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Abstract: This article examines magnetohydrodynamic 3D nanofluid flow due to a rotating disk
subject to Arrhenius activation energy and heat generation/absorption. Flow is created due to a
rotating disk. Velocity, temperature and concentration slips at the surface of the rotating disk are
considered. Effects of thermophoresis and Brownian motion are also accounted. The nonlinear
expressions have been deduced by transformation procedure. Shooting technique is used to construct
the numerical solution of governing system. Plots are organized just to investigate how velocities,
temperature and concentration are influenced by various emerging flow parameters. Skin-friction
Local Nusselt and Sherwood numbers are also plotted and analyzed. In addition, a symmetry is
noticed for both components of velocity when Hartman number enhances.

Keywords: rotating disk; Arrhenius activation energy; nanoparticles; binary chemical reaction; MHD;
heat generation/absorption; slip effects; numerical solution

1. Introduction

Low thermal efficiency of working liquids is a principle issue for a few heat transport components
in the designing of applications. Therefore a few scientists are occupied with the request to build
up an imaginative route for development of thermal productivity of working liquids. Different
components have been proposed by specialists to improve the thermal productivity of liquids.
Therefore, the inclusion of nanomaterial in working liquid termed as nanofluid is very alluring
component. Recent examinations on nanofluid have uncovered that working fluid has various
highlights with nanomaterial blend. This is on the grounds that the thermal proficiency of working
fluid is weaker than nanofluid thermal productivity. Nanofluid is a recently perceived group of liquids
containing working liquid with the particles of nano measure. Such nanomaterials are employed
in MHD control generators, oil stores, cooling of atomic reactors, malignancy treatment, vehicle
transformer and several others [1–5]. The word nanofluid was first used by Choi [6] to explain the
thermal conductivity of ordinary liquids. From the perspective of exploring how thermal conductivity
is expanded, various examinations are introduced by him. Further attempts on nanofluids can be cited
through investigations [7–20].

Analysts are presently much occupied by exploring fluid flow via rotating disk. It is because of its
numerous applications in various fields of technology, for example, design branches and aeronautical
science such as gem development forms, electronic gadgets, pivoting hardware, PC stockpiling gadgets,
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thermal power producing systems, gas turbine rotors, air cleaning machines, restorative gear and
several others [21–23]. Von Karman [24] provided pioneering work with fluid flow via rotating disk.
He examined the subsequent issue diagnostically. Cochran [25] proved an asymptotic answer for the
von Karman issue. Millsaps and Pohlhansen [26] examined the issue of heat transfer for the isothermal
plate. Ackroyd [27] thought about suction/infusion impacts in the Von Karman issue and he created a
solution by exponentially rotting coefficients. Miclavcic and Wang [28] broadened the Von Karman
issue for circumstances where a rotating disk concedes partial slip attributes. Attia [29] examined
fluid flow because of a rotating disk inundated in a permeable space by using the Wrench Nicolson
technique. Flow of viscous fluid by permeable disk subject to pivoting casing and heat/mass exchange
was analyzed by Turkyilmazoglu and Senel [30]. They processed numeric consequences of governing
flow issue. Rashidi et al. [31] analyzed impacts of entropy generation in MHD flow of viscous fluid
by rotating disk. Hatami et al. [32] talked about laminar flow of nanofluids instigated by turning
contracting disk. Mustafa et al. [33] investigated the flow of nanoliquid initiated by a rotating disk.
They inferred that uniform extension of a disk is a significant factor for decreasing boundary-layer
thickness. Sheikholeslami et al. [34] accounted for nanofluid flow incited by a slanted rotating plate.
Hayat et al. [35] examined flow by a rotating disk through a magnetic field, slip and nanoparticle
impact. Flow of MHD nanoliquid by rotating disk subject to slip was explored by Mustafa [36]. Darcy
Forchheimer flow of carbon nanotubes incited by a rotating disk was examined by Hayat et al. [37].
Further relevant attempts regarding rotating disks can be seen through investigations [38–40].

Propelled by the above articles, the goal here is to look at the combined impacts of Arrhenius
activation energy and binary chemical reactions in hydromagnetic 3D flow of nanofluid by rotating
disk with heat generation/absorption and slip impacts. The random movement and thermophoretic
dispersion phenomena occur because of the nanoparticles. Velocity, thermal and concentration slips
are considered. The governing system is solved numerically by shooting procedure. Velocities,
temperature, concentration and local Sherwood and Nusselt numbers are additionally discussed
through curves.

2. Statement

We analyze MHD steady three-dimensional flow of nanoliquid by rotating disk with thermal
generation/absorption and slip impacts. Arrhenius activation energy and binary chemical reaction
impacts are additionally present. Disk at z = 0 pivots with constant angular velocity Ω. Brownian
dispersion and thermophoretic impacts are also present. Magnetic field of strength B0 acts in
z−direction (see Figure 1). The velocity components (u, v, w) are in the directions of expanding
(r, ϕ, z) respectively. Resulting boundary-layer expressions are
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u→ 0, v→ 0, T → T∞, C → C∞ when z→ ∞. (8)

Here u, v and w represent velocities in directions of r, ϕ and z while ρ f , ν
(
= µ/ρ f

)
and µ show

density, kinematic and dynamic viscosities, respectively, L1 the velocity slip factor, (ρc)p the effective
heat capacity of nanoparticles, Ea the activation energy, (ρc) f heat capacity of liquid, L2 the thermal
slip factor, σ the electrical conductivity, C the concentration, n the fitted rate constant, C∞ the ambient
concentration, DT the thermophoretic factor, αm = k/(ρc) f and k the thermal diffusivity and thermal
conductivity respectively, T the fluid temperature, kr the reaction rate, DB the Brownian factor, L3 the
concentration slip factor, Q the heat generation/absorption factor, κ the Boltzmann constant and T∞

the ambient temperature. Selecting
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Continuity Equation (1) is trivially verified while Equations (2)–(8) yield
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f (0) = 0, f ′(0) = α f ′′(0), g(0) = 1 + αg′(0), θ(0) = 1 + βθ′ (0) , φ(0) = 1 + γφ′ (0) , (14)

f ′(∞)→ 0, g(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0. (15)

Here Nt stands for the thermophoresis parameter, α for velocity slip parameter, Ha for Hartman
number, σ for chemical reaction parameter, Nb for Brownian parameter, β for thermal slip parameter, δ

for temperature difference parameter, Pr for Prandtl number, γ for concentration slip parameter, δ1 for
heat absorption/generation parameter, Sc for Schmidt number and E for nondimensional activation
energy. Nondimensional variables are defined by
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The coefficients of skin-friction and local Nusselt and Sherwood expressions are

Re1/2
r C f = f ′′(0), Re1/2

r Cg = g′(0),

Re−1/2
r Nu = −θ′(0), Re−1/2

r Sh = −φ′(0),

}
(17)

where Rer = 2(Ωr)r/ν represents the local rotational Reynolds number.
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Figure 1. Flow configuration.

3. Solution Methodology

By using appropriate boundary conditions on a system of equations, a numerical solution is
provided considering NDSolve in Mathematica. Shooting technique is used via NDSolve. This
technique is very helpful in the case of small step-sizes featuring negligible error. Consequently, both r
and z varied uniformly by a step-size of 0.01.

4. Results and Discussion

This segment outlines the commitment of various relevant parameters including Prandtl number
Pr, Hartman number Ha, thermophoresis parameter Nt, chemical reaction parameter σ, velocity
slip parameter α, Schmidt number Sc, temperature difference parameter δ, Brownian parameter Nb,
thermal slip parameter β, activation energy E, heat generation/absorption parameter δ1, concentration
slip parameter γ on velocities f ′(ζ) and g(ζ), concentration φ(ζ) and temperature θ (ζ) distributions.
Figure 2 demonstrates the variety in velocity field f ′(ζ) for shifting Hartman parameter Ha. An
addition in Hartman parameter Ha relates to bringing down velocity field f ′(ζ). Here Ha=0 yields
hydromagnetic flow circumstance and Ha=0 speaks to hydro-dynamic flow case. Figure 3 portrays
adjustment in velocity field f ′(ζ) for differing estimations of velocity slip parameter α. Velocity
field and related layer are diminished for higher α. Figure 4 shows adjustment in velocity field
g(ζ) for fluctuating Hartman parameter Ha. Here we examined that velocity field diminishes when
Hartman parameter Ha increments. Figure 5 is portrayed to look at that how velocity field g(ζ) is
influenced with variety of velocity slip α. For increasing estimations of α, velocity field g(ζ) indicates
diminishing pattern. Figure 6 showcases the impact of Hartman parameter Ha on temperature
θ (ζ). Obviously, temperature and the related thermal layer are upgraded for increasing Ha. Effect
of thermal slip β on temperature dissemination θ (ζ) is delineated in Figure 7. Improvement in
β depicts diminishing conduct for θ (ζ) and the related thermal layer. Figure 8 shows how heat
generation/absorption number δ1 influences temperature dispersion θ (ζ). Here δ1 > 0 portrays heat
generation and δ1 < 0 for heat absorption. Both temperature θ (ζ) and thermal layer are upgraded for
increasing δ1. Figure 9 introduces a variety in temperature field θ (ζ) for differing Prandtl parameter
Pr. Here θ (ζ) is diminished through Pr. Proportion of momentum diffusivity to thermal diffusivity
is termed as Prandtl parameter Pr. Higher estimations of Pr yield more fragile thermal diffusivity
which compares to a reduction in thermal layer. Effect of Nt on temperature profile θ (ζ) is depicted in
Figure 10. Addition in Nt relates to stronger temperature field θ (ζ) and more thermal layer. Figure 11
delineates variety in temperature field θ (ζ) for unmistakable estimations of Brownian movement Nb.
Physically, a sporadic movement of nanoparticles improves by expanding Brownian movement Nb
because of which impact of particles happens. As a result, dynamic vitality is changed into warmth



Symmetry 2019, 11, 1282 5 of 15

vitality which shows an upgrade in temperature profile and the related layer. Figure 12 demonstrates
that how Hartman parameter Ha influences concentration φ(ζ). By expanding Hartman parameter
Ha, both concentration and concentration layers are improved. Figure 13 shows that concentration
dispersion φ(ζ) is weaker for bigger concentration slip. From Figure 14, we saw that bigger Schmidt
parameter Sc demonstrates a rot in concentration field φ(ζ). Schmidt parameter is conversely relative to
Brownian diffusivity. Increasing Schmidt parameter Sc yields a more fragile Brownian diffusivity. This
more fragile Brownian diffusivity prompts lower concentration field φ(ζ). Figure 15 demonstrates that
how thermophoresis Nt influences concentration profile φ(ζ). By improving thermophoresis parameter
Nt, the concentration field φ(ζ) and related layer are expanded. Figure 16 portrays effect of Brownian
movement Nb on concentration φ(ζ). It is obviously observed that a more fragile concentration φ(ζ)

is produced by using higher Brownian movement parameter Nb. Figure 17 explains the impact of
nondimensional activation energy E on concentration φ(ζ). An improvement in activation energy

E rots altered Arrhenius work
(

T
T∞

)n
exp

(
− Ea

κT

)
. This inevitably builds up the generative synthetic

response because of which concentration φ(ζ) upgrades. Figure 18 introduces an improvement in
compound response parameter σ shows a rot in concentration φ(ζ) and its related layer. Figure 19
explains the impact of δ on φ(ζ). Here φ(ζ) is seen as a diminishing capacity of δ. Figure 20 depicts
the concentration φ(ζ) for evolving n. By improving n, infiltration profundity of φ(ζ) closures become
slenderer. Figures 21 and 22 display the effects of Nt and Nb on Re−1/2

r Nu. From these figures, it has
been noticed that Re−1/2

r Nu reduces for higher Nt and Nb. Features of Nt and Nb on Re−1/2
r Sh are

disclosed through Figures 23 and 24. Interestingly, Re−1/2
r Sh is an increasing function of Nt while it is

a decreasing function of Nb.
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5. Conclusions

Magnetohydrodynamic viscous nanoliquid 3D flow by rotating disk with heat
absorption/generation, binary chemical reaction and Arrhenius activation energy is examined.
Major results are given as follows:

• Larger velocity slip α and Hartman number Ha show decreasing trend for both velocities f ′(ζ)
and g(ζ).

• Both concentration and temperature depict increasing trend for increasing Ha.
• Higher Pr corresponds to weaker temperature while the reverse behavior is seen for δ1.
• Stronger temperature distribution is seen for Nb and Nt.
• Higher γ exhibits a decreasing trend for the concentration field.
• Higher activation energy E shows stronger concentration φ(ζ).
• Concentration φ(ζ) depicts decreasing behavior for larger δ and σ.
• Both concentration φ(ζ) is a decreasing factor of higher Sc.
• Concentration φ(ζ) displays reverse behavior for Nb and Nt.
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