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Abstract: Modern daily life activities result in a huge amount of data, which creates a big challenge for
storing and communicating them. As an example, hospitals produce a huge amount of data on a daily
basis, which makes a big challenge to store it in a limited storage or to communicate them through the
restricted bandwidth over the Internet. Therefore, there is an increasing demand for more research in
data compression and communication theory to deal with such challenges. Such research responds to
the requirements of data transmission at high speed over networks. In this paper, we focus on deep
analysis of the most common techniques in image compression. We present a detailed analysis of
run-length, entropy and dictionary based lossless image compression algorithms with a common
numeric example for a clear comparison. Following that, the state-of-the-art techniques are discussed
based on some bench-marked images. Finally, we use standard metrics such as average code length
(ACL), compression ratio (CR), pick signal-to-noise ratio (PSNR), efficiency, encoding time (ET) and
decoding time (DT) in order to measure the performance of the state-of-the-art techniques.

Keywords: lossless and lossy compression; run-length; Shannon–Fano; Huffman; LZW; arithmetic
coding; average code length; compression ratio; PSNR and efficiency

1. Introduction

The utilization of the computer in modernized activities is increasing virtually everywhere. As a
result, sending a plethora of data, especially images and videos over the cyber world, is the most
challenging issue because of circumscribed bandwidth and storage capacity; and it is time-consuming
and costly as reported in [1]. For instance, a conventional movie camera customarily uses 24 frames
per second. However, recent video standards sanction 120, 240, or 300 frames per second. Video is
a series of still images or frames passed per second and a color image contains three panels: red,
green and blue. Suppose you would like to send or store a three-hour color movie file of 1200 × 1200
dimension and 50 frames are passed in every second. It takes approximately (1200 × 1200 × 3 × 84
× 50 × 10,800) bits = 17,797,851.5625 Megabits = 2172.5893 gigabytes storage if a pixel is coded in
8 bits, which is a sizably voluminous challenge to store in a computer or send over the cyber world.
Here, three is the number of channels of a color image, that is, R, G, and B, and 10,800 is the total
number of seconds. Additionally, the medium of transmission and latency are two major issues for
data transmission. If the video file is sent over a medium of 100 Mbps, approximately (17,797,851.5625
Megabits)/100 = 177,978.5156 s = 49.4385 h is required because the medium can send 100 Megabits per
second. For these reasons, compression is required and it is a paramount way to represent an image
with fewer bits keeping its quality and an immensely colossal volume of data can be sent through an
inhibited bandwidth at high speed over the cyber world reported in [2,3]. The general block diagram
of an image compression procedure is shown in Figure 1.
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Figure 1. General block diagram of an image compression procedure.

There are many image compression techniques and an image compression technique is verbally
expressed to be the best when it contains less average code length, encoding and decoding time, and
provides more compression ratio. Image compression algorithms are extensively applied in medical
imaging, computer communication, military communication via radar, teleconferencing, magnetic
resonance imaging (MRI), broadcast television and satellite images reported in [4]. Some applications
of these require high-quality visual information and others need less quality, reported in [5,6].

From the perspectives, compression is divided into two types: lossless and lossy. All pristine data
are recuperated correctly from an encoded data set in lossless, whereas the lossy technique retrieves
virtually all data sempiternally eliminating categorical information, especially redundant information
reported in [7,8]. Lossless is mostly utilized in facsimile transmissions of bitonal images, ZIP file
format, digital medical imagery, internet telephony, and streaming video file reported in [9].

The foremost intention of implementing a compression algorithm is to diminish superfluous data
reported in [10]. Run-length coding, for example, is a lossless procedure where a set of consecutive
same pixels (runs of data) are preserved as a single value and a count stated in [11,12]. But, long runs
of data does not subsist in authentic images mentioned in [13,14] which is the main quandary of
run-length coding. Article [15] shows that a chain code binarization with run-length, and LZ77
provides a more satisfactory result than the traditional run-length technique from a compression ratio
perspective. The authors in [16] show a different way of compression utilizing a bit series of a bit plane
and demonstrate that it provides a better result than conventional run-length coding.

The entropy encoding techniques are proposed to solve the difficulties of a run-length algorithm.
Entropy coding style encodes source symbols of an image with code words of different lengths.
There are some well-recognized entropy coding methods: such as Shannon–Fano, Huffman and
arithmetic coding. The first entropy coding technique is Shannon–Fano, which gives a better result
than run-length reported in [17]. The authors in [18] show that Shannon–Fano coding provides 30.64%
and 36.51% better results for image and text compression, respectively, compared to run-length coding.
However, Nelso et al. stated in [19] that Shannon–Fano sometimes generates two different codes
for the same symbol and does not ascertain optimal codes, which are the two main problems of the
algorithm. From the perspectives, Shannon–Fano coding is an inefficient data compression technique
reported in [20,21].

Huffman is another entropy coding algorithm that solves the quandaries of Shannon–Fano
reported in [22,23]. In that technique, pixels that are happening more frequently are encoded, utilizing
fewer bits shown in [24,25]. Although Huffman coding is a good compression technique, Rufai et al.
proposed singular value decomposition (SVD) and Huffman coding based image compression
procedure in [26], where SVD is used to decompose an image first and the rank is reduced by ignoring
some lower singular values. Lastly, the processed representation is coded by Huffman coding, which
shows a better result than JPEG2000 for lossy compression. In [27], three algorithms, Huffman, fractal
algorithm and Discrete Wavelet Transform (DWT) coding, have been implemented and are compared
to show the best coding procedure among them. It shows that Huffman works better to reduce
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redundant data and DWT improves the quality of a compressed image, whereas the fractal provides
a better compression ratio. The main problem of Huffman coding is that it is very sensitive to noise.
It can not reconstruct an image perfectly from an encoded image if any changes are happened reported
in [28].

Another lossless entropy method is arithmetic coding, which gives a short average code compared
to Huffman coding reported in [29]. In [30], Masmoudi et al. proposed a modified technique of
arithmetic coding that encodes an image from top to bottom block-row wise and block by block from
left to right in lieu of pixel by pixel using a statistical model. The precise probability between the current
and its neighboring block are calculated by reducing the Kullback–Leibler gap. As a result, around
15.5% and 16.4% bitrates are decremented for static and adaptive order sequentially. Utilizing adaptive
arithmetic coding and finite mixture models, a block-predicated lossless compression has been proposed
in [31]. Here, an image is partitioned into non-overlapping blocks and encoded every block individually
utilizing arithmetic coding. This algorithm provides 9.7% better results than JPEG-LS reported in [32,33]
when the work is done in a predicted error domain in lieu of pixel domain. Articles [34,35] state
that arithmetic coding provides better compression ratio. But, it takes so much time that is virtually
unutilizable for dynamic compression. Furthermore, its use is restricted by patent. On the other hand,
though Huffman coding provides marginally less compression but it utilizes very less time to encode
an image than arithmetic coding. That’s why it is good for dynamic compression reported in [36,37].
Furthermore, an image encoded by arithmetic coding can corrupt the entire image for a single bit error
because it has very impecunious error resistance reported in [26,38,39]. Contiguous to, the primary
inhibition of entropy coding is that it increments the complexity of CPU stated in [40,41].

LZW (Lempel–Ziv–Welch) is a dictionary predicated compression technique that reads a sequence
of pixels, and then groups the pixels into strings. Lastly, the strings are converted into codes. In that
technique, a code table with 4096 common entries are utilized and the fixed codes 0–255 are assigned
first in a table as an initial entry because an image can have a maximum of 256 different pixels from 0
to 255. It works better in case of text compression reported in [42]. However, Saravanan et al. propose
an image coding procedure utilizing LZW, which compresses an image in two stages shown in [43].
Firstly, an image is encoded utilizing Huffman coding. Secondly, after concatenating all the code
words, LZW is applied to compress the encoded image, which provides a better result. However, the
main challenge of that technique is to manage the string table.

In this study, we use a common numeric data set and shows the step by step details
of implementation procedures of the state-of-the-art data compression techniques mentioned.
This demonstrates the comparisons among the methods and explicates the quandaries of the methods
based on the results of some benchmarked images. The organization of this article is shown as follows:
the encoding and decoding procedure; and the analysis of run-length, Shannon–Fano, Huffman, LZW
and Arithmetic coding are discussed in Section 2. The experimental results of some bench-marked
images are explained in Section 2.2, and concluding statements are presented in Section 3.

2. The State-of-the-Art Techniques

2.1. Run-Length Coding

Run-length coding is a lossless compression procedure that takes the occurrence of data in lieu
of statistical information, and it is generally utilized in TIFF and PDF formats reported in [44]. In the
encoding, a single value and the count of same consecutive values are preserved. For instance,
the encoding procedure is shown based on the 50 elements (A = [6 7 6 6 6 7 7 7 7 7 7 7 7 7 5 4 4 4 4 7 7 7
7 7 7 7 7 7 5 5 5 7 7 3 3 3 2 2 2 5 5 5 5 5 5 5 5 5 1 1]).

2.1.1. Run-Length Encoding Procedure

1. Calculate the difference (B = [1 −1 0 0 1 0 0 0 0 0 0 0 0 −2 −1 0 0 0 3 0 0 0 0 0 0 0 0 −2 0 0 2 0 −4 0
0 −1 0 0 3 0 0 0 0 0 0 0 0 −4 0 1]) using f (x) = f (x + 1)− f (x).
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2. Assign 1 to each non-zero data of B and we get B = [1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1].

3. Save the positions of all ones into an array (position = [1 2 5 14 15 19 28 31 33 36 39 48 50]) and the
corresponding data into (items = [6 7 6 7 5 4 7 5 7 3 2 5 1]) from A. The array position and items
are stored or sent as the encoded list of the original 50 elements.

It shows that only twenty six elements are preserved in two matrices in lieu of 50 items,
which designates that (26 × 8) = 208 bits are sent to the decoder in lieu of (50 × 8) = 400 bits. Thus,
the average code length is 208/50 = 4.16 bits and ((8 − 4.16)/8) × 100 = 48% working memory is saved
for the data set.

2.1.2. Run-Length Decoding Procedure

The two array named position and items are received for decoding, and the decoder follows the
style shown below for decompression.

1. Read each element from the array items and write the element repeatedly until its corresponding
number in the position array is found.

As an example, the first 6 and 7 of the items array are written one times at index 1 and 2 in the
new decoded list, respectively, whereas the next 6 and 7 are reiterated three times at the index 3 to 5
and nine times at the index 6 to 14 in the same decoded list, respectively. These processes will continue
until the reading of all elements from the items is finished. Conclusively, we get the same list as the
original list(A) after decoding.

2.1.3. Analysis of Run-Length Coding Procedure

Run-length coding works well when an image contains long runs of identical samples that
customarily do not appear in an authentic image, which is the main quandary of run-length coding
reported in [13,14]. For example, data (A) is rearranged with a slight change and the rearranged list is
C = [1 6 7 6 6 7 7 7 4 7 7 7 7 5 7 4 4 7 4 7 7 7 7 7 7 7 5 7 7 5 5 7 7 3 3 2 3 2 2 5 5 5 5 6 5 5 5 5 5 1]. We apply
run-length coding on C, and get [1 2 3 5 8 9 13 14 15 17 18 19 26 27 29 31 33 35 36 37 39 43 44 49 50 ] and
[1 6 7 6 7 4 7 5 7 4 7 4 7 5 7 5 7 3 2 3 2 5 6 5 1 ] in position and item arrays. There is no compression here
because the two arrays contain 50 elements together, which is precisely identically tantamount to the
initial list (C).

2.2. Shannon–Fano Coding

Shannon–Fano is a lossless coding technique that takes sorted probabilities in the descending
order of an image and separated them into two sets where the total sum of each set is almost equivalent,
which is reported in [45]. The Shannon–Fano encoding procedure is shown as follows:

2.2.1. Shannon–Fano Encoding Style

1. Find the distinct symbols (N) and their corresponding probabilities.
2. Sort the probabilities in descending order.
3. Divide them into two groups so that the entire sum of each group is as equal as possible, and make

a tree.
4. Assign 0 and 1 to the left and right group, respectively.
5. Repeat steps 3 and 4 until each element becomes a leaf node on a tree.

Run-length coding does not perform any compression on array C. C contains seven different
components (7,5,4,6,3,2,1) and their probabilities are 0.42,0.26,0.08,0.08,0.06,0.06 and 0.04, respectively.
As indicated by the algorithm, the two groups left (0.42,0.08) and right (0.26,0.08,0.06,0.06,0.04) are
made and the Shannon–Fano encoding system is applied as demonstrated in Figure 2.
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Figure 2. Encoding procedure of Shannon–Fano.

Entropy, efficiency, ACL, CR, mean square error (MSE) and PSNR are determined using the
following equations that are utilized to measure the performance of a compression algorithm, where
Proi, Bi, OR, CO, and MAX represent probability of ith symbol, length of the code word of the ith

symbol, original image, compressed image and the maximum variation of a dataset separately. The
encoded results of the array (C) are appeared in Table 1, where Ei represents an encoded code word of
the ith symbol:

entropy = −
N−1

∑
i=0

Proi log2Proi, (1)

e f f iciency =
entropy

ACL
∗ 100%, (2)

ACL =
NP

∑
i=1

Pro(i) Bi, (3)

CR =
Number o f original bits

Number o f compressed bits
, (4)

MSE =
1

M ∗ N

M−1

∑
p=0

N−1

∑
q=0

(OR(p, q)− CO(p, q))2, (5)

PSNR = 10 Log10
Max2

MSE
. (6)

Table 1. The results of Shannon–Fano encoding procedure.

i Pi Ei Bi ∑N−1
i = 0 Pi Bi Pi log2 Pi CR BPP

7 0.42 00 2 0.84 −0.526

3.226 0.31

4 0.08 01 2 0.52 −0.292
5 0.26 10 2 0.16 −0.505
6 0.08 1100 4 0.32 −0.292
3 0.06 1110 4 0.24 −0.244
2 0.06 1111 4 0.24 −0.244
1 0.04 1101 4 0.16 −0.186

ACL = 2.48 Entropy = 2.289
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Using Table 1, the Shannon–Fano coding provides [110111000011001100000000010000000010000101
0001000000000000001000001010000011101110111111101111111110101010110010101010101101]
bitstream of data set (C), which is sent for decompression together with symbols and their probabilities.
It appears that Shannon–Fano saves ((8 − 2.48)/8) × 100 = 69% storage, where run-length coding
can save no memory for the same data set. Thus, Shannon–Fano provides 69% better results than
run-length coding for the data set and the algorithm proficiency is 92.298%.

2.2.2. Shannon–Fano Decoding Style

In decoding, Shannon–Fano receive an encoded bitstream, items and their relating probabilities.
It builds a similar tree to Figure 2 dependent on the probabilities, and the following procedure is used
for decoding. Finally, we get the same data list as array C.

1. Read each bit from an encoded bitstream and scan the tree until a leaf node is found. At the point
when a leaf hub is discovered, read the symbol of the node as decoded value, and the process
will proceed until scanning of the encoded bitstream is finished.

2.2.3. Analysis of Shannon–Fano Coding

In Shannon–Fano coding, we cannot be sure about the codes generated. There might be two
different codes for the same symbol depending on the way we build our tree shown below through
an example. Assume two groups (7 = 0.42 and 6 = 0.08) and (5 = 0.26, 4 = 0.08, 2 = 0.06, 3 = 0.06,
1 = 0.04) are made instead of (7 = 0.42 and 4 = 0.08) and (5 = 0.26, 6 = 0.08, 2 = 0.06, 3 = 0.06, 1 = 0.04)
simply exchanging two probabilities between two groups appearing in bold. In addition, if we apply
Shannon–Fano decoding on the received bitstream, we get (D = [1 4 7 4 4 7 7 7 6 7 7 7 7 5 7 6 6 7 6 7 7
7 7 7 7 7 5 7 7 5 5 7 7 2 2 3 2 3 3 5 5 5 5 4 5 5 5 5 5 1]) as decoded values. In the decoded list, the bold
symbols represent the changed components of the original list that are considered as a loss. There are
14 elements in the decoded list that the Shannon–Fano’s rebuilt tree can not reproduce perfectly. Thus,
it loses (14/50) × 100 = 28% data for only 50 elements.

2.3. Huffman Coding

Shannon–Fano coding sometimes produces the poorest code for some set of probabilities because
it cannot produce an optimal tree. David A. Huffman illustrated a coding procedure that consistently
makes an optimal tree and tackled the issues that exist in Shannon–Fano coding reported in [46,47].
Shannon–Fano coding is a top-down methodology, whereas Huffman coding uses the reverse route,
from the leaves to the root. Huffman coding uses the statistical information of an image like
Shannon–Fano coding. The encoding style of Huffman coding is given below. In addition, Figure 3
and Table 2 demonstrate a graphical representation of Huffman tree and the outcomes dependent on
the same data used in Shannon–Fano coding.

2.3.1. Huffman Encoding Style

1. List the probabilities of a gray-scale image in descending order.
2. Form a new node of a tree with the sum of the two lowest probabilities on the list and rearrange

them in the same order for the proceeding process. This process will continue until the end.
3. Assign 0 and 1 to each left and right branch of the tree, respectively.

Based on Table 2, we get [0000100101001000101 11000111110110001000110001111111101110101110
011001 10000000110000000000010101010010010101010100001] as encoded bitstream for the data set (C)
that is sent for decoding with symbols and their corresponding probabilities. In this way, Huffman
coding saves 71% memory space, which is 69% and 2% more than Run-length and Shannon–Fano
coding, respectively, and the efficiency of Huffman coding is 98.664%, which is 6.366% more than
Shannon–Fano coding.
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Figure 3. Huffman tree for encoding.

Table 2. Huffman encoding procedure.

i Pi Ei Bi ∑N−1
i = 0 Pi Bi Pi log2Pi CR BPP

7 0.42 1 1 0.42 −0.526

3.448 0.29

5 0.26 01 2 0.52 −0.505
4 0.08 0001 4 0.32 −0.292
6 0.08 0010 4 0.32 −0.292
3 0.06 0011 4 0.24 −0.244
2 0.06 00000 5 0.3 −0.244
1 0.04 00001 5 0.2 −0.186

ACL = 2.32 Entropy = 2.289

2.3.2. Huffman Decoding Style

Huffman coding provides an optimal prefix code. Huffman receives an encoded bitstream, items
and their corresponding probabilities and uses the following methodology for decompression; and we
get indistinguishable data as the original list (C):

1. Recreates the equivalent Huffman tree built in the encoding step using the probabilities.
2. Each bit is scanned from the encoded bitstream and traverses the tree node by node until a leaf

node is reached. At the point when a leaf node is discovered, the symbol is predicted from the
node. This process will proceed until finished.

2.3.3. Analysis of Huffman Coding

The main problem for Huffman coding is that it is very sensitive to noise. A minor change in any
bit of the encoded bitstream would break the whole message reported in [28]. Assume that the decoder
receives items, probabilities and the encoded bitstream with only three altered bits at the positions 5th,
19th, 54th. Then, we get [2676657477775744747777777355773323 2255556555551] as decoded values
where bold elements (total 23) indicate loss of data. In addition, it produces only 47 elements rather
than 50 elements. Thus, it devastates ((23 + 3)/50) × 100 = 52% data.
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2.4. Lempel–Ziv–Welch (LZW) Coding

Lempel–Ziv–Welch (LZW) is generally used for lossless text compression invented by Abraham
Lempel, Jacob Ziv, and Terry Welch. This strategy is easy to implement and broadly applied for Unix
file compression, which was published in 1984 as an updated version of LZ78. It encodes a sequence
of characters with a unique code using a table-based lookup algorithm. In this algorithm, the first 256
8-bit code, 0–255 are inserted into a table as an initial entry because an image contains 0–255 distinct
pixels, and the following codes come from 256 to 4095, which will be embedded into the bottom of
the table. This algorithm works better in case of text compression and provides most noticeably a
terrible outcome for another sort of compression. The encoding procedure of the algorithm is shown
as follows.

2.4.1. LZW Encoding Procedure

1. Assign 0–255 in a table and set the first data from the input file to FD,
2. Repeat steps 3 to 4 until reading is finished,
3. ND = Read the next data,
4. IF FD + ND is in the table,

FD = FD + ND,

ELSE

Store the code for FD as encoded data and insert FD + ND to the table. In addition, set
FD = ND.

Since the previously mentioned original list (C) contains only 7 (1–7) different values, only 1–7
are inserted into the table as an initial dictionary first. Applying the LZW encoding procedure on C
shown in Table 3 and we get the decoded list that appears in Table 4. Finally, the encoded bitstream is
sent to the decoder, where each piece of encoded data is converted into 6-bit binary on the grounds
that the biggest value is 33 in the encoded list and just 6 bits are required to represent 33.

Table 3. LZW encoding procedure.

Row Number Encoded Output
Dictionary

Index Entry

1 - 1 1
2 - 2 2
3 - 3 3
4 - 4 4
5 - 5 5
6 - 6 6
7 - 7 7
8 1 8 16
9 6 9 67

10 7 10 76
11 6 11 66
12 9 12 677
13 7 13 77
14 7 14 74
15 4 15 47
16 13 16 777
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Table 3. Cont.

Row Number Encoded Output
Dictionary

Index Entry

17 13 17 775
18 5 18 57
19 14 19 744
20 15 20 474
21 15 21 477
22 16 22 7777
23 16 23 7775
24 18 24 577
25 7 25 75
26 5 26 55
27 24 27 5773
28 3 28 33
29 3 29 32
30 2 30 23
31 29 31 322
32 2 32 25
33 26 33 555
34 26 34 556
35 6 35 65
36 33 36 5555
37 26 37 551
38 1 - -

39 0 Stop Code

Table 4. Average code length and compression ratio.

Encoded Data Encoded Bit’s Stream (6 Bits Each) ACL CR

1 6 7 6 9 7 7 4 13
13 5 14 15 15 16
16 18 7 5 24 3 3 2
29 2 26 26 6 33 26

1 0

0000010001100001110001100010
0100011100011100010000110100
1101000101001110001111001111
0100000100000100100001110001
0101100000001100001100001001
1101000010011010011010000110

100001011010000001000000

3.84 2.083

Since the average code length is 3.84, as it appears in Table 4. Thus, LZW saves 36% memory,
which is 28.7356% and 29.3103% more than Shannon–Fano and Huffman coding individually for the
same dataset. Furthermore, the only encoded bitstream is sent to the decoder for decompression.

2.4.2. LZW Decoding Procedure

The Lempel–Ziv–Welch (LZW) decoding procedure uses the same initial dictionary used in the
encoding step and decoding is done using the procedures shown below for image compression.

1. Assign 0–255 in a table and scan the first encoded value and assign it to FEV. Later, send the
translation of FEV to the output.

2. Repeat steps 3 to 4 until the reading of the encoded file ends.
3. NC = read next code from encoded file.
4. IF (NC is not found in the table).

Assign the translation of FEV to DS and perform DS = DS + NC

ELSE
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Assign the translation of NC to DS, the first code of DS to NC, NC to FEV and add
FEV+NC into the table. Furthermore, send DS to the output.

For instance, the mentioned encoded bitstream converts each six bits into decimal value and
assign 1–7 as the initial dictionary shown in Table 5. The decoding demonstration for the encoded data
is shown in Table 6, and we get a similar list as C after decoding.

Table 5. Initial dictionary.

Initial Dictionary

Index Entry

1 1
2 2
3 3
4 4
5 5
6 6
7 7

Table 6. The decoding procedure of LZW coding.

Row Number Code Output Full Conjecture

1 1 1 8: 1?
2 6 6 8: 16 9: 6?
3 7 7 9: 67 10: 7?
4 6 6 10: 76 11: 6?
5 9 67 11:66 12: 67?
6 7 7 12: 677 13: 7?
7 7 7 13:77 14: 7?
8 4 4 14:74 15: 4?
9 13 77 15:47 16: 77?

10 13 77 16: 777 17: 77?
11 5 5 17:775 18:5?
12 14 74 18:57 19:74?
13 15 47 19:744 20:47?
14 15 47 20:474 21:47?
15 16 777 21:477 22:777?
16 16 777 22:7777 23:777?
17 18 57 23:7775 24: 57?
18 7 7 24:577 25:7?
19 5 5 25:75 26: 5?
20 24 577 26:55 27:577?
21 3 3 27:5773 28:3?
22 3 3 28:33 29:3?
23 2 2 29: 32 30: 2?
24 29 32 30:23 31: 32?
25 2 2 31:322 32:2?
26 26 55 32:25 33:55?
27 26 55 33:555 34:55?
28 6 6 34:556 35:6?
29 33 555 35:65 36:555?
30 26 55 37:5555 38:55?
31 1 1

2.4.3. Analysis of LZW Coding

Searching dictionary is a major challenge in the LZW compression technique because it is more
complicated and time-consuming. Moreover, an image that does not carry much repetitive data at
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all cannot be reduced, and it is good for deducing file size that carries more repeated data reported
in [48,49].

2.5. Arithmetic Coding

Arithmetic coding is a lossless data compression procedure where a set of symbols is presented
using a fixed number of bits reported in [50,51]. It takes likelihood data from a dataset and applies
the following procedures for encoding, where N and CF indicate number and cumulative frequency.
In addition, UL, LL, LUL and LLL indicate upper, lower, last upper and the last lower limit of the
current range, respectively.

2.5.1. Arithmetic Encoding Procedure

Arithmetic_encoding(N, CF)

1. limit = UL − LL,
2. UL = LL + limit * CF[N − 1],
3. LL = LL + limit * CF[N].

The original array (C) contains 50 elements and showing the method of the encoding style of
50 items in a figure is very difficult. That’s why, the encoding style for ten items is shown. Suppose that
the list is [2 3 4 3 4 4 4 1 4 1 ]. There are four different items (4 3 1 2) on the list, and their corresponding
probabilities are 0.5, 0.2, 0.2, 0.1, individually. The four elements (4 3 1 2) contain 50%, 20%, 20% and
10% data, respectively. Thus, each limit is divided into 50%, 20%, 20% and 10% each time to encode
each element, which is shown in Figure 4 for all ten elements.

Figure 4. Arithmetic encoding procedure.

The tag value is calculated using Equation (7):

tag =
LLL + LUL

2
. (7)
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For the example shown in Figure 4, the LLL and LUL are 0.9551925 and 0.9551975. Thus,
the tag is 0.955195. The bitstream of the tag value is 001111000110111. Thus, the average
code length is 15/10 = 1.5 bits, and the compression ratio is 5.3333 where 15 is the length of
the tag. Finally, the tag’s bitstream, symbols (4,3,1,2), and their corresponding probabilities
(0.5, 0.2, 0.2, 0.1) are sent to the decoder for decompression. When Arithmetic coding is
applied on data set (C), we get [00000101100110101110100101111100101010111011110011
11110101011001011100110011100000000101011010010110110111100001011] bitstream from the
provided tag. Thus, average code length and compression ratio is 2.3000 bits and 3.4783 separately,
which saves 71.25% of storage. It appears that run-length, Shannon–Fano, Huffman and LZW coding
use 44.7115%, 7.2581%, 6.5041% and 33.908% more memory than arithmetic coding.

2.5.2. Arithmetic Decoding Procedure

The decoding procedure of arithmetic coding receives tag, symbols and their corresponding
probabilities; and the tag is converted into its floating point number and follows the following
methodology for decoding. For decompression, if the tag is in between in any range, then the symbol
of the range is taken as the decoded value. The range (r) and Newtag (NT) is calculated using
Equations (8) and (9), respectively.

Arithmetic_decoding(CF)

if(CF[N] < = (tag − LL)/(UL − LL) < CF[N − 1]),

(a) limit = UL − LL,
(b) UL = LL + limit*CF[N − 1],
(c) LL = LL + limit*CF[N],
(d) return N.

r = (UL− LL), (8)

NT =
tag− LL

r
. (9)

The whole decoding procedure of the ten values is demonstrated in the following list using
Figure 5, and we get the same list [2 3 4 3 4 4 4 1 4 1] as the original. Here, the floating value of the
corresponding tag’s bitstream is 0.955195.

Figure 5. Arithmetic decoding procedure.

1. tag = 0.955195. Since 0.9 < = tag < = 1.0, Thus, decoded value is 2 because the symbol 2 is in range.
2. NT1 = (tag − LL)/r = 0.55195 and it is in between 0.5 and 0.7, so the decoded value is 3.
3. NT2 = (NT1 − LL)/r = 0.25975 and it is in between 0 and 0.5, so the decoded value is 4.
4. NT3 = (NT2 − LL)/r = 0.5195 and it is in between 0.5 and 0.7, so the decoded value is 3.
5. NT4 = (NT3 − LL)/r = 0.0975 and it is in between 0 and 0.5, so the decoded value is 4.
6. NT5 = (NT4 − LL)/r = 0.195 and it is in between 0 and 0.5, so the decoded value is 4.
7. NT6 = (NT5 − LL)/r = 0.39 and it is in between 0 and 0.5, so the decoded value is 4.
8. NT7 = (NT6 − LL)/r = 0.78 and it is in between 0.7 and 0.9, so the decoded value is 1.
9. NT8 = (NT7 − LL)/r = 0.4 and it is in between 0 and 0.5, so the decoded value is 4.

10. NT9 = (NT8 − LL)/r = 0.8 and it is in between 0.7 and 0.9, so the decoded value is 1.
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2.5.3. Analysis of Arithmetic Coding Procedure

The authors in [34,35] state that arithmetic coding provides a better compression ratio. However,
it takes so much time that it is virtually not utilizable for dynamic compression. Furthermore, its use
is restricted by the patent. On the other hand, though Huffman coding provides marginally less
compression, it utilizes much less time to encode an image than arithmetic coding. This is why it is
good for dynamic compression reported in [36,37]. Furthermore, an image encoded by arithmetic
coding can corrupt the entire image for a single bit error because it has very impecunious error
resistance reported in [26,38]. Another problem is that an entire code word must be taken to start
interpreting a message. Contiguous to the primary inhibition of entropy coding is that it increments the
complexity of CPU stated in [40,41]. Suppose the decoder receives the tag of the original 50 elements
with only a first bit altered and we get [65427777727567777477777717765757772472757571571711] as
a decoded list where the bold symbols indicate the altered values. In the list, 31 elements have been
altered, which means (31/50) × 100 = 62% of the data have been corrupted.

3. Experimental Results and Analysis

The outcomes and investigation of the state-of-the-art methods have been demonstrated in this
segment. The techniques have been applied on the different types of bench-marked images. In this
paper, we have initially used three PC created photographs and the next twenty-two medical images
from the DICOM Image dataset [52] of various sizes appeared in Figure 6. Encoding time, decoding
time, average code length, compression ratio, PSNR and efficiency have been used to analyze the
performance of the algorithms.

Figure 6. Original image list.

The encoding and decoding time are the periods of time required to encode and decode an
image. Average code length determines the number of bits used to store a pixel on average, and
the compression ratio represents the ratio of original and compressed images. Pick signal-to-noise
ratio ((PSNR)) is used to measure the quality of an image. Less encoding and decoding time, short
average code length and higher compression ratio tell how much faster an algorithm is and how much
less memory it uses. The higher efficiency and PSNR convey that an image contains high-quality
information. The encoding time, decoding time, average code length, and compression ratio are
shown in Tables 7–10, whereas Figures 7–11 show the graphical representation of encoding time,
decoding time, average code length, compression ratio and efficiency, respectively, based on the
twenty-five images.
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Table 7 shows that arithmetic and run-length coding take the highest (4.0178) and lowest (0.1349)
milliseconds on average, whereas Shannon–Fano, Huffman and LZW take 0.5873, 0.2488 and 0.1054
milliseconds individually to encode the images. It appears that arithmetic coding uses 96.6424%,
85.3825%, 93.8076% and 97.3767% more time than run-length, Shannon–Fano, Huffman and LZW coding,
respectively. However, Huffman coding uses much less time (0.0062) on average in decoding, whereas
arithmetic coding uses more time, which is demonstrated in Table 8. On the other hand, LZW uses more
time than Shannon–Fano and Huffman coding but less than Arithmetic and Run-Length coding. Figures 7
and 8 show the graphical representation of encoding and decoding time for comparison.

Table 7. Encoding time comparison.

Images RLE Shannon–Fano Huffman LZW Arithmetic

1 0.171 0.8667 0.2056 0.123 5.5032
2 0.167 0.7524 0.1304 0.105 2.9515
3 0.121 0.6455 0.2673 0.109 2.223
4 0.027 0.2983 0.4699 0.022 0.3101
5 0.167 0.6735 0.215 0.106 3.7628
6 0.187 0.7304 0.2534 0.106 3.3215
7 0.141 0.6262 0.1925 0.105 2.9568
8 0.165 0.7816 0.2183 0.118 4.6419
9 0.186 0.6002 0.2252 0.107 4.4352
10 0.137 0.5079 0.1816 0.106 7.3937
11 0.126 0.4753 0.2182 0.106 4.5515
12 0.096 0.449 0.2545 0.106 2.9656
13 0.113 0.4942 0.2034 0.11 5.2077
14 0.161 0.8058 1.0607 0.108 5.525
15 0.102 0.5208 0.1932 0.106 4.3877
16 0.112 0.4978 0.1979 0.106 3.8302
17 0.092 0.4684 0.1939 0.106 4.5352
18 0.186 0.6756 0.2139 0.118 5.9698
19 0.189 0.687 0.166 0.116 5.7538
20 0.086 0.4395 0.2088 0.111 2.227
21 0.112 0.5085 0.2059 0.106 3.217
22 0.103 0.4413 0.2007 0.11 2.5256
23 0.122 0.5298 0.1617 0.105 3.8022
24 0.172 0.6697 0.2004 0.107 4.7927
25 0.132 0.5369 0.1818 0.106 3.6537

Average 0.1349 0.5873 0.2488 0.1054 4.0178

Tables 9 and 10 show average code length and compression ratio, respectively. It looks that RLE
uses 10.5618 bits per pixel, on average, which is 24.2553% more memory being used than the original
images, which is the reason it is not used directly for real image compression. On the other hand,
LZW uses the lowest number of bits (5.9365) per pixel, but the problem of LZW is that it sometimes
uses more memory than an original, which happened for image 21 shown in Table 9. Arithmetic
coding uses the second lowest number of bits per pixel on average. Thus, arithmetic coding is the best
coding technique because it provides a better compression ratio than other state-of-the-art techniques
without LZW shown in Table 10. Figures 9 and 10 demonstrate the graphical representation of average
code length and compression ratio separately for comparison.
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Figure 7. Encoding time comparison of the images.

Table 8. Decoding time comparison.

Images RLE Shannon–Fano Huffman LZW Arithmetic

1 0.059 0.0061 0.0029 0.009 6.2899
2 0.048 0.0056 0.0038 0.013 3.273
3 0.048 0.005 0.0047 0.012 2.774
4 0.01 0.0021 0.011 0.002 0.3718
5 0.058 0.0082 0.0072 0.106 4.5912
6 0.078 0.0077 0.007 0.024 4.1704
7 0.052 0.0075 0.0071 0.021 3.6072
8 0.066 0.0096 0.0084 0.037 5.7222
9 0.07 0.0059 0.0093 0.033 5.4118
10 0.059 0.0046 0.0051 0.029 5.6243
11 0.049 0.0065 0.0089 0.024 5.347
12 0.029 0.0055 0.0056 0.017 3.3815
13 0.036 0.0065 0.0049 0.019 4.7372
14 0.055 0.0094 0.0078 0.036 7.6486
15 0.038 0.0071 0.0034 0.024 5.0222
16 0.036 0.0072 0.0038 0.022 4.5165
17 0.038 0.0032 0.0056 0.019 4.7644
18 0.064 0.0044 0.0116 0.032 9.3636
19 0.071 0.0101 0.0043 0.041 6.7193
20 0.031 0.0064 0.0092 0.016 2.7133
21 0.038 0.0031 0.0032 0.024 4.2221
22 0.037 0.0056 0.0041 0.015 2.8519
23 0.05 0.0074 0.0037 0.026 4.696
24 0.059 0.0043 0.0074 0.033 5.7915
25 0.058 0.0079 0.004 0.03 4.4087

Average 0.0495 0.0063 0.0062 0.0266 4.7208
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Figure 8. Decoding time comparison of the images.

Table 9. Comparison of average code length.

Images RLE Shannon–Fano Huffman LZW Arithmetic

1 2.6114 2.861 2.4394 1.554 2.4265
2 5.0743 3.649 3.3302 2.8331 3.264
3 5.9338 4.035 3.6893 3.2044 3.6267
4 11.6135 6.652 6.2437 7.3533 6.2264
5 8.8868 5.904 5.349 5.0304 5.3195
6 7.9404 5.429 4.6825 4.3298 4.672
7 8.5559 5.614 4.9738 4.8468 4.9537
8 12.194 7.04 6.529 6.4582 6.4999
9 11.0768 6.557 6.1968 6.0463 6.1744

10 12.1297 7.857 7.4268 7.1652 7.3972
11 12.8617 7.733 7.2676 7.5491 7.2354
12 8.4888 5.887 5.3107 5.2507 5.2929
13 10.3832 6.661 6.1475 5.7646 6.1093
14 11.4108 7.272 6.7362 6.2315 6.6092
15 11.2102 7.936 7.4703 7.1055 7.4378
16 11.1044 7.825 7.3288 7.0915 7.3002
17 11.5137 7.056 6.6154 6.5353 6.5865
18 10.7582 6.724 6.3173 6.0833 6.2888
19 15.3026 6.781 6.2937 7.0633 6.2509
20 11.6004 6.951 6.3686 6.4392 6.3459
21 14.3268 7.831 7.3847 8.0181 7.3486
22 11.5411 6.635 6.1382 6.1512 6.1147
23 13.2045 7.845 7.3723 7.2199 7.3443
24 10.4551 6.503 6.0551 5.7253 6.0129
25 13.8657 7.612 7.1845 7.3613 7.1488

Average 10.5618 6.514 6.0341 5.9365 5.9995
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Figure 9. Average code length comparison of the images.

Table 10. Comparison of compression ratio.

Images RLE Shannon–Fano Huffman LZW Arithmetic

1 3.0635 2.7961 3.2795 5.1481 3.2969
2 1.5766 2.1924 2.4023 2.8237 2.451
3 1.3482 1.9825 2.1684 2.4966 2.2059
4 0.6889 1.2026 1.2813 1.0879 1.2849
5 0.9002 1.3551 1.4956 1.5903 1.5039
6 1.0075 1.4737 1.7085 1.8477 1.7123
7 0.935 1.425 1.6084 1.6506 1.615
8 0.6561 1.1364 1.2253 1.2387 1.2308
9 0.7222 1.2201 1.291 1.3231 1.2957

10 0.6595 1.0181 1.0772 1.1165 1.0815
11 0.622 1.0346 1.1008 1.0597 1.1057
12 0.9424 1.3589 1.5064 1.5236 1.5115
13 0.7705 1.201 1.3014 1.3878 1.3095
14 0.7011 1.1002 1.1876 1.2838 1.2104
15 0.7136 1.0081 1.0709 1.1259 1.0756
16 0.7204 1.0223 1.0916 1.1281 1.0959
17 0.6948 1.1337 1.2093 1.2241 1.2146
18 0.7436 1.1898 1.2664 1.3151 1.2721
19 0.5228 1.1798 1.2711 1.1326 1.2798
20 0.6896 1.1509 1.2562 1.2424 1.2607
21 0.5584 1.0216 1.0833 0.9977 1.0886
22 0.6932 1.2058 1.3033 1.3006 1.3083
23 0.6059 1.0198 1.0851 1.1081 1.0893
24 0.7652 1.2301 1.3212 1.3973 1.3305
25 0.577 1.0509 1.1135 1.0868 1.1191

Average 0.875128 1.30838 1.428224 1.545472 1.43798

All the state-of-the-art strategies are lossless. Thus, pick signal-to-noise ratio and mean squared
error (MSE) for each algorithm are inf and zero, respectively, for every case. However, arithmetic
and run-length coding on average have the highest (99.9899) and lowest (58.6783) efficiency than the
other methods shown in Figure 11. Despite the fact that the proficiency of LZW coding at some point
provides better outcomes and sometimes provides absolutely terrible outcome, which is why it is not
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used for image compression in real applications. The list of the decompression images is shown in
Figure 12.

Figure 10. Comparison of compression ratio.

From the previously mentioned perspectives, it can tell that arithmetic coding is the best way
when more compression is required; however, it isn’t useful for a real-time application in view of
taking additional time in encoding and decoding steps. Searching in a dictionary is a big challenging
issue for LZW coding, and it provides the worst results for an image compression. Shannon–Fano
coding sometimes does not provide optimal code and provides two different codes for the same
element, which is the reason it is obsolete now. Run-length coding is not good for a straightforward
real image compression.

Thus, it very well may be reasoned that Huffman coding is the best algorithm for the recent
technologies among the state-of-the-art lossless methods mentioned used in various applications.
However, if we can decrease the encoding and decoding time in case of arithmetic coding, then it
will be the best algorithm. On the other hand, Huffman coding will work more if we can decrease its
average code length keeping its same encoding and decoding times. In this article, all the experiments
are done using C, Matlab (version 9.4.0.813654 (R2018a). Natick, Massachusetts, USA: The MathWorks
Inc.; 2018) and Python languages. For the coding environments, Spyder (Python 3.6), Codeblocks
(17.12, The Code::Blocks Team) and Matlab are utilized. Furthermore, we utilized an HP laptop (Palo
Alto, California, United States) that contained the Intel Core i3-3110M @2.40 GHz processor (Santa
Clara, USA), 8 GB DDR3 RAM, 32 KB L1D-Cache, 32 KB L1I-Cache, 256 KB L2 Cache and 3 MB L3
Cache, where L1D, L1I, and L2 Caches contained 8-way set associative, 64-byte line size each, and L3
Cache contained 12-way set associative, 64-byte line size. According to the algorithms used for testing,
the CPU-Time is 1.499× 10−6O(P), 6.481× 10−6O(P + |β| ∗ log|β|), 2.746× 10−6O(P + |β| ∗ log|β|),
1.171× 10−6O(P) and 4.452× 10−5O(|β|+ P) for Run-length, Shannon–Fano, Huffman, LZW and
Arithmetic coding, respectively, where P indicates the number of pixels and β represents the number
of different pixels of an image.
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Figure 11. Efficiency comparison.

Figure 12. Decompressed image list.

4. Conclusions

In this study, we presented a detailed analysis of some common lossless image compression
techniques such as: the run-length, Shannon–Fano, Huffman, LZW and arithmetic coding.
The relevance of these techniques comes from the fact that most of the other recently developed
lossless (or lossy) algorithms use one of them as a part of its compression procedure. All the mentioned
algorithms have been discussed using a common numeric data set. Both computer generated and actual
medical images are used to assess the efficiency of such state-of-the-art methods. We also used standard
metrics such as: encoding time, decoding time, average code length, compression ratio, efficiency
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and PSNR to measure the superiority of such techniques. Finally, we noticed that Huffman coding
outperforms other state-of-the-art techniques in case of real time lossless compression applications.
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