional neural network (CNN) returns
better accuracy in the abstractive summarization. An abstractive summarization model named ATSDL
was developed by blending LSTM with CNN that ensures both semantic coherence and syntactic
structure of a sentence [28]. ATSDL takes phrases as input instead of raw text after identifying the
phrase from the source text.

A variation of traditional LSTM called convolutional LSTM works effectively in different types
of predictions and classifications. For precipitating nowcasting, a model based on convolutional
LSTM (ConvLSTM) was developed by extending the fully connected (FC-LSTM) [29]. The developed
ConvLSTM model considered the complete correlation among data and predicted nowcast with better
accuracy than the traditional LSTM-based model. The convolutional LSTM was also used for time
series classification. The model used a fully convolutional long short-term memory (LSTM) that
classifies the time series very effectively [30]. Another work based convolutional long short-term
memory (CNN-LSTM) was conducted for gas source localization using time series data from a gas
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sensor network and an anemometer [31]. The model performed well to find the location of a gas source
despite having some challenges like inconsistent airflow and gas distribution in outdoor environments.
A method based on CNN + Convolutional LSTM (ConvLSTM) was trained end to end for the tool
presence detection, spatial localization, and motion tracking [32]. The convolutional LSTM is widely
used in gesture recognition. A multimodal gesture recognition method based on 3D convolution
and a convolutional long-short-term-memory-based model developed for gesture recognition [33].
They used ConvLSTM to learn the long-term spatiotemporal features that help to achieve 98.89%
recognition accuracy. The aforementioned convolutional LSTM-based models perform better than
the models based on traditional LSTM. The architecture of convolutional LSTM allows the model to
consider the full dependency of time stamp during model training. Since the convolutional LSTM
works effectively in various classifications and predictions, it will also do well in the abstractive text
summarization. The convolutional LSTM network with extra peephole connection will give better
accuracy than the traditional LSTM network.

The parameter optimization is widely used in machine learning. The performance of a machine
learning model is significantly influenced by the parameter optimization. A machine learning model
was optimized by using the design of experiment (DoE) [9]. They used factorial design to filter the
most significant parameters, and RSM to optimize the parameters. The response surface method
was applied [34] for the optimization of leaching parameters for ash reduction from low-grade coal.
Their optimized model produced better accuracy than the conventional one. An artificial neural
network-based model for accessing the optimum bio-diesel and diesel was optimized by using the
response surface method [10]. Their experimental results indicate that the parameter optimization
affects the performance greatly. However, the optimization by the response surface method has been
used in different fields of research while it is not yet used to optimize the text summarization model.

All the aforementioned works on abstractive text summarization are based on traditional LSTM.
However, the traditional LSTM has some limitations, such as it does not allow for accessing the
previous cell state when the output gate is closed. The performance of a model can be improved using
parameter optimization. However, parameter optimization is rarely used in conventional models, if
not any. Hence, we have introduced a variation of the traditional LSTM called peephole convolutional
LSTM to build an abstractive summarization model. We have optimized our developed model using
the design of experiment method injunction with the response surface method that returns better
results in terms of semantic coherence than the existing models that are based on the traditional
LSTM architectures.

3. Abstractive Text Summarization Models

The goal of this study is to develop an abstractive text summarization model using a variation of
long short-term memory (LSTM) called peephole convolutional LSTM. Since the common form of LSTM
called traditional LSTM has some limitations like dependencies among cells not being strong [29,35],
the peephole convolutional LSTM is used to build the model instead of the traditional LSTM. In this
section, the traditional LSTM and the peephole convolutional LSTM are explained in detail.

3.1. Traditional LSTM Unit

The long short-term memory (LSTM) is a unit of a recurrent neural network that can identify
and remember the data pattern for a certain period. The LSTM takes a sequence of text as input and
predicts a sequence of text as output. It consists of a memory cell, an input gate, an output gate,
and a forget gate. These three gates control the memory content and the cell states at the current
timestamp [36]. The architecture of traditional LSTM unit is shown in Figure 1.

Here, the top line is known as a memory pipe that takes previous memory content ct−1 as input
and generates final memory ct as output. The previous memory content is passed under two different
operations: bitwise multiplication (x) with the output of the forget gate and bitwise summation (+) with
the output of the input gate. The forget gate generates an output within the range 0 to 1, which plays
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an important role in deciding the content of the memory at the current timestamp. The output close
to 0 means that most of the previous memory content will nearly be forgotten and the opposite will
happen for the output near to 1. The bitwise summation (+) of the output of the input gate determines
how much input from the current timestamp will be added to the previous memory content to produce
the final memory at the current timestamp. Here, the input gate also produces an output within the
range 0 to 1.

Figure 1. A traditional LSTM (long short-term memory) with three gates: input, forget, and output
gates. The content of the memory block is controlled by these three gates. Here, ct−1 and ct are
respectively the contents of the previous and the current memory cells, ht−1 and ht are respectively the
outputs of the previous and the current states , xt is an input vector, X is a bitwise multiplication, + is a
bitwise summation, tanh is a hyperbolic tangent function, σ is a sigmoid function. b f , bi, bc, and bo are
the bias of the different gates.

The forget gate takes the output of the previous state ht−1, an input vector xt, and a bias b f as
input and generates a value within range 0 to 1 that decides how much content of the memory will
pass through the memory pipe:

ft = σ(Wx f xt + Wh f ht−1 + b f ). (1)

The input gate also generates a value within 0 to 1 that defines how much input from the current
timestamp will add to the memory content at the current timestamp:

it = σ(Wxixt + Whiht−1 + bi), (2)

ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc). (3)

The output gate takes the content ht−1 of the previous state, an input vector xt, and a bias bo as
input and produces ot as output. Finally, the content of the current state ht is produced using the value
of ot:

ot = σ(Wxoxt + Whoht−1 + bo), (4)
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ht = ottanh(ct). (5)

In the architecture of the traditional LSTM, there is no connection between a gate and its previous
memory cell. This is why it is not possible to access the previous memory cell state when the output
gate is closed, and it is often found closed during training. A variation of LSTM, called peephole
convolutional LSTM, can overcome this problem.

3.2. Peephole Convolutional LSTM Unit

Long short-term memory (LSTM) is a recurrent neural network unit that has wide applications
in sequence prediction problems. A common form of LSTM, known as traditional LSTM, can not
access the content of its previous memory cell when its output gate is closed [29]. By adding an extra
connection between each gate and the previous memory content, we can solve this problem of the
traditional LSTM. This additional connection, known as a peephole connection, allows all of the gates
to utilize the previous memory cell content even when the output gate is closed. The architecture of
peephole convolutional LSTM is shown in Figure 2.

Figure 2. A peephole convolutional LSTM with a peephole connection. Here, each gate is connected
with the content of the previous memory cell ct−1. The memory of the previous cell along with ht−1,
xt, and bias are provided as input to each gate. This allows for accessing the content of the previous
memory cell even when the output gate is closed.

The implementation of peephole convolutional LSTM is as follows:

it = σ(Wxixt + Whiht−1 + wcict−1 + bi), (6)

ft = σ(Wx f xt + Wh f ht−1 + wc f ct−1 + b f ), (7)

ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc), (8)

ot = σ(Wxoxt + Whoht−1 + wcoct + bo), (9)

ht = ottanh(ct). (10)
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Here, the previous memory cell content ct−1 along with other parameters are provided as input in
the peephole convolutional LSTM while the traditional LSTM does not consider ct−1 as input. Taking
ct−1 as input in the peephole convolutional LSTM influences the result of the sequence prediction
problem. Therefore, we apply the peephole convolutional LSTM for abstractive summarization.

3.3. MAPCoL Model

The goal of this study is to develop an abstractive summarization model using multi-layered
attentional peephole convolutional LSTM (MAPCoL).

Figure 3 shows the working process of the MAPCoL model. We add multiple layers of PCLSTM in
MAPCoL, which means it has more than one hidden layer. We use two hidden layers to build the model
since a layer size of more than three drops the performance of the model due to the gradient decay
over the layers. Initially, the given input text is passed through the embedding layer that converts the
given text into numerical distributed representations. These representations are passed through two
hidden layers of PCLSTM, each layer with a hundred hidden units. Here, the encoder and the decoder
of seq2seq modeling works. The encoder captures the feature vector that represents the given text.
At the same time, it calculates the attention weight for each given word and stores it in an attention
vector that has been used to generate a precise summary in the dense layer. Here, the attention weight
is also calculated for each word and stored in the same attention vector. The attention strategy helps
the sequence-to-sequence model to remember important aspects of a given input [27]. The attention
weight of an input word at position t is computed when outputting the t′ − th word as follows:

ayt′ (t) =
exp(hT

xt hyt′ )

T
∑
t

exp(hT
xt hyt′ )

, (11)

where exp(hT
xt) represents the last hidden layer generated after processing tth input word, and hyt′

represents the last hidden layer generated from the current step of decoding. The attention mechanism
calculates the conditional probability of an input word. Once the entire given text is passed through
the encoder, the decoder takes the feature vector from the encoder and generates the best text for the
intended summary. The decoder generated text is passed through a final dense layer that utilizes the
attention vector to select the most important parts as a final summary.

We apply our developed MAPCoL model on CNN-Daily Mail data set. The system summary and
the reference summary are shown in Table 1.

Table 1 shows that the system summary looks better than the reference summary in terms of
syntactic and semantic coherence.

The second phase of this study is to optimize the developed model using the central composite
design (CCD) along with the response surface method (RSM). The model is optimized based on
four parameters like epochNumber, batchSize, learningRate and hiddenUnits. A total number of
30 experiments is conducted in order to build a data set for optimization. The experiment for
the optimization is built using the CCD. Then, RSM is used to perform the final optimization.
RSM generates a quadratic polynomial equation based on the result of ANOVA analysis. Using that
polynomial equation, RSM predicts the optimal output for the designated model.

Table 1. Comparison of system summary and reference summary.

Text System Summary Reference Summary

Natural language processing is a subfield of computer
science, information engineering, and artificial
intelligence concerned with the interactions between
computers and human languages, in particular how to
program computers to process and analyze large amounts
of natural language data

A subfield of artificial
intelligence named natural
language processing deal
computer and human
language interactions

Natural language processing
is a subfield of artificial
intelligence that works with
computer and human
language interactions
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Figure 3. The entire work flow of the model which starts by taking an input text and finishes by
generating a summary.

3.4. Design of Experiment (DoE)

The parameters used for training and testing the developed model are needed to optimize to
improve the performance of the model. In this study, the parameters of the developed model are
optimized to improve the model performance using the central composite design (CCD) in combination
with the response surface methodology (RSM). The RSM is a combination of mathematical and
statistical methods that is used for building an empirical model to improve and optimize the parameters.
It also investigates the combined effects of interaction among the parameters.

The central composite design is introduced to determine the number of experiments needed to
optimize the variables and response. The CCD is also incorporated to filter the significant parameters
from the candidate parameters. Additionally, the experimental design for performing the optimization
is built by using the CCD. The CCD has three parts—2n factorial points coded to +1 to –1 notation,
2n axial points (± a, 0, 0 ... 0), (0, ± a, 0 ... 0) ... (0, 0, ± a ... 0), and center points nc (0, 0, 0 ... 0).
The vertices of the n-dimensional cube that are coming from the full or fractional factorial design are
called fractional points. The center point is located at the center of the design space. The points on the
axes of the coordinate system with respect to the central point at a distance of α from the design center
are called axial point. The total number of experiments required for an n-factor of a three-level CCD
is 2n + 2n + nc, where n is the number of independent variables, 2n is the corner points of the cube
representing the experimental domain, 2n is the axial points while nc is the center point that represents
the replication of the test. The total number of experiments for the designed CCD with four factors of
three-level and six replications of the test is 24 + (2 ∗ 4) + 6 = 30. After designing the experimental
model by the CCD, the response surface methodology is applied for the final optimization.

The RSM, which is used to optimize the variables as well as the response, has three phases—design
of experiment space, determination of coefficient, and prediction of response with optimized variables.
In this study, four independent variables are used for the experiment: epochNumber (X1), batchSize
(X2), learningRate (X3), and hiddenUnits (X4). The range of values of these parameters is varied
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depending on the experiments. The results of different experiments with parameters are used to
perform the optimization. The interaction among response and independent variables is as follows:

Y = f (X1, X2, X3, X4....Xn), (12)

where Y is the response and Xn is the independent variable of the system. The primary purpose of the
design of experiment (DoE) is to optimize the response variable. Hence, it is necessary to determine
a statistical correlation between the response variable and the independent variables. An analysis
of variance (ANOVA) is carried out for graphical analysis of data that finds the correlation between
the response surface and the independent variables. The values of P and F tests define the statistical
significance of a variable over the response. An empirical model is built using the response to correlate
the independent variables by generating a quadratic polynomial equation:

Y = βo +
n

∑
i=1

βiXi +
n

∑
i=1

βiiX2
i +

n

∑
j=i+1

βijXiXj + ε, (13)

where Y, β0, βi, βii, and βij are respectively the predicted response variable, the constant coefficient,
the linear coefficient, the quadratic coefficient, and the interaction coefficient. Additionally, n number
of parameters are examined and optimized; Xi, Xj are the coded value of the parameters; and ε is the
random error. The coded value of the parameter is calculated as follows [34]:

xi =
Xi − X∗i

∆Xi
. (14)

Here, the coded ith independent variable is xi, Xi is the uncoded ith independent variable, and X∗i
is the uncoded ith independent variable at the centre point. The accuracy of the quadratic polynomial
equation is determined by the value of R2 while the significance of the model is evaluated by the
probability value (p-value) at a 95% confidence level. The optimization is carried out by a statistical
software package Design Expert, Stat-Ease, Inc., Minneapolis, MN, USA. This software package is also
used to plot the contour plot and the response surface plot in the optimized condition.

4. Experiment

The study is aimed to develop an abstractive text summarization with the help of peephole
convolutional LSTM. We optimize the parameters of our MAPCoL model using the central composite
design (CCD) in combination with the response surface methodology (RSM).

4.1. Experimental Setup

To develop a peephole convolutional LSTM-based abstractive text summarization model, we have
used Python libraries Keras with a TensorFlow CPU backend. The batch size defines that the amount
of data are used at a time while training a model. The epoch number means how many times data
are used to train a model. We keep the batch size of 64, and the number of epochs of 200, to train our
MAPCoL model. Our model with this setting produces the best result in terms of semantic coherence
as well as syntactic structure. Then, we use a software called design expert to perform the optimization.

4.2. Experimental Data Set

Our experiment for generating a summary using multi-layered attentional peephole convolutional
LSTM is carried out on the CNN-Daily Mail data set. The data set contains online news articles
and a summary of those news articles. Here, the used dataset contains 287,226 training pairs,
13,368 validation pairs, and 11,490 testing pairs.
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4.3. Evaluation Method

Manual evaluation of the quality of a summary is time hungry, annoying, and repetitive [37].
Hence, a method called ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is used for
summary evaluation [38] that evaluates the quality of a summary by comparing a system summary
and a reference summary (human-generated). Different approaches are followed to measure ROUGE
scores. In this study, we use ROUGE-N [13] and ROUGE-L [13] to evaluate the quality of our model
generated summary. ROUGE-N is a recall oriented evaluation method that measures the quality of a
candidate summary against a reference summary by considering n-gram. The ROUGE-N is measured
as follows [13]:

ROUGE-N =
∑S∈Re f ∑gramn∈S Countmatch(gramn)

∑S∈Re f ∑gramn∈S Count(gramn)
, (15)

where n is the number of consecutive words, Re f is the set of reference summary, Count(gramn)

counts the number of n consecutive words of the reference summary, and Countmatch(gramn) counts
the number of matched n consecutive words between the reference summary and system summary.

Another ROUGE method called ROUGE-L evaluates the quality by taking the longest common
subsequence (LCS) between a candidate summary and a reference summary into consideration.
The F-measure based ROUGE-L is estimated as follows [13]:

ROUGE-L =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs
. (16)

Here, Rlcs and Plcs are the LCS-based recall and precision, respectively, while β = plcs/Rlcs.
Another evaluation method called readability metrics is performed to evaluate the quality of

a summary. Readability metrics are the techniques for judging the reading difficulty of a text by
considering the letters, words, and sentences. Readability score defines the level of difficulty of
a particular text. The following techniques are widely used to calculate the readability metrics.

The Automated Readability Index (ARI) [15] outputs a number that indicates the age needed to
understand the text [15]:

ARI score = 4.71 ∗ AWL + 0.5 ∗ ASL− 21.43. (17)

The Flesch Reading Ease formula defines how easy or difficult a text is to read [16]. The Flesch
Reading Ease score is between 0 to 100, and a higher number means that it is easier to read [16]:

Flesch reading ease score = 206.835− (1.015 ∗ ASL)− (84.6 ∗ AWL), (18)

where ASL = average sentence length (number of words divided by the number of sentences) and
AWL = average word length in syllables (the number of syllables divided by the number of words).

5. Results and Discussion

The peephole convolutional LSTM works efficiently in different types of classifications and
predictions. In this paper, we introduce a multi-layered attentional peephole convolutional LSTM
to build an abstractive text summarization model (MAPCoL). In addition, we optimize the model to
get better output using the central composite design (CCD) in combination with the response surface
method (RSM).
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5.1. Summary Generation by MAPCoL

We apply our model on a popular CNN/Daily Mail data set, and compare this result with that of
the other models applied over the same data set, as shown in Table 2. We have calculated ROUGE-1,
ROUGE-2, and ROUGE-L scores to evaluate the performance of our model. Here, ROUGE-1 measures
summary quality by considering a single word while ROUGE-2 by considering two consecutive words
at a time.

Table 2. Performance comparison between the MAPCoL and other models on the CNN/DailyMail
dataset. ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation.

Model ROUGE-1 (%) ROUGE-2 (%) ROUGE-L (%)

Bottom-Up Sum 41.22 18.68 38.34
SummaRuNNer 39.60 16.20 35.30

C2F + ALTERNATE 31.10 15.40 28.80
MAPCoL 39.61 20.87 39.33

Optimized MAPCoL 41.21 21.30 39.42

Table 2 shows the ROUGE scores that are obtained by four different text summarization models.
The models shown in Table 2 obtain this result on the same CNN/Daily Mail data set. Here, the three
models shown, such as Bottom-Up Sum [39], SummaRuNNer [22], and C2F + ALTERNATE [6],
are based on a recurrent neural network (traditional LSTM), while our MAPCoL model is based on
peephole convolutional LSTM. The highest ROUGE-1, ROUGE-2, and ROUGE-L scores obtained by
the traditional LSTM-based models mentioned in Table 2 are 41.22, 18.68, and 38.34%, respectively.
In contrast, the peephole convolutional LSTM-based model (MAPCoL) achieves ROUGE-1, ROUGE-2,
and ROUGE-L scores 39.61, 20.87, and 39.33 percent, respectively, which are higher than that of the
traditional LSTM-based model except for the ROUGE-1 score.

The model generates summary with more accuracy after optimization and the improved
ROUGE-1, ROUGE-2, and ROUGE-L are 41.21, 21.30, and 39.42%, respectively. The ROUGE-1 of our
model is very close to ROUGE-1 of the Bottom-Up Sum model while the other two ROUGE scores
are greater than that of the comparing three models. The reason behind the better performance of our
MAPCoL model is the peephole connection in LSTM architecture that allows us to access the cell state
in any condition. Additionally, the multi-layered topology of LSTM in encoder–decoder architecture
influences the performance improvement of our model.

The readability of our model generated summary is also calculated. Here, two techniques such as
automated readability index (ARI) [15] and Flesch reading ease [16] are used for measuring the level
of difficulty of the model generated summary. The both techniques use the average word and sentence
length to calculate the difficulty. Table 3 shows the statistics of a dataset that is used for the readability
computation. Here, a total of 11,490 summaries are evaluated, and two features like AWL (average
word length) and ASL (average sentence length) are used to measure reading and understanding
difficulties. The readability metrics of our model generated summary is shown in Table 4.

Table 3. Statistics of the dataset used for readability metrics.

Feature Number

Number of Summary 11,490
Average number of sentence per summary 6.32
Maximum number of sentence per summary 11
Average word length (AWL) in summary 1.42
Average sentence length (ASL) in summary 13.31
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Table 4. Readability metrics of our model generated summary before and after optimization.

Optimized Non-Optimized

ARI Score 8.09 8.15
Flesch Score 73.16 73.68

We have estimated the readability metrics of both summaries before and after optimization.
Table 4 indicates that the readability metrics of the optimized and non-optimized summary are not
varied significantly. The ARI score of 10.60 and 10.40 are respectively obtained from the summary of the
optimized and non-optimized models which indicate that the generated summary is understandable
for people in the 8th grade. Students who are below 8th grade will find this summary a little difficult
to read and understand. The lower the Flesch score, the more difficult the text is to read. The estimated
Flesch scores from the summary of the optimized and non-optimized models are 73.16 and 73.68,
which means that the text is readable for the people of 7th or 8th grade students. The Krippendorff’s
alpha test is used to measure the score of agreement between the two evaluators like ARI and Flesch
reading ease score. The Krippendorff’s alpha is statistics the computes the agreement obtained among
evaluators who evaluate a set of objects in terms of the values of the variables. To perform the
Krippendorff’s alpha test, the ARI and Flesch scores are mapped to grade level by following Table 5.
The ARI and Flesch scores of 11,490 summaries are mapped to the corresponding grade level using
Table 5, and the Krippendorff alpha test is performed. This statistical test produced α value of 0.8132,
which indicates that the two observers agreed at 81.32% to score the readability of summaries.

Table 5. ARI and flesch score mapping to the grade level.

ARI Score Flesch Score Grade Level

5 90–100 5th
6 80–89 6th
7 70–79 7th
8 60–69 8th or 9th
10–12 50–60 10th to 12th

We have performed some comparative analysis within our model by tuning different internal
parameters. We have observed the performance of our model by changing the size of hidden units.
We have experimented over the number of hidden units within the range 50 to 150, as shown in
Figure 4. The performance of the model increases sharply with the increase in the size of hidden units
from 50 to 100. More than 100 hidden units causes over-fitting that leads the model to memorize the
given data instead of learning the data pattern. Hence, the model generalizes the unseen data less
efficiently. However, increasing the size of hidden units to over 100 does not have any significant
impact on the performance of this model. Additionally, it takes more time to finish the training. Hence,
the size of hidden units being 100 is suitable based on performance and time consumption.

We have also tested our model on different batch sizes. The batch size determines the amount of
data used at a time to train the model. Here, we have tested the performance of MAPCoL on three
different batch sizes keeping the size of hidden unit consistent at 100. The three different batch sizes
are 32, 64, and 128. The performance of our model is very low with the batch size of 32, as shown
in Figure 5.

The performance increases rapidly until the batch size of 64 and then flattens out. The reason
behind this is that the large batch size tends to converge to sharp minimizers of the training function.
This tendency lessens the generalization power of the model and also reduces the ability to treat the
unseen data precisely. Hence, the batch size of more than 64 has a diverse effect on the performance of
the model. However, increasing the batch size also kills the overall training time. Hence, the use of
batch size 64 against the unit size 100 shows the best result in our experiment.
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Figure 4. Average performance of our MAPCoL with different numbers of hidden units.

Figure 5. Average performance of our developed MAPCoL on different batch sizes.

We have also measured the ROUGE score with different epoch numbers, as shown in Figure 6.
Here, the epoch number defines how many times the same data are used to train the model. In our
experiment, the number of epochs varies from 100 to 250.

The performance of MAPCoL increases with the increase of epoch number. However, the performance
improvement from 100 epochs to 200 epochs is very sharp, and this becomes stable afterward. Here,
the over-fitting problem also occurred when the epoch number is more than 200. This is why the
performance of the model is not improved when the model is trained for more than 200 epochs.

In our experiment, we also measure the training and validation accuracy of MAPCoL with respect
to epoch numbers, as shown in Figure 7. A goal of building a model is to maximize the training and
validation accuracy. Initially, the accuracy is low, and then it improves with the increase of epoch
numbers. The accuracy of training and validation is falling after 200 epochs. This is because the model
is facing the over-fitting problem after 200 epochs. Hence, both accuracies are falling after 200 epochs.
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Figure 6. Average performance of our MAPCoL model on different epoch numbers.

Figure 7. Comparison of training and validation accuracy with epoch numbers.

Another expectation of building a deep learning model is that the training and validation loss will
be near zero. The calculated validation and training loss with respect to the epoch number are shown
in Figure 8. Figure 8 shows that both losses are decreasing as expected to epoch number 200 and, after
that, they start increasing sharply. The reason for this unusual behavior is over-fitting, which puts a
negative impact on the performance of the model.

The above experiments justify that our model MAPCoL produces better results than the
state-of-the-art models of abstractive text summarization concerning semantic and syntactic structure.
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Figure 8. Comparison of training and validation loss with epoch numbers.

5.2. Model Optimization by DoE

Model optimization is an important part of this study. The Design Expert software package is
used to perform the regression analysis of the experimental data. The response surface plot is also
drawn by this software package to investigate the combined effect of the parameters on the response
variable. The values of the parameters used in optimization are chosen after performing a series of
experiments. The model generates better results when the values of the parameters lie between the
considered ranges.

A total number of 30 experiments with a different configuration of parameters are used to
optimize the model. We have optimized the response variables such as ROUGE-1, ROUGE-2,
and ROUGE-L concerning four important parameters of our model like epochNumber (X1), batchSize
(X2), learningRate (X3), and hiddenUnits (X4). Table 6 shows the actual and coded value of four
parameters along with the ROUGE scores in each of 30 experiments. These values are used to
predict the maximum ROUGE scores along with the best configuration of these aforementioned four
parameters to achieve that ROUGE score.

The statistical significance of each parameter over the response is evaluated by ANOVA
analysis. The results of ANOVA for optimizing ROUGE-1, ROUGE-2, and ROUGE-l are shown
in Tables 7–9, respectively.

The level of significance of each parameter is defined based on the F-value or p-value at
a 95% confidence level. The larger F-value or the smaller p-value determine that the parameter is
significant while the smaller F-value or the larger p-value indicate that the parameter is not significant.
The parameters with p-values less than 0.05 are significant. Table 7 shows that X1, X2, X3, X2

2, and X2
4 are

statistically significant with respect to ROUGE-1. Table 8, the ANOVA results for optimizing ROUGE-2,
shows that X1, X2, X3, X4, X2

2, and X2X4 have significant impact on ROUGE-2. The optimization process
is also carried out for ROUGE-L, and the ANOVA results in this regard are shown in Table 9.
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Table 6. The coded and real value of the parameters along with response variable.

Experiment No.

Parameters

Coded Value Real Value ROUGE Scores

X1 X2 X3 X4 epochNumber (X1) batchSize (X2) learningRate (X3) hiddenUnits (X4) ROUGE-1 (%) ROUGE-2 (%) ROUGE-L (%)

1 −1 0 0 0 80 64 0.01 100 13.26 5.86 12.62
2 −1 0 +1 +1 80 64 0.02 150 14.10 6.24 14.05
3 −1 +1 +1 −1 80 128 0.02 50 15.06 6.39 14.63
4 −1 −1 −1 +1 80 32 0.001 150 11.23 5.05 10.85
5 −1 −1 0 −1 80 32 0.01 50 14.32 6.98 13.67
6 −1 +1 −1 −1 80 128 0.001 50 14.29 6.07 13.75
7 −1 +1 0 0 80 128 0.01 100 5.32 3.21 5.06
8 −1 +1 −1 −1 80 128 0.001 50 14.29 7.06 13.98
9 −1 +1 0 0 80 128 0.01 100 5.34 3.46 4.68
10 −1 −1 +1 −1 80 32 0.02 50 10.25 7.65 9.87
11 0 −1 −1 +1 150 32 0.001 150 24.32 8.67 23.98
12 0 −1 0 −1 150 32 0.01 50 24.31 9.45 23.85
13 0 −1 0 0 150 32 0.001 100 25.31 11.34 24.32
14 0 −1 +1 −1 150 32 0.02 50 19.35 10.48 19.02
15 0 0 0 −1 150 64 0.01 50 26.34 13.27 26.32
16 0 0 0 0 150 64 0.01 100 29.31 15.71 28.75
17 0 0 +1 +1 150 64 0.02 150 24.32 13.07 23.58
18 0 +1 +1 −1 150 128 0.02 50 21.30 12.01 20.69
19 0 +1 −1 0 150 128 0.001 100 23.10 12.20 22.79
20 0 +1 0 0 150 128 0.01 100 22.32 11.23 23.06
21 +1 −1 0 +1 200 32 0.01 150 31.81 17.31 30.76
22 +1 −1 +1 −1 200 32 0.02 50 28.65 14.27 29.07
23 +1 −1 +1 0 200 32 0.02 100 34.10 17.36 34.06
24 +1 0 −1 +1 200 64 0.001 150 35.14 18.41 33.21
25 +1 0 −1 −1 200 64 0.001 50 32.32 16.21 33.01
26 +1 0 −1 0 200 64 0.001 100 39.61 20.87 39.33
27 +1 0 +1 +1 200 64 0.02 150 27.36 14.09 26.45
28 +1 +1 +1 −1 200 128 0.02 50 28.21 14.78 29.31
29 +1 +1 −1 0 200 128 0.001 100 33.95 16.93 31.89
30 +1 +1 −1 +1 200 128 0.001 150 31.30 15.86 30.75

Table 7. Results of analysis of variance (ANOVA) for response surface in order to optimize the ROUGE-1.

Source
Predicted Stages

Degree of Fredoom Sum of Square Mean of Square F-Value p-Value

Model 14 3236.60 231.19 16.90 0.00
Linear 4 1749.08 437.27 31.97 0.00
X1 1 1624.01 1624.01 118.72 0.00
X2 1 1201.2 1201.2 37.3 0.02
X3 1 678.3 678.3 45.2 0.01
X4 1 14.29 14.29 1.04 0.31
Square 4 279.04 69.76 5.10 0.00
X2

1 1 0.12 0.12 0.01 0.92
X2

2 1 229.09 229.09 16.75 0.00
X2

3 1 6.19 6.19 0.45 0.50
X2

4 1 87.11 87.11 6.37 0.01
2-way interaction 6 80.99 13.50 0.99 0.44
X1X2 1 0.31 0.31 0.02 0.88
X1X3 1 17.77 17.77 1.30 0.26
X1X4 1 22.35 22.35 1.63 0.210
X2X3 1 1.91 1.91 0.14 0.71
X2X4 1 1.00 1.00 0.07 0.78
X3X4 1 17.30 17.30 1.26 0.26



Symmetry 2019, 11, 1290 17 of 24

Table 8. Results of analysis of variance (ANOVA) for response surface in order to optimize the ROUGE-2.

Source
Predicted Stages

Degree of Fredoom Sum of Square Mean of Square F-Value p-Value

Model 14 644.91 46.05 19.67 0.00
Linear 4 459.44 114.86 49.05 0.00
X1 1 444.36 444.36 189.77 0.00
X2 1 8.40 8.40 3.59 0.04
X3 1 0.37 0.37 44.32 0.02
X4 1 18.56 18.56 7.93 0.01
Square 4 26.14 6.53 4.65 0.02
X2

1 1 0.33 0.33 0.14 0.71
X2

2 1 17.84 17.84 7.62 0.01
X2

3 1 0.07 0.07 0.03 0.86
X2

4 1 6.10 6.10 2.61 0.12
2-way interaction 6 30.89 5.14 2.20 0.10
X1X2 1 5.86 5.86 2.51 0.13
X1X3 1 5.70 5.70 2.44 0.13
X1X4 1 6.52 6.52 2.79 0.11
X2X3 1 5.71 5.71 2.44 0.13
X2X4 1 12.11 12.11 5.17 0.03
X3X4 1 1.68 1.68 0.72 0.40

Table 9. Results of analysis of variance (ANOVA) for response surface in order to optimize the ROUGE-L.

Source
Predicted Stages

Degree of Fredoom Sum of Square Mean of Square F-Value p-Value

Model 14 2289.54 163.54 18.43 0.00
Linear 4 1721.53 430.38 48.50 0.00
X1 1 1587.28 1587.28 178.86 0.00
X2 1 49.25 49.25 5.55 0.03
X3 1 23.42 23.42 5.62 0.02
X4 1 55.16 55.16 6.22 0.02
Square 4 33.48 33.48 0.94 0.46
X2

1 1 1.93 1.93 0.22 0.64
X2

2 1 19.33 19.33 8.34 0.01
X2

3 1 0.95 0.95 0.11 0.74
X2

4 1 10.77 10.77 4.65 0.04
2-way interaction 6 52.11 8.69 0.98 0.47
X1X2 1 6.35 6.35 0.71 0.41
X1X3 1 16.44 16.44 7.34 0.04
X1X4 1 5.32 5.32 0.60 0.45
X2X3 1 1.64 1.64 0.18 0.67
X2X4 1 23.98 23.98 9.65 0.03
X3X4 1 0.57 0.57 0.06 0.83

Table 9 indicates that X1, X2, X3, X4, X2
2 , X2

4 , and X2X4 have significant effects on ROUGE-L
optimization. Here, the sum of square and mean of square define the variance between the individual
value and the mean. The statistical parameters obtained from the ANOVA test to optimize ROUGE-1,
ROUGE-2, and ROUGE-l are shown in Tables 10–12, respectively.



Symmetry 2019, 11, 1290 18 of 24

Table 10. Statistical parameter obtained from the analysis of variance (ANOVA) for the
ROUGE-1 optimization.

R-sq(%) R-sq(adj)(%) R-sq(pred)(%)

97.11 93.96 90.90

Table 11. Statistical parameter obtained from the analysis of variance (ANOVA) for the ROUGE-2 optimization.

R-sq(%) R-sq(adj)(%) R-sq(pred)(%)

96.01 94.21 91.14

Table 12. Statistical parameter obtained from the analysis of variance (ANOVA) for the ROUGE-L optimization.

R-sq(%) R-sq(adj)(%) R-sq(pred)(%)

97.13 92.96 92.01

The value of R-sq describes how perfectly the model has estimated the experimental data
while R-sq(adj) adjusts the statistic based on the number of independent variables in the model.
The R-sq(pred) indicates how well a model can predict the response for a new observation. A model
with larger R-square value is better to optimize the output. The value of R-square, adjusted R-square,
and predicted R-square for optimizing ROUGE-1 are 97.11%, 93.96%, and 90.90%, respectively. Table 10
shows that the model can estimate the experimental data with 97.11% accuracy. In addition, it can
adjust the statistical data with 93.96% accuracy based on the independent variable. Table 10 also shows
that, with 90.90% accuracy, the model can predict the best ROUGE-1 score.

Tables 11 and 12 respectively show that the model can predict the optimum ROUGE-2 score with
91.14% and ROUGE-L score with 92.01% accuracy. An important step of response surface methodology
is to perform the multiple regression analysis. The multiple regression analysis of the experimental
data generates a quadratic polynomial equation for predicting the response variables such as ROUGE-1,
ROUGE-2, and ROUGE-L. The quadratic equations obtained using response surface methodology are
shown below:

ROUGE− 1 = −12.7 + 0.112X1 + 0.370X2 + 263X3 + 0.188X4 + 0.000032X2
1

− 0.002419X2
2 + 9067X2

3 − 0.001121X2
4 + 0.000044X1X2 − 1.91X1X3 + 0.000374X1X4

− 0.81X2X3 − 0.000117X2X4 − 2.42X3X4, (19)

ROUGE− 2 = −11.96 + 0.0368X1 + 0.2445X2 + 553X3 + 0.1116X4 + 0.000069X2
1

− 0.001187X2
2 − 1866X2

3 − 0.000512X2
4 + 0.000261X1X2 − 1.449X1X3 + 0.000288X1X4

− 2.73X2X3 − 0.000794X2X4 − 1.08X3X4, (20)

ROUGE− L = −14.5 + 0.196X1 + 0.246X2 + 132X3 + 0.139X4 − 0.000165X2
1

− 0.001235X2
2 + 6685X2

3 − 0.000679X2
4 + 0.000272X1X2 − 2.46X1X3 + 0.000260X1X4

− 1.46X2X3 − 0.001118X2X4 + 0.63X3X4. (21)

This quadratic polynomial equation is used to predict the optimum value of the response variables.
The predicted maximum ROUGE values with the optimal condition are shown in Table 13.
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Table 13. Predicted and experimental ROUGE scores with the optimal processing condition. Here,
the star (*) sign represents the ROUGE scores getting through an experiment with the optimal values
of the four parameters. The ROUGE scores without the star (*) sign are the predicted ROUGE scores by
the optimization model.

ROUGE Scores
epochNumber batchSize learningRate hiddenUnits ROUGE-1 (%) ROUGE-2 (%) ROUGE-L (%)

200 75.63 0.001 111
41.98

41.21 *
21.67

21.30 *
39.84

39.42 *

Here, the values without star (*) sign are the predicted values by the response surface methodology
while the values with star (*) sign are the experimental values using the best configuration of the
four parameters. In this experiment, the response surface method (RSM) predicts the best ROUGE-1,
ROUGE-2, and ROUGE-L scores of 41.98%, 21.67%, and 39.84% respectively with the best parameter
configuration like epochNumber, batchSize, learningRate, and hiddenUnits are 200, 75.63, 0.001,
and 111, respectively.

BY using the suggested parameter configuration by RSM, we found ROUGE-1, ROUGE-2,
and ROUGE-L scores of 41.21%, 21.30%, and 39.42%, respectively, which is very close to the predicted
ROUGE scores. Table 13 shows that the model gives a better result after optimization. This is
because the value of the parameters is determined after considering the effect of the parameters on the
response variable. The response surface method suggests the optimized values of the parameters after
performing the multiple regression analysis. Hence, the optimized value of the parameters influences
the ROUGE score significantly.

The response surface method is used to optimize the ROUGE scores and to examine the interaction
of the parameters of the MAPCoL model. The level of significance of each parameter is investigated
by performing the ANOVA test on the experimental data. Tables 7–9 show that the four parameters
of the model have a significant influence on the ROUGE score. Here, to observe the combined effect
of these parameters on the ROUGE score, the response surface methodology is used to draw the
three-dimensional surface plot. Figures 9–14 show the combined effect of epochNumber, batchSize,
learningRate, and hiddenUnits on the ROUGE score.

Figure 9 shows that, with the increase of epochNumber, the ROUGE score increases linearly,
and the model returns the maximum ROUGE score when the epochNumber is 200 and the batchSize is
between 50 to 125.

Figure 9. Combined effect of epochNumber and batchSize on the ROUGE score.
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Figure 10 defines that the ROUGE score grows sharply with the increase of epochNumber while
the learningRate does not have a significant effect on the ROUGE score. The combined effect of the
epochNumber and the hiddenUnits is shown in Figure 11, which indicates that the performance of the
model increases linearly with the increase of epochNumber, but the hiddenUnits is less significant in
this regard.

Figure 10. Combined effect of epochNumber and learningRate on the ROUGE score.

Figure 11. Combined effect of epochNumber and hiddenUnits on the ROUGE score.

The effect of batchSize on the performance of the model is more than the learningRate as shown
in Figure 12. Figure 13 shows that the batchSize and the hiddenUnits both have a significant combined
impact on the performance, and, similarly, the learningRate and the hiddenUnits also have a notable
combined effect on that of the model as shown in Figure 14.

The above experiments justify that our model MAPCoL produces better results shown in Table 2
than the state-of-the-art models of abstractive text summarization with respect to semantic and syntactic
structure. Additionally, the optimized model has generated better accuracy than the un-optimized
results. It is also seen that the model generates a more precise summary after optimizing the model
using the response surface method.
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Figure 12. Combined effect of batchSize and learningRate on the ROUGE score.

Figure 13. Combined effect of batchSize and hiddenUnits on the ROUGE score.

Figure 14. Combined effect of learningRate and hiddenUnits on the ROUGE score.
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6. Conclusions

The developed abstractive summarization model using multi-layered peephole convolutional
LSTM achieves better performance than any state-of-the-art model with respect to semantic and syntactic
coherence. The developed model has been optimized using the central composite design in combination
with response surface design. The predicted ROUGE-1, ROUGE-2, and ROUGE-L scores found by the
response surface method are 41.98%, 21.67%, and 39.84%, which are very close to the experimental of
41.21%, 21.30%, and 39.42%, respectively. The developed MAPCoL model overcomes some problems that
are associated with the existing abstractive text summarization techniques. The semantic and syntactic
coherence is also guaranteed in our developed model. Though our model overcomes some problems of
other models, it also has some limitations. Our model works less efficiently when we generate a large
text as a summary. In the future, we will work on that issue to make our model more efficient in order
to generate a long summary. We have applied the developed model on the CNN-Daily Mail data set,
and the MAPCoL works better than the traditional LSTM-based models.
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