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Abstract: Asymmetric triangulation is an interesting method combined with concentric pleating to
obtain a 3D shape without stretching or tearing. There exists some geometric properties in the process
of folding to help realize extension and contraction, which can be used in parametric modeling of
different regular polygons. To facilitate design and modeling, adequate computational modeling
methods are indispensable. This paper proposes a new mathematical idea and presents a feasible way
to build the parameterized models in the digital environment of Rhinoceros, utilizing the Kangaroo
plugin in Grasshopper. Designers can directly observe the models’ kinematic deployment and
calculate the folding efficiency. It is concluded that the tendencies of folding efficiency in different
regular polygons are not the same. To realize rigid folding, each polygon has a limited folding angle.

Keywords: deployable structure; regular polygon; alternatively asymmetric triangulation; parametric
modeling; rigid-foldable origami

1. Introduction

Deployable structures, also known as pliable structures, were initially found in the design of
umbrellas. It is known that deployable structures are a kind of structure with a stable bearing capacity
made up of prefabricated elements which are able to be deployed from the initial small-volume
configuration to the unfolded condition according to the predesign. In most cases, these elements
move along the fixed track to generate a folding motion [1]. To change the configuration from flat
sheets to curved geometries, this process can find reference experience from a well-known Japanese art
form, origami, which makes use of flat paper to obtain a three-dimensional shape without stretching
or tearing. These macroscale bending and folding techniques can be used to fabricate micro- and
nano-structured devices [2,3] such as electronic circuits, sensors, antennas, and biomimetic constructs
(Figure 1). On the macro scale, the idea of folding and bending inspires people to design novel kinetic
systems for architectural applications [4], especially for those applied in space exploration, including
various booms [5] and expandable bases on Moon or Mars [6]. Besides, this novel idea is conducive to
the development of new materials [6] that are practicable in folding and bending.
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Figure 1. Examples of deployable structures tht are used: (a) Optical images showing experimentally 
realized packaging of cantilever sensors and magnetic field sensitive strain gauges in polyhedral 
geometries [3]; (b) conceptual design of a facade with adaptive shading elements based on curved-
line folding [7]; (c) the ADAM mast deployed and canister [8]; (d) expandable base (courtesy of NASA) 
[6]. 

With a long history, origami functions not just as an art form, but as an inspiration for 
engineering and mathematics as well. Origami using non-singular patterns includes various types of 
folding methods that have one single mid-point and can be divided into sub-patterns rotating around 
the mid-point [9]. Tachi et al. summarized the rule of these patterns’ degree of freedom[10,11]. Miura 
predicted one configuration which was later named the developable double corrugation surface 
(DDC surface), also called Miura-ori [12]. Its symmetry has been discussed by Sareh et al. [13] and 
different kinds of derivation from Miura-ori were presented by Sareh and Guest [14]. Their research 
has confirmed that this rigid fold pattern theoretically has a single degree of freedom [15,16]. Unlike 
Miura-ori, whose cells are an in-line arrangement to make the contraction and expansion in rectilinear 
directions, Resch-ori tessellation consists of regular-polygon cells arranged circularly [17]. This idea 
can be applied to the configuration of free-form surfaces, but there are more difficulties in building 
this tessellation and keeping it stable. Besides, Tachi proposed an origami approach with the idea of 
tucking molecules to construct a desired polyhedral surface by folding a single sheet of material [18]. 

Concentric pleating，which also has a lot to do with symmetry, can be traced back to the Bauhaus 
School in the 1920s and its popularity was attributed to an origami artist named ThokiYenn. 
Structures following this pattern use sunk creases (valleys, which are presented as dotted lines in 
figures) and bulgy creases (mountains, which are presented as full lines in figures) alternately to build 
deployable negative Gauss surfaces. This pattern can be applied in regular polygons, as shown in 
Figure 2, and even circular planes. 

Figure 1. Examples of deployable structures tht are used: (a) Optical images showing experimentally
realized packaging of cantilever sensors and magnetic field sensitive strain gauges in polyhedral
geometries [3]; (b) conceptual design of a facade with adaptive shading elements based on curved-line
folding [7]; (c) the ADAM mast deployed and canister [8]; (d) expandable base (courtesy of NASA) [6].

With a long history, origami functions not just as an art form, but as an inspiration for engineering
and mathematics as well. Origami using non-singular patterns includes various types of folding
methods that have one single mid-point and can be divided into sub-patterns rotating around the
mid-point [9]. Tachi et al. summarized the rule of these patterns’ degree of freedom [10,11]. Miura
predicted one configuration which was later named the developable double corrugation surface
(DDC surface), also called Miura-ori [12]. Its symmetry has been discussed by Sareh et al. [13] and
different kinds of derivation from Miura-ori were presented by Sareh and Guest [14]. Their research
has confirmed that this rigid fold pattern theoretically has a single degree of freedom [15,16]. Unlike
Miura-ori, whose cells are an in-line arrangement to make the contraction and expansion in rectilinear
directions, Resch-ori tessellation consists of regular-polygon cells arranged circularly [17]. This idea
can be applied to the configuration of free-form surfaces, but there are more difficulties in building
this tessellation and keeping it stable. Besides, Tachi proposed an origami approach with the idea of
tucking molecules to construct a desired polyhedral surface by folding a single sheet of material [18].

Concentric pleating, which also has a lot to do with symmetry, can be traced back to the Bauhaus
School in the 1920s and its popularity was attributed to an origami artist named ThokiYenn. Structures
following this pattern use sunk creases (valleys, which are presented as dotted lines in figures) and
bulgy creases (mountains, which are presented as full lines in figures) alternately to build deployable
negative Gauss surfaces. This pattern can be applied in regular polygons, as shown in Figure 2,
and even circular planes.
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Figure 2. Square concentric pleating origami and the crease pattern: (a) The crease pattern; (b) the 
origami model. 

The negative Gauss surface obtained by concentric pleating is produced by torsion of a series of 
closed strip loops and these closed-loop creases generate a curved surface, while linear creases help 
build planar folding. Demaine et al. [19] proved that it is impossible to achieve folds without 
stretching, tearing, or introducing additional creases because of the torsion inside each small 
trapezoid [19]. They were inspired by Miura-ori to add one more crease inside each tetragon to obtain 
rigid folding, as shown in Figure 3 (the black lines represent the original creases of which the full 
lines are mountains and the dotted lines are valleys, and the creases added into each tetragon are 
shown in red lines), and to create the two types of foldable triangulation. 

Based on the properties of squares using concentric pleating, this paper chooses concentric 
pleating (alternating asymmetric triangulation), applies this pattern to the parametric modeling of 
regular hexagons and generalizes it to n-regular-polygons, because of its high folding efficiency. 
Following this, we analyze the efficiency, static performance and the rigid folding rule in this folding 
pattern. Finally, conclusions are drawn regarding the pattern of tessellation consisting of deployable 
regular polygons. 
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Figure 3. Foldable triangulations of the hyperbolic paraboloid crease pattern: (a) Asymmetric 
triangulation; (b) alternating asymmetric triangulation. 

2. Concentric Pleating in Tetragons And Hexagons 

2.1. Two Categories of Concentric Pleating 

The concepts of “mountains” and “valley” also work on the standard crease pattern for 
concentric pleating, referring to different creases, as shown in Figure 2, with two line-types. The 
standard folding pattern fails to obtain rigid folding and brings about additional creases, which are 
marked in Figure 4, and stretching or tearing. It is obvious that when the fold angle θ reaches the 
limit, there will be torsion and buckling inside these trapezoids and the boundary lines show the 
maximum deformation. Inside every single trapezoid, the maximum deformation exists along its 

Figure 2. Square concentric pleating origami and the crease pattern: (a) The crease pattern; (b) the
origami model.

The negative Gauss surface obtained by concentric pleating is produced by torsion of a series of
closed strip loops and these closed-loop creases generate a curved surface, while linear creases help
build planar folding. Demaine et al. [19] proved that it is impossible to achieve folds without stretching,
tearing, or introducing additional creases because of the torsion inside each small trapezoid [19].
They were inspired by Miura-ori to add one more crease inside each tetragon to obtain rigid folding,
as shown in Figure 3 (the black lines represent the original creases of which the full lines are mountains
and the dotted lines are valleys, and the creases added into each tetragon are shown in red lines), and
to create the two types of foldable triangulation.
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Figure 3. Foldable triangulations of the hyperbolic paraboloid crease pattern: (a) Asymmetric
triangulation; (b) alternating asymmetric triangulation.

Based on the properties of squares using concentric pleating, this paper chooses concentric pleating
(alternating asymmetric triangulation), applies this pattern to the parametric modeling of regular
hexagons and generalizes it to n-regular-polygons, because of its high folding efficiency. Following this,
we analyze the efficiency, static performance and the rigid folding rule in this folding pattern. Finally,
conclusions are drawn regarding the pattern of tessellation consisting of deployable regular polygons.

2. Concentric Pleating in Tetragons And Hexagons

2.1. Two Categories of Concentric Pleating

The concepts of “mountains” and “valley” also work on the standard crease pattern for concentric
pleating, referring to different creases, as shown in Figure 2, with two line-types. The standard folding
pattern fails to obtain rigid folding and brings about additional creases, which are marked in Figure 4,
and stretching or tearing. It is obvious that when the fold angle θ reaches the limit, there will be torsion
and buckling inside these trapezoids and the boundary lines show the maximum deformation. Inside
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every single trapezoid, the maximum deformation exists along its diagonal and this helps make a
conjecture that if the trapezoid is divided by its diagonal into two triangles, it is probable that a rigid
fold pattern exists.
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It has been mentioned that triangulation is a possible approach to help realize rigid fold and 
Demaine et al. used it to propose two resolutions [19] to this problem, called asymmetric triangulation 
and alternating asymmetric triangulation (Figure 3). Within a certain range of the fold angle, there is 
no torsion or buckling, which means that triangulation is an effective way to obtain rigid folds of 
squares and this result also works on regular hexagons. Whether they are squares or regular 
hexagons, alternating asymmetric triangulation has higher folding efficiency than asymmetric 
triangulation, so in the following parts this paper focuses on the former method for further 
discussion. 

The degrees of freedom (DOF) of alternating asymmetric triangulation conforms to the rule of 
Formula (1); thus, for regular tetragons, the degree of freedom is one and for regular hexagons, it is 
three. 

2.2. Parametric Modeling 

2.2.1. Geometrical Relationship in Squares 

Here, the geometrical properties of squares using alternating asymmetric triangulation are 
reviewed. 

It is assumed that one diagonal of the central square is fixed on the y-axis and points ai and bi (i 
= 1,2,…) will move on the Y–Z plane and X–Z plane, respectively. Here, the way this paper finds these 
vertexes will be illustrated with examples of a2 and b2, as shown in Figure 6. The width of one loop is 
defined as d, so the length of these creases are 

Figure 4. Test for concentric pleating of squares.

These properties also work in the concentric pleating of hexagons which leads to special negative
Gauss surfaces and a non-rigid folding structure, as shown in Figure 5.
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It has been mentioned that triangulation is a possible approach to help realize rigid fold and
Demaine et al. used it to propose two resolutions [19] to this problem, called asymmetric triangulation
and alternating asymmetric triangulation (Figure 3). Within a certain range of the fold angle, there
is no torsion or buckling, which means that triangulation is an effective way to obtain rigid folds of
squares and this result also works on regular hexagons. Whether they are squares or regular hexagons,
alternating asymmetric triangulation has higher folding efficiency than asymmetric triangulation, so in
the following parts this paper focuses on the former method for further discussion.

The degrees of freedom (DOF) of alternating asymmetric triangulation conforms to the rule
of Formula (1); thus, for regular tetragons, the degree of freedom is one and for regular hexagons,
it is three.

2.2. Parametric Modeling

2.2.1. Geometrical Relationship in Squares

Here, the geometrical properties of squares using alternating asymmetric triangulation
are reviewed.

It is assumed that one diagonal of the central square is fixed on the y-axis and points ai and bi

(i = 1,2, . . . ) will move on the Y–Z plane and X–Z plane, respectively. Here, the way this paper finds
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these vertexes will be illustrated with examples of a2 and b2, as shown in Figure 6. The width of one
loop is defined as d, so the length of these creases are

a0a1 = a0b1 = d/ cos 45◦, (1)

a1a2 = b1b2 = d/ cos 45◦, (2)

a1b1 = 2 ∗ d, (3)

a2b1 =

√
a0b1

2 + (a0a1 + a1a2)
2. (4)
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intersecting with the Y–Z plane so that another circle is obtained on this plane, as shown in Figure 7.  

 

Figure 7. Intersection of a sphere and a given plane. 

The intersection of two circles will be two different points, one single point or nothing. Here we 
assume that there must be one or two points in the intersection of these two circles on the Y–Z plane. 
If the solution is one point, then this solution is the genuine one, the coordinates of a1. When there 
are two different solutions, as shown in Figure 8, the real solution can be easily confirmed because 
this surface has a saddle-shaped configuration and if a0a1 is fixed, then a1 must be below the X–Y 
plane, which means that its y coordinate is a positive number. By this approach, the coordinates of b2 
are at the intersection of two circles on the X–Z plane. The two circles are intersections of two different 
spheres of radii a2b2 and b1b2 centered at a2 and b2, respectively, and this saddle-shaped surface makes 
this point b2 located above the X–Y plane. Demaine et al. used the mountain-valley assignment to 
determine the genuine solution and propose an algorithm based on Mathematica’s fully expanded 
solution for the general case to obtain this structure [10]. 
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Figure 7. Intersection of a sphere and a given plane.

The intersection of two circles will be two different points, one single point or nothing. Here we
assume that there must be one or two points in the intersection of these two circles on the Y–Z plane.
If the solution is one point, then this solution is the genuine one, the coordinates of a1. When there are
two different solutions, as shown in Figure 8, the real solution can be easily confirmed because this
surface has a saddle-shaped configuration and if a0a1 is fixed, then a1 must be below the X–Y plane,
which means that its y coordinate is a positive number. By this approach, the coordinates of b2 are
at the intersection of two circles on the X–Z plane. The two circles are intersections of two different
spheres of radii a2b2 and b1b2 centered at a2 and b2, respectively, and this saddle-shaped surface makes
this point b2 located above the X–Y plane. Demaine et al. used the mountain-valley assignment to
determine the genuine solution and propose an algorithm based on Mathematica’s fully expanded
solution for the general case to obtain this structure [10].
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The coordinates of other points can be calculated step by step and the location of b1 is only 
decided by the folding angle, which is the basic parameter. When the sub-plate is completed, the 
whole plate can be constructed by copying the sub-plate itself, as shown in Figure 9. 
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2.2.2. Geometrical Relationship in Regular Hexagons 

Since former researches mainly focus on the alternating asymmetric triangulation of squares and 
have given narration on the modeling [19], this paper generalizes this triangulation to regular 
hexagons and even n-regular polygons. However, this differs from the modeling of squares. In the 
demonstration before, it is clear that a0a1 can be assumed as fixed, while for regular hexagons only 
the mid-point can be regarded as an immobile one, which leads to a new geometric relationship. 

In the initial state, the whole plate is flat and the following part illustrates some eternal geometric 
rules to help the construction of the parametric model. The design process mainly focuses on the 
geometrical relationship in a sub-plate and the final crease pattern can be created by symmetrically 
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Figure 10. A regular hexagon using alternating asymmetric triangulation. (a) The creases of a regular 
hexagon, in which the full lines represent the mountains and the dotted lines represent the valleys in 
this folding pattern. The green lines are used to triangulate the trapezoids; (b) a sub-plate of a regular 
hexagon in the X–Y plane. 

Figure 8. Using the intersections of circles on the different co-ordinate planes to find a2 and b2:
(a) Intersections of circles on the Y–Z plane; (b) intersections of circles on the X–Z plane.

The coordinates of other points can be calculated step by step and the location of b1 is only decided
by the folding angle, which is the basic parameter. When the sub-plate is completed, the whole plate
can be constructed by copying the sub-plate itself, as shown in Figure 9.
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2.2.2. Geometrical Relationship in Regular Hexagons

Since former researches mainly focus on the alternating asymmetric triangulation of squares
and have given narration on the modeling [19], this paper generalizes this triangulation to regular
hexagons and even n-regular polygons. However, this differs from the modeling of squares. In the
demonstration before, it is clear that a0a1 can be assumed as fixed, while for regular hexagons only the
mid-point can be regarded as an immobile one, which leads to a new geometric relationship.

In the initial state, the whole plate is flat and the following part illustrates some eternal geometric
rules to help the construction of the parametric model. The design process mainly focuses on the
geometrical relationship in a sub-plate and the final crease pattern can be created by symmetrically
coping itself.

During kinematic motion, the distances between each pair of adjacent points are fixed, which this
paper makes use of to build the model. In a regular hexagon, the central point, a0, is permanent, and to
obtain the coordinates of the other points there are some rules that can be followed [19].

In Figure 10, it is assumed that the mid-point a0 is fixed at the original and ai (i = 1,2, . . . ) is moving
within the Y–Z plane. The point b1 is regarded as rotating around the m-axis, the angle between this
and the y-axis being 30◦. Thus, the folding angle refers to the angle that a0b1 is rotating around the
m-axis and, once the angle is given, the length of a0b1 can be derived from d and the regular triangle’s
geometric properties.

∠a1a0b1 = 60◦, (5)

a0a1 = a0b1 = a1a2 = a1b1 = b1b2 = d/ cos 60◦, (6)

a2b1 = 2 ∗ d. (7)
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Figure 10. A regular hexagon using alternating asymmetric triangulation. (a) The creases of a regular
hexagon, in which the full lines represent the mountains and the dotted lines represent the valleys in
this folding pattern. The green lines are used to triangulate the trapezoids; (b) a sub-plate of a regular
hexagon in the X–Y plane.

These distances are immobile, so the coordinates of ai and bi are derived from them. This paper
assumes that the initial state is when the paper is a flat sheet without deformation, as shown in Figure 11.
Once the location of b1 is obtained, a sphere with the radium of a1b1, whose center is b1, will intersect
with the Y–Z plane to generate a circle on this plane. Then, a1 is the solution of the intersection of this
circle and another one which is centered at a0 with a radius of a0a1 on this plane. When there are two
solutions in the intersection, the genuine solution must follow the rules of a negative Gauss surface, as
mentioned in Section 2.2.1. This process is shown in Figure 12.
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After confirming the positions of the first triangulation of a hexagon, the following points’
coordinates can be calculated with similar methods by intersecting several spheres, as shown in
Figure 13.
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Figure 14 illustrates the process after one sub-plate of a hexagon is completed, where the symmetry
of a regular hexagon with alternating asymmetric triangulation will help finish the model.
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These ideas about kinematic motion can be generalized to n-regular polygons for
parametric modeling.

2.2.3. Parametric Modeling of Deployable Structures Based on Alternating Asymmetric Triangulation

Parametric modeling is a process that transfers the design itself into functions, and by adjusting
the initial conditions these functions will automatically compute the results. Tachi et al. developed
three programs named Rigid Origami Simulator [20], Orimamizer [21,22] and Freeform Origami [23]
to help design origami approaches. This paper utilizes the Kangaroo [24] plugin in Grasshopper [25],
developed by Daniel Piker, to build the parameterized models of these structures in the digital
environment of Rhinoceros [26] according to the ideas above. Grasshopper is a graphical algorithm
editor tightly integrated with Rhinoceros’ 3-D modeling tools for designers who are exploring new
shapes using generative algorithms. Meanwhile, Grasshopper and Rhinoceros combined together
can realize visual modeling, which is within the trend of intellectualized design. Kangaroo is a Live
Physics engine for interactive simulation, optimization, and form-finding directly within Grasshopper.

For the models discussed in this paper, the basic parameters are the fold angle of the central
square, the width of each closed-loop, the number of edges of the polygons. According to Tachi [9],
when the number of edges and the width of loops are fixed, the coordinates of vertices are available,
so in the process of parametric modeling, this paper chooses the fold angle of the central square as
the basic parameter. As shown in Figure 15, by adjusting one parameter related to the folding angle,
the bar marked in Figure 15, the whole condition of this model can be changed. The specific model
built in Grasshopper is presented in Appendix A.
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The parametric model of squares and regular hexagons using alternating asymmetric triangulation
is shown in Figure 16.
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Figure 16. The parametric model of squares and regular hexagons with alternating asymmetric
triangulation obtained in the digital environment of Rhinoceros: (a) 3-D models of squares; (b) 3-D
models of regular hexagons.

In addition to modeling of squares and regular hexagons, the parametric modeling of n-regular
polygons using alternating asymmetric triangulation is possible. Though there are some subtle
differences among polygons with various number of edges, the geometric relationships among vertices
and creases can be derived through the geometric properties. Here, this paper summarizes and gives
the flow diagram of parametric modeling for the n-regular polygon, as shown in Figure 17.



Symmetry 2019, 11, 1278 10 of 15

Symmetry 2019, 11, 1278 9 of 15 

The parametric model of squares and regular hexagons using alternating asymmetric 
triangulation is shown in Figure 16. 

(a) (b) 

Figure 16. The parametric model of squares and regular hexagons with alternating asymmetric 
triangulation obtained in the digital environment of Rhinoceros: (a) 3-D models of squares; (b) 3-D 
models of regular hexagons. 

In addition to modeling of squares and regular hexagons, the parametric modeling of n-regular 
polygons using alternating asymmetric triangulation is possible. Though there are some subtle 
differences among polygons with various number of edges, the geometric relationships among 

Figure 17. Flow chart of an n-regular polygon’s alternating asymmetric triangulation. Figure 17. Flow chart of an n-regular polygon’s alternating asymmetric triangulation.

2.3. Analysis of Kinematics Motions

To obtain the kinematic properties and the folding efficiency of alternating asymmetric
triangulation, it is necessary to analyze deployable structures’ kinematic motions. Using the models
constructed in the platform of Rhinoceros, this paper will discuss the variation trend of the projected
area of the top view and the height of the side view. This paper defines the maximum projected area
and the maximum height during the process of deployment as the reference values to normalize these
variables. The results are shown in Figure 18, and µ1 and µ2 are defined as following to make it clearer:

µ1 = A1/A2, (8)

µ2 = H1/H2. (9)

where A1 refers to the projected area of the top view, A2 is the maximum projected area, H1 is the
projected height of the side view, and H2 is the maximum projected height.
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It can be concluded that the relationships are obviously nonlinear for the surfaces as Gauss
surfaces using these results for reference and observing the data from parametric analysis. The graphs
of a regular tetragon show the characteristics of quadratic lines and the graphs of a regular hexagon
demonstrate similarities with cubic curves.

Specifically, during the deployment of squares, the projected area of the top view experiences
a sharp decline when the fold angle, θ, is around 10◦, and then a less steep decline around 45◦;
the same applies to hexagons. Consequently, it is possible that this trend is determined by this pattern’s
geometric properties and has nothing to do with the number of edges of the plate. Furthermore, it is
likely that an n-regular polygon applying alternating asymmetric triangulation will illustrate these
trends as well and the number of edges just affects the maximum fold angle. The more edges this plate
has, the lower the fold angle it can reach.

2.4. Rigid-Foldable Origami

The research of Fushimi et al. [27] about the rigid-foldable origami of zero-thickness paper leads
to the famous Fushimi Theorem, which shows the condition of angle that the folding pattern has to
meet. From the crease patterns shown in Figures 3b and 10a, the numbers of creases meeting in one
vertex varies at different points, which is alternately four or six in the first closed loop in a square or a
hexagon, and compared with the similar topological relationship, the variation follows some rules.
It is obvious that the number of regular polygons’ edges has to be even if the alternating asymmetric
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triangulation is feasible. Table 1 gives the distribution regularities of the number of creases in one
single vertex in different regular polygons whose number of edges is even.

Table 1. Number of creases meeting in different vertices.

Type of Polygons The Central
Point

Points on
1st Closed

Loop

Points on
2nd Closed

Loop

Points on
3rd Closed

Loop
. . .

Points on
Edges

Regular tetragon 4 4 or 6 4 or 8 4 or 8 4 or 8 3 or 5
Regular hexagon 6 4 or 6 4 or 8 4 or 8 4 or 8 3 or 5
Regular octagon 8 4 or 6 4 or 8 4 or 8 4 or 8 3 or 5

N-regular polygon n 4 or 6 4 or 8 4 or 8 4 or 8 3 or 5

Through further study, it is found that when the point has a four-crease pattern, among the four
creases, there will be three mountains and one valley, or three valleys and one mountain; when it is
the six-crease pattern, there will be four mountains and two valleys, four valleys and two mountains.
If there are eight creases meeting at one point, these creases always consist of five mountains and
three valleys, or five valleys and three mountains. The regularity in the four-crease pattern is the
aforementioned Fushimi Theorem.

3. Discussion

3.1. The Maximum Foldable Angle of One Single Regular Polygon Using Alternating Asymmetric
Triangulation

One advantage which the visual modeling brings out is that users can observe the model which is
built directly and make proper adjustments. As shown in Figure 19, the statements before and after the
folding angle reaches its maximum value have significant differences. From Figure 19b, it is obvious
that the statement of this hexagon witnesses an abrupt change and presents a configuration that cannot
be realized in real folding patterns, which means that now this model experience an unrigid folding.
In this paper, we confirm the maximum foldable angle by adjusting the bar in Grasshopper bit by bit
and find the critical states in squares, regular hexagons and regular octagons using the folding pattern
discussed in this paper.
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Figure 19. The perspective observed in Rhinoceros. (a) The folding of a regular hexagon when the
folding angle reaches its maximum foldable angle; (b) the perspective of the hexagon when the angle is
above the maximum foldable angle.

In this paper, the folding angle is defined as the angle between the sub-plane of each polygon
and the X–Y plane. According to the authors’ observation, in concentric pleating squares which use
alternating asymmetric triangulation, there is no abrupt change being observed so that it is concluded
that the maximum foldable angle is 90◦ for squares. In regular hexagons, the critical state occurs when
the angle reaches 79.525◦.
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3.2. The Tessellation of Concentric Pleating Squares

When there are more than six edges in a regular polygon, it is impossible for this polygon to be
tessellated and cover the whole plane. In this case, when discussing the tessellation, this paper just
focuses on the square for its simpler structure rather than the hexagon. The tessellation is built through
a symmetric copy of one single concentric pleating square, as shown in Figure 20.
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Figure 20. Tessellation of squares with alternating asymmetric triangulation: (a) Top view; (b)
front view.

The tessellation in Figure 20 above has four degrees of freedom and the outlook is unique and
artistic. When it is one single square, the fold angle is up to 90◦, while here it is around one-third of the
former angle, due to the reverse buckling.

As shown in Figure 21, the top vertices in side views are projected inside the projected area. Then,
there would be overlaps and collisions among these edges. Consequently, the ultimate state is when
the projection of the highest vertex falls on the boundary of the projected area.
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3.3. Suggestions for Configuration

Considering the characteristics of this folding pattern, different polygons have various geometric
properties that can be applied in different situations. The following are some suggestions for
configuration. When a single square is folded based on alternative asymmetric triangulation,
the maximum folding angle is 90◦ and it has one degree of freedom. Obviously, its tessellation
is practical according to the discussion in Section 3.1. For its extremely high folding efficiency,
this pattern can be applied when the build asks for high efficiency; meanwhile, the span of this structure
is moderate. Compared with squares, triangulated regular hexagons have lower efficiency, especially
when there are more than one hexagons tessellated together. However, because of its novel outlook,
regular hexagons are helpful if a building demands a unique architectural style. Furthermore, rooves
using this pattern will have a larger span. When it comes to a regular octagon, the maximum fold angle
of one single octagon is 45◦, so the tessellation of octagons must have a comparatively low folding
efficiency and this is not feasible in folding. However, its outlook is still inspiring in architecture. It can
be concluded that alternating asymmetric triangulation is not suitable for use in polygons with more
edges than the polygons given before.
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4. Conclusions

The aim of this paper is to illustrate the geometric properties of concentric pleating based on
alternating asymmetric triangulation and make use of these characteristics to realize parametric
modeling of this folding pattern. During the whole process of kinematic motion, the distances between
two adjacent points is immobile, so the authors take advantage of this property to find a feasible
and convenient way to generalize the parametric modeling from squares to regular hexagons, using
the intersections of some spheres and planes to obtain the coordinates of all the points successively.
Though there exists some difference between the motion of squares and that of hexagons, the overall
concepts are the same and can be generalized to n-regular polygons in this paper.

These models can be constructed parametrically in the digital environment of Rhinoceros, using
Kangaroo in Grasshopper, so that designers can directly observe a model’s kinematic deployment and
calculate the folding efficiency. The authors make use of the convenience of modeling using Kangaroo
in Grasshopper in the environment of Rhinoceros to obtain the maximum foldable angle both for a
single polygon and their tessellations. The folding of one single polygon limits the tessellation of
several polygons and the available folding angle will be around one-third of that of a single polygon,
which diminishes the folding efficiency. Besides, this paper makes conclusions that the tendencies of
folding efficiency in different regular polygons are not the same: In squares, the graph is a quadratic
line, while in regular hexagons it is a cubic curve. To maintain the rigid folding, each polygon has a
limit folding angle, beyond which there will be stretching or teasing within the paper. Meanwhile,
the number of creases meeting in each vertex also follows some rules, as shown in Table 1.
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Appendix A

The scripts of a regular hexagon using alternating asymmetry triangulation in Grasshopper.
See “Origami_hexagon”.
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