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1. Introduction

Variational inequalities theory, introduced and improved by Stampacchia [1], has a tremendous
potential in theoretical research and applied fields. For i ∈ {1, 2, 3, 4}, given the operator S : H1 → H1

and Ci nonempty, closed, convex subsets of the Hilbert spacesHi, the variational inequality problem
stated in [1] (in short, VIP) is to find v ∈ C1 such that

〈Sv, u− v〉 ≤ 0, ∀u ∈ C1, (1)

which helps us to understand a simple, unified, and efficient framework to research the actual problems
arising in optimization, engineering, economy, and so on. More specifically, variational inequalities are
an important tool for studying some equilibrium problems [2] and convex minimization problems [3].
Various types of equilibrium problems (e.g., Nash and dynamic traffic) can be modeled as VIP.
Pang [4] showed that the VIP related to the equilibrium problem can be decomposed into a system of
variational inequalities and discussed the convergence of the method of decomposition for a system of
variational inequalities.

More specifically, let f : C1×C2 → H1 and g : C1×C2 → H2 be nonlinear bifunctions. The system
of variational inequalities (SVI) (please, see [4,5]) is to find (u, v) ∈ C1 × C2 such that{

〈 f (u, v), w1 − u〉 ≥ 0, ∀w1 ∈ C1,
〈g(u, v), w2 − v〉 ≥ 0, ∀w2 ∈ C2.
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Using essentially the fixed point formulation and projection technique, many researchers [5–11]
studied related iterative schemes for approximating the solutions to systems of variational inequalities.
On the other hand, over the past three decades, there has been quite an activity in the development
of powerful and highly efficient numerical methods to solve the VIP and its applications [12–18].
There is a substantial number of methods, including the linear approximation method [19,20],
the auxiliary principle [21,22], the projection technique [9,11], and the descent framework [23].
For applications, numerical techniques and other aspects of variational inequalities and split problems,
please see [19,20,24–28].

In 2012, Censor et al. [29] introduced the so called split variational inequality problem (SVIP), as
follows. Let f : H1 → H1 and g : H2 → H2 be nonlinear operators and A be a bounded linear operator.
Find v ∈ C1 such that

〈 f (v), w1 − v〉 ≥ 0, ∀w1 ∈ C1,

and such that u = Av ∈ C2 solves

〈g(u), w2 − u〉 ≥ 0, ∀w2 ∈ C2.

They also suggested some iterative algorithms for approximating the solutions to the SVIP.
This problem is an important improvement of the VIP (1).

In 2016, Kazmi [30] proposed a system of split variational inequalities (SSVI), which is a
generalization of the SVIP and the SVI, as follows. Let Φ : C1 × C2 → H1, Ψ : C1 × C2 → H2,
φ : C3 × C4 → H3, ψ : C3 × C4 → H4 be nonlinear bifunctions and A : H1 → H3 and B : H2 → H4 be
bounded linear operators. The SSVI is to find (x, y) ∈ C1 × C2 such that{

〈Φ(x, y), w1 − x〉 ≥ 0, ∀w1 ∈ C1,
〈Ψ(x, y), w2 − y〉 ≥ 0, ∀w2 ∈ C2,

and u = Ax ∈ C3, v = By ∈ C4 solve{
〈φ(u, v), w3 − u〉 ≥ 0, ∀w3 ∈ C3,
〈ψ(u, v), w4 − v〉 ≥ 0, ∀w4 ∈ C4.

He proposed an iteration method for solving SSVI and proved that the sequence produced by the
algorithm converges strongly to a solution of SSVI.

It is worth noticing that the results in [29,30] regarding the iterative schemes for approximating
the solutions to variational inequalities are considered in underlying convex sets. In many practical
cases, the existing results may not be applicable if the convexity assumption is not fulfilled. Thus,
in this paper, we extend their results to split systems of nonconvex variational inequalities (SSNVI) in
the context of uniformly prox-regular sets, which include the convex sets as special cases.

2. Preliminaries

LetH be a Hilbert space equipped with its inner product 〈·, ·〉 and the norm ‖ · ‖, please, see [9].
Assume that C is a nonempty, closed subset of H. Recall that the projection ProjC from H onto C is
defined by

ProjC(u) := {v ∈ C : ‖u− v‖ = distC(u)},

where distC(u) = infw∈C ‖u− w‖ is the usual distance related to 2-norm from the point u to the set C.
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Definition 1. [31] Given v ∈ H, the proximal normal cone of C at v is given by

NP
C (v) := {τ ∈ H : v ∈ ProjC(v + ατ), α > 0}.

Proposition 1. [31] Let C be a nonempty, closed subset of H. Then τ ∈ NP
C (u) if and only if there exists a

constant α = α(τ, u) > 0 such that

〈τ, v− u〉 ≤ α‖v− u‖2, ∀v ∈ C.

We now give the definition of a uniformly l-prox-regular set.

Definition 2. [32,33] A subset Cl of H, l ∈ (0,+∞], is said to be uniformly l-prox-regular if every nonzero
proximal normal to Cl can be realized by a l-ball, that is, for all u ∈ Cl and all 0 6= τ ∈ NP

Cl
(u), one has〈

τ

‖τ‖ , v− u
〉
≤ 1

2l
‖v− u‖2, ∀v ∈ Cl .

Obviously, the convex sets, p-convex sets [34], C1,1 submanifolds [35], the images of C1,1

diffeomorphism [36] are uniformly prox-regular sets. If we take l = ∞, the convexity of C and
the uniformly prox-regularity of Cl are equivalent. For more details of uniformly prox-regular sets,
please see [31,33,37].

Given an operator S, the nonconvex variational inequality problem

find v ∈ Cl such that 〈Sv, u− v〉 ≤ 0, ∀u ∈ Cl , (2)

was introduced by Bounkhel M. [38], and further studied in [37,39,40]. If Cl = C, problem (2) and
problem (1) are equivalent. We now give an example regarding the nonconvex case.

Example 1. [37] Let u = (x, y), v = (t, z), and let Su = (−x, 1 − y), and the set C be the union
of two disjoint squares, A and B, having respectively, vertices at the points (0, 1), (2, 1), (2, 3), and
(0, 3) and at the points (4, 1), (5, 2), (4, 3), and (3, 2). The fact that C can be written in the form{
(t, z) ∈ R2 : max{|t− 1|, |z− 2|} ≤ 1

}
∪ {|t− 4|+ |z− 2| ≤ 1} shows that it is a uniformly prox-regular

set in R2 and the nonconvex variational inequality (2) has a solution on the square B.

Some properties of the uniformly l-prox-regular sets are given below.

Proposition 2. [37] Let Cl , l ∈ (0,+∞], be a nonempty, closed, and uniformly l-prox-regular subset of H.
Let U(l) =

{
u ∈ H : dCl (u) < l

}
. Then:

• (i) For all u ∈ U(r), ProjCl (u) 6= ∅;
• (ii) For all l′ ∈ (0, l), ProjCl(u) is Lipschitz continuous with constant l

l−l′ on U(l′);
• (iii) The proximal normal cone NP

Cl
(u) is closed as a set-valued mapping.

The next special operators are needed to develop our results.

Definition 3. [40] For all u, v ∈ H, the operator S : H×H → H is said to be:

• (i) Monotone in the first variable if

〈S(u, ·)− S(v, ·), u− v〉 ≥ 0;

• (ii) α-strongly monotone in the first variable if α > 0 such that

〈S(u, ·)− S(v, ·), u− v〉 ≥ α‖u− v‖2;
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• (iii) β-Lipschitz in the first variable if β > 0 such that

‖S(u, ·)− S(v, ·)‖ ≤ β‖u− v‖.

Definition 4. [41] For all u, v ∈ H, the operator S : H → H is said to be:

• (i) ν-strongly monotone if ν > 0 such that

〈Su− Sv, u− v〉 ≥ ν‖u− v‖2;

• (ii) L-Lipschitz if L > 0 such that

‖Su− Sv‖ ≤ L‖u− v‖;

• (iii) Uniformly L-Lipschitz if L > 0 such that

‖Snu− Snv‖ ≤ L‖u− v‖, n ≥ 1;

• (iv) Generalized (L, a)-Lipschitz if L, a > 0 such that

‖Su− Sv‖ ≤ L(‖u− v‖+ a).

Now, let us recall the class of the nearly Lipschitz operator, nearly nonexpansive operator, and
nearly uniformly L-Lipschitz continuous operator briefly.

Definition 5. [41] For all u, v ∈ H, the operator S : H → H is said to be:

• (i) Nearly Lipschitz with respect to {bn} ⊆ [0, ∞) with limn→∞bn = 0 if kn > 0 such that

‖Snu− Snv‖ ≤ kn(‖u− v‖+ bn), n ≥ 1. (3)

The infimum of {kn} is called nearly Lipschitz constant and is denoted by

η(Sn) = sup
{
‖Snu− Snv‖
‖u− v‖+ bn

: u 6= v, u, v ∈ H
}

.

A nearly Lipschitz operator S with respect to {(bn, η(Sn))} is said to be:

• (ii) Nearly nonexpansive if η(Sn) = 1 such that

‖Snu− Snv‖ ≤ ‖u− v‖+ bn, n ≥ 1;

• (iii) Nearly asymptotically nonexpansive if η(Sn) ≥ 1 for all n ≥ 1 such that limn→∞ η(Sn) = 1;
• (iv) Nearly uniformly L-Lipschitz continuous if η(Sn) ≤ L for all n ≥ 1.

We need the following proposition in order to get the main result.

Proposition 3. [41] For i ∈ {1, 2}, let Si : Cl → Cl be nearly uniformly Li-Lipschitz operators with respect
to {bi,n}. Define a self-mapping S, S(u, v) = (S1u, S2v) for all (u, v) ∈ Cl × Cl . Then S = (S1, S2) :
Cl × Cl → Cl × Cl is a nearly uniformly max{L1, L2}-Lipschitz operator with respect to {b1,n + b2,n}.
If ‖(u, v)‖∗ = ‖u‖+ ‖v‖, for any (u, v), (u′, v′) ∈ Cl × Cl , we have

‖Sn(u, v)− Sn(u′, v′)‖∗ = ‖Sn
1 u− Sn

1 u′‖+ ‖Sn
2 v− Sn

2 v′‖
≤ L1

(
‖u− u′‖+ b1,n

)
+ L2

(
‖v− v′‖+ b2,n

)
≤ max{L1, L2}

(
‖(u, v)− (u′, v′)‖∗ + b1,n + b2,n

)
, n ≥ 1.
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Example 2. LetH = [0, a], a ∈ (0, 1] and an operator

S : H×H → H×H, S(u, v) = (S1u, S2v), (u, v) ∈ H×H,

with Si(x) =

{
λix, x ∈ [0, a),
0, x = a,

for i = 1, 2, λi ∈ (0, 1). Then S = (S1, S2) is a nearly uniformly

max{λ1, λ2}-Lipschitz operator with respect to {λn−1
1 + λn−1

2 }.

Lemma 1. [9] Let {an} be a sequence of nonnegative real numbers and let {bn} be a sequence in [0,1] such that
∑∞

n=1 bn = ∞, {cn} ⊂ R, cn ≥ 0, n ≥ n0 and limn→∞ cn = 0. If {an}, {bn} and {cn} satisfy the property

an+1 ≤ (1− bn)an + bncn, ∀n ≥ n0,

then limn→∞ an = 0.

In the next sections, we are going to state and prove results regarding the existence and uniqueness
of the solutions to a SSNVI, and also propose an iterative algorithm to determine the unique solution
to SSNVI which is also a fixed point to some operators with suitable properties.

3. Split Systems of Nonconvex Variational Inequalities

In the section, we consider a SSNVI with several nonlinear operators.
For l, k > 0, let Cl ⊂ H1 be uniformly l-prox-regular and Qk ⊂ H2 be uniformly k-prox-regular.

For i = 1, 2, consider the nonlinear operators Φi : H1 ×H1 → H1, Ψi : H2 ×H2 → H2, φi : Cl → Cl ,
and ψi : Qk → Qk. Let A and B be two bounded linear operators fromH1 toH2. The SSNVI is to find
(x, y) ∈ Cl × Cl such that

{
〈Φ1(y, x) + x− φ1(y), φ1(w1)− x〉+ ‖Φ1(y,x)+x−φ1(y)‖

2l ‖φ1(w1)− x‖2 ≥ 0, ∀w1 ∈ Cl : φ1(w1) ∈ Cl ,

〈Φ2(x, y) + y− φ2(x), φ2(w1)− y〉+ ‖Φ2(x,y)+y−φ2(x)‖
2l ‖φ2(w1)− y‖2 ≥ 0, ∀w1 ∈ Cl : φ1(w1) ∈ Cl ,

(4)

and such that (u, v) ∈ Qk ×Qk with u = Ax, v = By solves

{
〈Ψ1(v, u) + u− ψ1(v), ψ1(w2)− u〉+ ‖Ψ1(v,u)+u−ψ1(v)‖

2k ‖ψ1(w2)− u‖2 ≥ 0, ∀w2 ∈ Qk : ψ1(w2) ∈ Qk,

〈Ψ2(u, v) + v− ψ2(u), ψ2(w2)− v〉+ ‖Ψ2(u,v)+v−ψ2(u)‖
2k ‖ψ2(w2)− v‖2 ≥ 0, ∀w2 ∈ Qk : ψ2(w2) ∈ Qk.

(5)

To study the existence of solutions to system (4), the following two lemmas are needed.

Lemma 2. For i ∈ {1, 2}, l > 0, let Φi : H1 × H1 → H1 and φi : Cl → Cl be nonlinear operators.
Then system (4) and the following problem are equivalent:

find (x, y) ∈ Cl × Cl such that

{
0 ∈ Φ1(y, x) + x− φ1(y) + NP

Cl
(x),

0 ∈ Φ2(x, y) + y− φ2(x) + NP
Cl
(y).

(6)

Proof. Suppose that (x, y) ∈ Cl × Cl solves system (4).
If Φ1(y, x) + x− φ1(y) = 0, then:

0 ∈ Φ1(y, x) + x− φ1(y) + NP
Cl
(x).

If Φ1(y, x) + x− φ1(y) 6= 0, the following is always true

− 〈Φ1(y, x) + x− φ1(y), φ1(w1)− x〉 ≤ ‖Φ1(y, x) + x− φ1(y)‖
2l

‖φ1(w1)− x‖.
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By Definition 2 and Proposition 1, we have − (Φ1(y, x) + x− φ1(y)) ∈ NP
Cl
(x), and then

0 ∈ Φ1(y, x) + x− φ1(y) + NP
Cl
(x).

Likewise,

0 ∈ Φ2(x, y) + y− φ2(x) + NP
Cl
(y).

Conversely, if (x, y) ∈ Cl × Cl solves problem (6), Definition 2 guarantees that (x, y) ∈ Cl × Cl
solves system (4).

We will obtain a uniqueness theorem for the solution to system (4) after verifying the equivalence
between the fixed point formulation (7) and system (4).

Lemma 3. For i ∈ {1, 2}, l > 0, let Φi : H1 ×H1 → H1 and φi : Cl → Cl be nonlinear operators. Suppose
that max {‖Φ1(y, x)‖, ‖Φ2(x, y)‖} < l′, (x, y) ∈ Cl × Cl , and l′ ∈ (0, l). Then (x, y) ∈ Cl × Cl solves
system (4) if and only if {

x = ProjCl (φ1(y)−Φ1(y, x)) ,

y = ProjCl (φ2(x)−Φ2(x, y)) ,
(7)

Proof. Suppose that (x, y) ∈ Cl × Cl solves system (4). By using φ1 : Cl → Cl and the projection
operator technique, we have

distCl (φ1(y)−Φ1(y, x)) = inf
w∈Cl
‖φ1(y)−Φ1(y, x)− w‖

≤ ‖φ1(y)−Φ1(y, x)− φ1(y)‖ ≤< l′.

From Proposition 2, we get φ1(y)−Φ1(y, x) ∈ U(l′), and then the set ProjCl (φ1(y)−Φ1(y, x)) is
a singleton. From Lemma 2,

0 ∈ Φ1(y, x) + x− φ1(y) + NP
Cl
(x),

that is,

φ1(y)−Φ1(y, x) ∈ (I + NP
Cl
)(x).

Thus, we get x = ProjCl (φ1(y)−Φ1(y, x)).
By the same way, we conclude that y = ProjCl (φ2(x)−Φ2(x, y)). Thus, relations (7) are satisfied.

It is easy to check the converse.

From Lemma 2, we find out the existence of a solution to system (4). By Lemma 3, system (4)
admits a unique solution.

Theorem 1. For i ∈ {1, 2}, l > 0, let Φi : H1 ×H1 → H1 be operators which satisfy the conditions from
Lemma 3, and φi : Cl → Cl be nonlinear operators. Suppose that µi, νi, ζi,θi > 0. Let the operators Φi be
µi-Lipschitz and νi-strongly monotone in the first variable and the operators φi be ζi-Lipschitz and θi-strongly
monotone. If the parameters satisfy 

1− 2θi + ζ2
i ≥ 0;

1− 2νi + µ2
i ≥ 0, i = 1, 2;

χ1 + χ2 < 1,

(8)
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where χi := l
l−l′

(√
1− 2θi + ζ2

i +
√

1− 2νi + µ2
i

)
, i = 1, 2, then system (4) admits a unique solution.

Proof. Define the operators ϕ1, ϕ2 : H1 ×H1 → Cl ,

ϕ1(x, y) = ProjCl (φ1(y)−Φ1(y, x)) ,

ϕ2(x, y) = ProjCl (φ2(x)−Φ2(x, y)) ,
(9)

for all (x, y) ∈ H1 ×H1. From Lemma 3, it is easy to check that relations (9) are satisfied. Define ‖ · ‖∗
onH1 ×H1 as in Proposition 3, that is

‖(u, v)‖∗ = ‖u‖+ ‖v‖, ∀(u, v) ∈ H1 ×H1.

Clearly, (H1 ×H1, ‖ · ‖∗) is a normed space.
Define a self-mapping T : Cl × Cl → Cl × Cl , T(x, y) = (ϕ1(x, y), ϕ2(x, y)) for all (x, y) ∈ Cl × Cl .
Next, we prove that T is a contraction. Let (x1, y1), (x2, y2) ∈ Cl × Cl . By Proposition 2, we have

‖ϕ1(x1, y1)− ϕ1(x2, y2)‖
=
∥∥PCl (φ1(y1)−Φ1(y1, x1))− PCl (φ1(y2)−Φ1(y2, x2))

∥∥
≤ l

l − l′
‖φ1(y1)− φ1(y2)− (Φ1(y1, x1)−Φ1(y2, x2))‖

≤ l
l − l′

(‖y1 − y2 − (φ1(y1)− φ1(y2))‖+ ‖y1 − y2 − (Φ1(y1, x1)−Φ1(y2, x2))‖) .

In view of φ1, Φ1, for the first summand we have

‖y1 − y2 − (φ1(y1)− φ1(y2))‖2 = ‖y1 − y2‖2 − 2 〈φ1(y1)− φ1(y2), y1 − y2〉+ ‖φ1(y1)− φ1(y2)‖2

≤
(

1− 2θ1 + ζ2
1

)
‖y1 − y2‖2 ,

and for the second summand

‖y1 − y2 − (Φ1(y1, x1)−Φ1(y2, x2))‖2

= ‖y1 − y2‖2 − 2 〈Φ1(y1, x1)−Φ1(y2, x2), y1 − y2〉+ ‖Φ1(y1, x1)−Φ1(y2, x2)‖2

≤
(

1− ν1 + µ2
1

)
‖y1 − y2‖2 .

Thus,

‖ϕ1(x1, y1)− ϕ1(x2, y2)‖ ≤
l

l − l′

(√
1− 2θ1 + ζ2

1 +
√

1− 2ν1 + µ2
1

)
‖y1 − y2‖ .

Similarly, we have

‖ϕ2(x1, y1)− ϕ2(x2, y2)‖ ≤
l

l − l′

(√
1− 2θ2 + ζ2

2 +
√

1− 2ν2 + µ2
2

)
‖x1 − x2‖ .

Therefore, we have obtained

‖ϕ1(x1, y1)− ϕ1(x2, y2)‖+ ‖ϕ2(x1, y1)− ϕ2(x2, y2)‖ ≤ χ1 ‖x1 − x2‖+ χ2 ‖y1 − y2‖ .

Finally, we rewrite the inequality above as

‖T(x1, y1)− T(x2, y2)‖∗ ≤ κ‖(x1, y1)− (x2, y2)‖∗, (10)
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where κ = max{χ1, χ2}. Since the parameters satisfy conditions (8), we get 0 ≤ κ < 1. From
inequality (10), it follows that the operator T is a contraction. Thus, there exists only one element
(x, y) such that T(x, y) = (x, y). Returning to relation (9), we have x = ProjCl (φ1(y)−Φ1(y, x)) and
y = ProjCl (φ2(x)−Φ2(x, y)). From Lemma 3, system (4) admits a unique solution.

The SSNVI is to find (x, y) ∈ Cl × Cl which solves system (4). Then its image (u, v) ∈ Qk × Qk
has to solve system (5). So, Theorem 1 proved the validity of the existence and uniqueness theorem for
the solution to SSNVI.

4. Iterative Algorithm

In this part, the set of solutions to SSNVI is denoted by y Ξ and the set of fixed points of S by
Fix(S). For any given (x, y) ∈ Cl × Cl , define S(x, y) = (S1x, S2y) as in Proposition 3. Notice that
x ∈ Fix(S1) and y ∈ Fix(S2) if and only if (x, y) ∈ Fix(S). If (x∗, y∗) ∈ Ξ

⋂
Fix(S), from Lemma 3, in

relations (9) and for n ≥ 1, we achieve{
x∗ = Sn

1 x∗ = ProjCl (φ1(y∗)−Φ1(y∗, x∗)) = Sn
1 ProjCl (φ1(y∗)−Φ1(y∗, x∗)) ,

y∗ = Sn
2 y∗ = ProjCl (φ2(x∗)−Φ2(x∗, y∗)) = Sn

2 ProjCl (φ2(x∗)−Φ2(x∗, y∗)) .
(11)

We now construct the following iterative algorithm (12) by formulation (11) for approximating
the unique common element of the set of fixed points of some nearly uniformly Lipschitz operators
and the set of solution to SSNVI.

Theorem 2. For i ∈ {1, 2}, l, k > 0, Cl ⊂ H1 is a uniformly l-prox-regular and Qk ⊂ H2 is a uniformly
k-prox-regular. Let Φi, φi be endowed with the same properties as in Theorem 1. Suppose ξi, ϑi, λi, υi > 0.
Let the operators Ψi : H2 ×H2 → H2 be ξi-Lipschitz and ϑi-strongly monotone in the first variable and the
operators ψi : Qk → Qk be λi-Lipschitz and υi-strongly monotone. A and B are bounded linear operators from
H1 to H2, A∗ and B∗ are adjoint operators. Let Si : Cl → Cl be two nearly uniformly Li-Lipschitz operators
with respect to {σi,n}, S = (S1, S2) be the same as in Proposition 3 with Ξ

⋂
Fix(S) 6= ∅. Let the sequence

{(xn, yn)} be computed as follows

fn = ProjCl (φ1(yn)−Φ1(yn, xn)),

gn = ProjCl (φ2(xn)−Φ2(xn, yn)),

hn = ProjQk (ψ1(Bgn)−Ψ1(Bgn, A fn)),

zn = ProjQk (ψ2(A fn)−Ψ2(A fn, Bgn)),

xn+1 = (1− ιn)xn + ιnSn
1 ProjCl ( fn + ςA∗(hn − A fn)),

yn+1 = (1− ιn)yn + ιnSn
2 ProjCl (gn + ςB∗(zn − Bgn)), n ≥ 1,

(12)

where {ιn} ⊂ (0, 1) with ∑∞
n=1 ιn = ∞. Suppose that l′ ∈ (0, l), k′ ∈ (0, k) and

max {Ψ1(Bgn, A fn), Ψ1(By∗, Ax∗), Ψ2(A fn, Bgn), Ψ2(Ax∗, By∗)} < k′, (13)

ς < min
{

2
‖A‖2 ,

2
‖B‖2 ,

r′

1 + A∗(hn − A fn)
,

r′

1 + B∗(zn − Bgn)

}
, n ≥ 1. (14)

Suppose that L = max {L1, L2}, w = l
l−l′ , M = max {χ1 + 2χ1χ̄2, χ2 + 2χ2χ̄1} < 1 with LwM < 1,

χ1 and χ2 are as in Theorem 1 and

χ̄1 =
k

k− k′

(√
1− 2υ1 + λ2

1 +
√

1− 2ϑ1 + ξ2
1

)
, χ̄2 =

k
k− k′

(√
1− 2υ2 + λ2

2 +
√

1− 2ϑ2 + ξ2
2

)
.

Then the sequence {(xn, yn)} computed by relation (12) converges strongly to an element of Ξ
⋂

Fix(S).
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Proof. By Theorem 1, let (x∗, y∗) ∈ Cl × Cl be the solution to system (4). Therefore, (x∗, y∗) ∈ Cl × Cl
is the unique solution to SSNVI. Let us take (x∗, y∗) ∈ Ξ

⋂
Fix(S). Since conditions (8) and (13) are

satisfied respectively, then we obtain

x∗ = ProjCl (φ1(y∗)−Φ1(y∗, x∗)) , (15)

y∗ = ProjCl (φ2(x∗)−Φ2(x∗, y∗)) , (16)

Ax∗ = ProjQk (ψ1(By∗)−Ψ1(By∗, Ax∗)) , (17)

By∗ = ProjQk (ψ2(Ax∗)−Ψ2(Ax∗, By∗)) . (18)

From the definition of Φ1, φ1, by relations (12), (8), (15) and Proposition 2, we have

‖ fn − x∗‖ ≤ l
l − l′

(‖yn − y∗ − (φ1(yn)− φ1(y∗))‖+ ‖yn − y∗ − (Φ1(yn, xn)−Φ1(y∗, x∗))‖)

≤χ1‖yn − y∗‖, n ∈ N.
(19)

In view of Φ2 and φ2, from relations (12), (8), (16), and Proposition 2, we find

‖gn − y∗‖ ≤ χ2‖xn − x∗‖, n ∈ N. (20)

By looking into the definition of Ψ1 and ψ1, from (12), (13), (17), and Proposition 2, we attain

‖hn − Ax∗‖ ≤ χ̄1‖Bgn − By∗‖, n ∈ N. (21)

In light of Ψ2 and ψ2, from (12), (13), (18) and Proposition 2, we conclude

‖zn − By∗‖ ≤ χ̄2‖A fn − Ax∗‖, n ∈ N. (22)

By relation (14), we get

‖ fn − x∗ − ςA∗(A fn − Ax∗)‖2 =‖ fn − x∗‖2 − 2ς 〈 fn − x∗, A∗(A fn − Ax∗)〉+ ς2‖A∗(A fn − Ax∗)‖2

≤‖ fn − x∗‖2 − ς
(

2− ς‖A‖2
)
‖A fn − Ax∗‖2

≤‖ fn − x∗‖2, n ∈ N.

(23)

Using (11), (12), (14), (19)–(21), (23), and Proposition 3, we obtain

‖xn+1 − x∗‖
≤ (1− ιn)‖xn − x∗‖+ ιn‖Sn

1 ProjCl ( fn + ςA∗(hn − A fn))− Sn
1 ProjCl (x∗ + ςA∗(Ax∗ − Ax∗))‖

≤ (1− ιn)‖xn − x∗‖+ ιnL1
(
‖ProjCl ( fn + ςA∗(hn − A fn))− ProjCl (x∗ + ςA∗(Ax∗ − Ax∗))‖+ σ1,n

)
≤ (1− ιn)‖xn − x∗‖+ ιnL1w (‖ fn − x∗ − ςA∗(A fn − Ax∗)‖+ ς‖A∗(hn − Ax∗)‖) + ιnL1σ1,n

≤ (1− ιn)‖xn − x∗‖+ ιnL1w (‖ fn − x∗‖+ ς‖A‖‖hn − Ax∗‖) + ιnL1σ1,n

≤ (1− ιn)‖xn − x∗‖+ ιnL1w (χ1‖yn − y∗‖+ 2χ2χ̄1‖xn − x∗‖) + ιnL1σ1,n, n ∈ N.

(24)

Likewise,
‖gn − y∗ − ςB∗(Bgn − By∗)‖ ≤ ‖gn − x∗‖, n ∈ N. (25)

By using relations (11), (12), (14), (19), (20), (22), (25), and Proposition 3, we have

‖yn+1 − y∗‖ ≤ (1− ιn)‖yn − y∗‖+ ιnL2w (s‖xn − x∗‖+ 2χ1χ̄2u‖yn − y∗‖) + ιnL2σ2,n. (26)
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It follows from (24) and (26) that

‖(xn+1, yn+1)− (x∗, y∗)‖∗
≤ (1− ιn) ‖(xn, yn)− (x∗, y∗)‖∗ + ιnLw (M ‖(xn, yn)− (x∗, y∗)‖∗ + σ1,n + σ2,n)

= (1− ιn(1− LwM)) ‖(xn, yn)− (x∗, y∗)‖∗ + ιn(1− LwM)
(σ1,n + σ2,n)L

1− LwM
, n ∈ N.

(27)

By applying Lemma 1 to relation (27), we achieve limn→∞ xn = x∗ and limn→∞ yn = y∗. Thus,
we conclude that the sequence {(xn, yn)} computed by (12) converges strongly to an element of
Ξ
⋂

Fix(S).

We now have in view a special case of SSNVI, called the split systems of general variational
inequalities (SSGVI), which is an improvement of SVIP in [29] and SSVI in [30].

Surely, if l = ∞, the convexity of C and the uniformly prox-regularity of Cl are equivalent. Thus,
in a underlying convex set, the SSGVI is to find (x, y) ∈ C× C such that{

〈Φ1(y, x) + x− φ1(y), φ1(w1)− x〉 , ∀w1 ∈ H1 : φ1(w1) ∈ C,

〈Φ2(x, y) + y− φ2(x), φ2(w1)− y〉 , ∀w1 ∈ H1 : φ2(w1) ∈ C,

and such that (u, v) ∈ Q×Q with u = Ax, v = By solves{
〈Ψ1(v, u) + u− ψ1(v), ψ1(w2)− u〉 , ∀w2 ∈ H2 : ψ1(w2) ∈ Q,

〈Ψ2(u, v) + v− ψ2(u), ψ2(w2)− v〉 , ∀w2 ∈ H2 : ψ2(w2) ∈ Q.

where C ⊂ H1 and Q ⊂ H2 are nonempty, closed, convex sets, Φi, φi, Ψi, and ψi (i = 1, 2) are the same
as Theorem 2.

If l, k = ∞, then the uniformly prox-regularity of Cl , Qk collapse to convexity, respectively, that is
to say Cl = C, Qk = Q. Hence, we have the following corollary.

Corollary 1. Let C ⊂ H1 and Q ⊂ H2 be nonempty, closed, convex sets. For i ∈ {1, 2}, presume that Φi, φi,
Ψi ψi, A, and B are the same as in Theorem 2. For each n ≥ 1, let sequence {(xn, yn)} be computed as follows

fn = ProjC(φ1(yn)−Φ1(yn, xn)),

gn = ProjC(φ2(xn)−Φ2(xn, yn)),

hn = ProjQ(ψ1(Bgn)−Ψ1(Bgn, A fn)),

zn = ProjQ(ψ2(A fn)−Ψ2(A fn, Bgn)),

xn+1 = (1− ιn)xn + ιnProjC( fn + ςA∗(hn − A fn)),

yn+1 = (1− ιn)yn + ιnProjC(gn + ςB∗(zn − Bgn)),

(28)

where {ιn} ⊂ (0, 1) with ∑∞
n=1 ιn = ∞. Suppose that ς < min

{
2
‖A‖2 , 2

‖B‖2

}
and M =

max {χ1 + 2χ1χ̄2, χ2 + 2χ2χ̄1} < 1 with

χ1 =
√

1− 2θ1 + ζ2
1 +

√
1− 2ν1 + µ2

1, χ2 =
√

1− 2θ2 + ζ2
2 +

√
1− 2ν2 + µ2

2,

χ̄1 =
√

1− 2υ1 + λ2
1 +

√
1− 2ϑ1 + ξ2

1, χ̄2 =
√

1− 2υ2 + λ2
2 +

√
1− 2ϑ2 + ξ2

2.

Then the sequence {(xn, yn)} computed by relation (28) converges strongly to a solution to the SSGVI.
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5. Numerical Example

Let H1 = H2 = R. Let 〈x, y〉 = xy, Φ1(y, x) = 7
6 y, Φ2(x, y) = 8

7 x, Ψ1(y, x) = 9
8 y, Ψ2(x, y) = 10

9 x
for all x, y ∈ R. Let C = [0,+∞) and φ1, φ2 : C → C, φ1(x) = 3

2 x, φ2(x) = 4
3 x, respectively. Let Q = R

and ψ1, ψ2 : Q→ Q, ψ1(x) = 5
4 x, ψ2(x) = 6

5 x, respectively.
Clearly, φ1, φ2, ψ1, ψ2, Φ1, Φ2, Ψ1, Ψ2 are 1-strongly monotone and 2-Lipschitzian. Let Ax = 1

2 x
and Bx = 3

4 x fromH1 toH2, respectively. For ιn = 1
5 , ς = 1. We now rewrite (28) as follows

fn = ProjC
( 3

2 yn − 7
6 yn
)

,

gn = ProjC
(

4
3 xn − 8

7 xn

)
,

hn = ProjC
( 5

4 ·
3
4 gn − 9

8 ·
3
4 gn
)

,

zn = ProjC
(

6
5 ·

1
2 fn − 10

9 ·
1
2 fn

)
,

xn+1 = 4
5 xn +

1
5 ProjC( fn +

1
2 (hn − 1

2 fn)),

yn+1 = 4
5 yn +

1
5 ProjC(gn +

3
4 (zn − 3

4 gn)), n ≥ 1.

(29)

For every n ≥ 1, the operators and the parameters satisfy all conditions in Corollary 1. We find
that the sequence {(xn, yn)} generated by relation (29) converges strongly to (0, 0).

Choosing initial values (10, 20), we see that Figure 1 demonstrates Corollary 1.
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Figure 1. The convergence of {(xn, yn)} with initial values (10, 20).

6. Conclusions

In this paper, we investigated the split system of nonconvex variational inequalities (SSNVI)
in the context of uniformly prox-regular sets, which is an improvement of SSGVI, SSVI, and SVIP.
By using an adequate formulation and the projection technique, we constructed an iterative algorithm
for approximating the unique common solution to the set of fixed points of nearly uniformly Lipschitz
operators and the set of solutions to SSNVI. The results of this paper are expected to be used as further
study on numerical techniques.
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