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Abstract: In this paper, we propose an open-set object detection framework based on a dynamic
hierarchical structure with incremental learning capabilities for unseen object classes. We were
motivated by the observation that deep features extracted from visual objects show a strong
hierarchical clustering property. The hierarchical feature model (HFM) was used to learn a new
object class by using collaborative sampling (CS), and open-set-aware active semi-supervised learning
(ASSL) algorithms. We divided object proposals into superclasses by using the agglomerative
clustering algorithm. Data samples in each superclass node were classified into multiple augmented
class nodes instead of directly associating with regular object classes. One or more augmented class
nodes are related to a regular object class, and each augmented class has only one superclass. Object
proposals from inexperienced data distribution are assigned to an augmented class node. Dynamic
HFM nodes in the decision path are assembled to constitute an ensemble prediction, and the new
augmented object is associated with a new regular object class. Our experimental results showed that
the proposed method uses standard benchmark datasets such as PASCAL VOC, MS COCO, ILSVRC
DET, and local datasets to perform better than state-of-the-art techniques.

Keywords: object detection; deep learning; convolutional neural network; active learning

1. Introduction

There have been many advances in object detection technology since the deep-learning
breakthrough achieved by Krizhevsky et al. in 2012 [1]. However, collecting and labeling training
samples are necessary and exhaustive tasks. Furthermore, all object classes to be detected should be
decided in advance, but this is not achievable in many real-world applications. In such applications,
object detection systems trained with limited object classes tend to be impractical because a new object
class in an unseen data distribution cannot be properly handled and can result in false predictions [2—4].
Few researchers have focused on open-set object detection in unseen data distributions, even though
there are strong requirements in many application fields. The unseen data distribution of a new object
poses a difficult problem in real-world object detection systems. A larger dataset with extended classes
and a more complex neural network can be adopted, but this requires a complicated process of network
redesign or remodeling tasks. However, the need for unseen object class detection is very common in
many real-world applications.

State-of-the-art detection methods such as OverFeat [5], Faster RCNN [6], Spatial Pyramid
Pooling [7], the YOLO series [8-10], and RetinaNet [11] still cannot satisfy real-world requirements.
Even though they employ high-dimensional deep-feature spaces, performance degradation is
unavoidable in object detection, especially when it is due to the imperfect quality of training samples and
the diversity of real-world image capturing qualities. In practice, completely reliable human-labeling
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requirements are not acceptable because the cost of a high-quality labeling method is very expensive.
The tree structure approach is very effective for solving problems in a flat architecture and supporting
open-set classification. The pros and cons of hierarchical architecture in classification have been
extensively investigated in the past few decades [12]. In hierarchical architecture, the label information
in higher level tree nodes generally captures more discriminable, relevant label concepts and can be
inherited by lower level nodes that are more difficult to distinguish [13]. Most previous approaches
have relied on handcrafted features and annotations for hierarchical classifier training, but they
required much effort and time, and an error prone annotation process is used in current classification
in diverse application environments.

Two related issues with regard to open-set object detection errors include misclassified data points
and out-of-distribution data points. Most object detectors tend to fail due to noisy environments such
as cluttered backgrounds, pose variances, and illumination changes. Furthermore, some input data
samples do not belong to a closed set, (i.e., the in-distribution class of the training dataset), but in an
open set (i.e., outlier data). Both misclassification and outlier data samples are not consistent with
trained data samples in deep-feature space, and detection results based on maximum likelihood are
unreliable and incorrect. Many open-set algorithms distinguish between in-distribution and outlier
data classes relying on classification scheme thresholds [3,14,15]. They show that discrimination against
unseen classes from regular representative classes effectively minimize open-space risk. However,
the information about unseen classes, such as which feature space and object class the test samples
would have, is not available in advance. Both training and testing in classifiers are processed in
deep-feature space rather than in semantic object label space [12].

In this paper, we reduce ambiguities from the mixture within regular object classification by
employing the concept of augmented object classes based on a physical feature in a tree structure,
not relying on the semantic regular object class hierarchy. Augmented object class hierarchies in the
deep-feature space are organized by considering the between-class deep feature correlations and the
within class variation criteria. We propose a hierarchical open-set object detection framework with
the learning capabilities of unseen data distribution for a new object class. The proposed method
employs a dynamic hierarchical structure, each node of which keeps track of related data, features,
and the deep model, and evolves itself in accordance with changing data distributions. It adopts
outlier detection for open-set active semi-supervised learning. The dynamic hierarchical feature
model (HFM) can increase its visual taxonomy in the flexible hierarchical structure based on the
novel concept of the augmented object class. An augmented object class is a portion of the regular
class, the mixture complexity of which is less complex than or equal to that of the regular object class.
The proposed framework can adaptively learn both closed-set classes for performance improvement
and open-set object classes using unlabeled data samples. Our method combines the incremental
open-set aware active semi-supervised learning (ASSL) [16] and the dynamic hierarchical feature model
(HFM) update algorithm for effectively grouping unseen objects together. In real-world scenarios,
an object detection system should handle noisy and open-set data. Static world assumptions adopted
by most detection methods [5-10] are no longer valid in practice. We tackled this problem by leveraging
the discriminative capability of the dynamic HFM embedded by the outlier detection algorithm and
the collaborative sample selection-based open-set ASSL. We propose efficient open-set object detection
using a flexible hierarchical structure that provides informative and nonredundant sample selection
and the open-set-aware ASSL algorithm.

2. Related Works

2.1. Multi-Object Detection

Advanced object detection techniques depend primarily on the availability of large, properly
labeled datasets for lengthy training [17-19]. Researchers have employed high-dimensional deep
feature spaces to reduce performance degradation in detecting an object due to the imperfect quality
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of training samples and unseen data distributions, compared with varied and changing real-world
environments. Most object detection schemes [5-10] assume that labeled training data samples that
are independent and identically distributed (IID), are available in a static environment. Such a static
IID assumption is not valid in many real-world object detection applications such as pedestrian
detection [20], visual surveillance [21], activity recognition [15,22,23], and pose estimation [24]. Junwei
et al. analyzed and compared the recent progress in a variety of state-of-the-art object detection studies
using benchmark datasets [25]. They also proposed a two-stage co-segmentation algorithm with the
assumption that dependable human labeling is not valid. This is because the cost of a high-quality
labeling process becomes too expensive and it is unacceptable in real-time applications where an even
background is necessary to reduce a disturbed background [26]. The quality of new data points in
unseen distribution creates a challenging problem in object detection.

2.2. Open-Set Recognition

The open-set recognition problem is that the test sample is associated with an unseen class during
training [4]. Most classification algorithms are based on the closed-world assumption, whereby a
test sample will belong to one of K classes used during training. In many real-world applications,
however, a testing sample may come from a class from the unseen distribution. Open-set recognition
has incomplete knowledge of the world at training time, but unknown classes can be submitted to
the algorithm during testing [4]. The open-set recognition issue has seldom been presented until now
due to its strong generalization requirement. Most of the early works were based on hand engineered
features that are not suitable for incremental learning. One of the works that is closely related to our
approach is the Hasan et al. [27] method, where a deep neural network is applied in order to select the
features incorporated with semi-supervised learning in a hybrid approach. Felzenszwalb et al. [22]
proposed a deformable part model for employing latent information, which forms invariance in local
transformations, leading to better localization. Tang et al. [28] presented a similarity-based knowledge
transfer model and investigated how knowledge about object similarities can be transferred to adapt
an object classifier to an object detector.

Common machine learning research work is based on closed sets. In [4], the nature of open-set
recognition was discussed and formalized as a constrained minimization problem, which is similar
to our work. The authors applied their method to face verification whereas we apply our proposed
method to object detection. Neural networks show very strong generalization capability, as the data
distribution of training and testing are the same.

In the real world, object detection performance usually decreases since new unseen object classes
cannot be properly dealt with. In this context, we propose an open-set object framework based on a
dynamic hierarchical structure with incremental learning capabilities for unseen object classes.

Neural networks tend to make high confidence predictions, even for completely unrecognizable [29]
or irrelevant inputs [30-32], but we often have very little control over testing the data distribution in
real-world applications. The correct detection of out-of-distribution samples is important for object
detection/classification tasks [33]. It is important to be aware of the uncertainty of new types of input
data in terms of in- and out-of-distribution samples, or those at their boundary [34]. One general
weakness of open-set recognition is selecting the right candidates through collaborative sampling
strategies, which is not easy where uncertainty, diversity, and confidence criteria play a major role.
Often depending on the training data size, labeling time also varies, which is very tedious work.
Moreover, after a number of iterative incremental learning the final model reaches saturation, and then
the classification performance does not vary with more training. On the positive side, our method
performs much better compared to state-of-the-art object detector approaches. The ASSL combined
approach can effectively select the dataset that reduces the training time and labeling effort.
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2.3. Active Learning and Semi-Supervised Learning Combination

Active learning (AL) and semi-supervised learning (SSL) try to solve the same problem based
on different theorems, and they have the common goal of achieving high classification accuracy with
minimum human labeling (Settles, 2010; Zhu, 2008). AL selects the most informative samples that are
beneficial to the process of classification training by leveraging known information in the test data
in accordance to the oracle’s decisions [35,36]. The sampling approach for uncertainty is adopted to
pick samples nearest to the decision boundary [37,38]. The famous AL sampling strategy, query by
committee (QBC), is an ensemble learning method that relies on the different hypotheses of a committee,
whereas the most informative samples are considered those of the maximal disagreement between
classifiers [36]. While AL allows for human intervention to some extent, SSL directly uses unlabeled
data in the training process without any human labeling [39]. The AL and SSL techniques can be mixed
to handle labeled and tentatively labeled samples for classification practices, while mixed techniques
investigate fresh samples manually labeled with minimal effort. The ensemble methods of AL and
SSL are categorized into the sequential combination, with SSL embedding into AL, and collaborative
samplings. The sequential combination emphasizes the fact that the initial training set is important for
SSL convergence to objective performance. Muslea et al. adopted this strategy by employing multiple
views for both AL and SSL [35]. The AL and SSL ensemble method is based on several different
architectures [36,39]. Wan et al. showed AL-based verification for low-confidence pseudo-labeled
samples labeled by SSL [40]. The collaborative combination of AL and SSL using the confidence score
from a boosting algorithm was applied to a spoken-language classification problem [41]. Several
methods of AL and SSL collaboration were studied in [36,39].

3. System Overview

We present an open-set object detector framework that learns a new object class and retrains
a regular one in unseen data distribution. The framework begins with a very small number of
labeled data samples and incrementally learns by using unlabeled data samples in an open-set setting.
The main components of the proposed framework, shown in Figure 1 are the dynamic HEM, the
outlier-detection algorithm, the collaborative sampling (CS) algorithm [16], and incremental ASSL [14].
We used the initial CNN model, which was pretrained by using labeled data samples, i.e., PASCAL
VOC 2007 and the 2012 trainval dataset [17].
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Figure 1. Application of incremental active semi-supervised learning (ASSL) on dynamic HFM. Data
distributions (lower left, large brown and small red circles) before and (lower right) after application
of incremental ASSL. Since the red circle was included in the brown circle, the detector could not
distinguish between two object classes, i.e., the brown circle represents ‘bottle’, the red circle represents
‘fire extinguisher’. The data distribution change is shown in the lower right where the brown and red
circles were separated. Input dynamic HFM was trained by incremental ASSL and then updated to a
new augmented class node.
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The dynamic HFM builds the initial CNN model and improves the detection accuracy by improving
model performance and increasing confident pseudo-labeled samples step by step. The hierarchical
structure of labeled samples was modeled in terms of the super- and augmented classes using the
agglomerative clustering algorithm. Data samples in each superclass node were related to multiple
augmented class nodes. An augmented object class is a portion of a regular object, having distinctive
data distribution from another portion/other portions of the regular object class. i.e., a regular object
class consists of one or more augmented class nodes. Discrimination information is used in the
dynamic HFM for open-set learning for an unseen object class when a new augmented object class is
added. We considered object proposals generated from unseen data distribution. The object proposal
sequence was partitioned into bins, which is dealt with at the same time, instead of one image sample
at a time, as in many other approaches. This means that the learning/update for the dynamic HFM
is not sensitive to noisy images, even in a new cluttered environment. The open-set ASSL performs
collaborative sampling and analyzes object proposal distribution using the outlier-detection algorithm.
Based on the results of the outlier detection, the ASSL retrains or creates an augmented class for an
unseen regular class in the dynamic HFM. In the dynamic HFM, object proposals are filtered by the CS
algorithm, combining criteria of uncertainty and diversity for AL and the criterion of the confidence
for SSL. The collaboration between SSL and AL makes it possible to obtain pseudo-labeled training
samples that are more confident and informative from unlabeled object proposals in the partition of
the image. The outlier-detection algorithm is used to discriminate in- and out-of-distribution object
proposals in the current deep-feature space.

In the dynamic HFM, learning in the ASSL is divided into the AL cycle using the confident
dataset, and incremental SSL using unlabeled data divided into batches and bin sequences. In the
AL cycle, a batch of object samples is split into several bins, and bin-based incremental SSL cycles are
performed. If unseen object proposals are detected by the outlier-detection algorithm, the dynamic
HFM is updated using the unseen data samples. The detected outliers are accumulated and clustered.
If the volume of a cluster exceeds a threshold value, a corresponding augmented-object-class predictor
model is built and added to the associated superclass node in the dynamic HFM. The open-set ASSL
trains the CNN by using the confidently marked samples and continuously retrains the next profound
model for the CNN by placing the chosen batch of samples using the present object detector until
convergence. The suggested technique thus offers methods for both exploration and exploitation by
combining informative and reliable (well-found) approaches to sampling in an open environment.
The decision path for an object prediction ensemble is built by combining current object models and the
object prediction model created for the new augmented class. Finally, the dynamic HFM is updated.

4. Dynamic Hierarchical Feature Model

We present a hierarchical deep-feature structure for open-set object detection that extends the
HEM in [1] with the capability of incremental learning for regular objects and open-set learning for
unseen objects. The dynamic HFM consists of two different levels: the superclass and augmented-class
levels, as shown in Figure 2b. We employed the concept of an augmented class, which is defined
as a distinctive portion of a regular class in data distribution. An augmented class shares common
between-class characteristics with the superclass level, and closer within-class characteristics than the
associated regular object class (see Figure 3).
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Figure 2. (a) General object detection flat model, which has good performance on trained class images.
However, if the model meets untrained class data, there are many errors. (b) Our dynamic hierarchical
feature model (HFM) tree framework, constructed by superclass and augmented class level. When

data reach the augmented class node, the augmented class node is matched to a semantic class.
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Figure 3. Illustration of proposed superclass and augmented class concept.

5. Outlier Detection

Unseen object classes cannot be correctly classified into a current augmented class and cannot
produce regular object output. However, there exist superclass objects that share common between-class
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attributes with high probability, even though the new augmented-class prediction capability does not
exist in the dynamic HFM. We adopted outlier detection methods [42] for our outlier detection. Object
proposals were inputted to the dynamic HFM at time t. For object proposals {x;} extracted from the
unlabeled dataset, the causes of object-detection errors are discriminated into a particular data point
that is hard to classify and has not been defined yet in the dynamic HFM, i.e., an unseen data point (a
particular data point belonging to a new class). The discrimination of the above types of errors is hard
since it is deeply related to the semantic goal of a detector [28]. We investigated the distribution of
object proposals and updated the dynamic HFM using the current prediction models. Following [42],

we chose centroids {y j}£= .
squares (WCSS). Let w;; € [0, 1] denote the cluster membership weight of deep-feature vector FV; in
cluster j. Let us define outlier compensation vector CV;, which is an M-dimensional zero vector (i.e.,
0 if CV; is an inlier), or nonzero vector (when CV; an outlier). Let us define CV = [CV;--- CVy] and
A= [#1 i ]], and membership weight matrix W € RNX/, where each element is represented by
cluster membership weight w;; € [0, 1]. The soft K-means algorithm leverages the sparsity of the CV;s
and defines the outlier-compensated version (FV; — CV;) that replaces FV;, and wjj. Outlier aware soft
K-means clustering is defined by

and the cluster membership weights to optimize the within-cluster sum of

N
cé’fﬁAr,‘wZiﬂ Z;ﬁ w@(HFVi —HiT CVZ'”Z T /\”CVI'”) @
where 7 is tuning parameter 7 > 1. The soft k-means algorithm solves based on the block coordinate
descent (BCD) algorithm [42] that iteratively optimizes cost function, focusing on one variable at a
time, while the other variables remain fixed. If CV; was greater than threshold p, we defined CV; as an
outlier.

For a given bin of object proposals, the dynamic HFM algorithm updates the current node
attributes. The dynamic HFM executes the tasks of open-set learning in each augmented class node.
The dynamic HFM continuously updates its node attributes composed by the node dataset, node
feature vectors, and node prediction model. Those are updated using the open-set ASSL algorithm
discussed in the following section.

6. Open-Set-Aware Incremental ASSL

The proposed incremental open-set-aware ASSL combines the AL paradigm’s uncertainty and
diversity characteristics with the incremental SSL paradigm’s confidence property. Taking into account
AL’s uncertainty criterion, most uncertain samples are considered as the most helpful training samples
to be added, as they are anticipated to be wrongly classified with high probability by the present
detection model. However, the uncertainty criterion may cause noisy or redundant samples to
be selected. We adjusted a pool-based (batch or bin) AL structure coupled with incremental SSL
philosophy based on AL and SSL’s collaborative sampling method in terms of uncertainty, variety,
and trust criteria that are expected to select more informative and low-redundancy training samples.

We used an AL batch cycle similar to [43], and added a bin-based cycle for incremental SSL.
In the AL batch cycle, a training dataset was divided into well-defined labeled training samples D,
and weakly and unlabeled training samples Dyyptatine. Open-set aware incremental ASSL dealt with
them to increase the volume of Dy,j; above Dyeptatine, and update the dynamic HFM. First, the original
model learns from the prelabeled dataset used to build the CNN. Then, the batch of samples is chosen
considering the distribution of the trained models and category balancing. The present detector
assigns confidence scores to the pseudo-labeled samples. Depending on the confidence score, which
are measured and ranked by the present detector, confident and well-defined samples are chosen
from weak samples. A subset of pseudo-labeled samples is chosen using a collaborative sampling
approach, whereby the present detector reassigns fresh labels or assigns elevated ratings to labels;
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some ambiguous samples that have previously been identified are removed or relabeled by the oracle
after filtering by the criteria of uncertainty and diversity.

Open-set aware incremental ASSL reduces training time by making a pool of D based on the
uncertainty, diversity, and confidence criteria.

Candidate sample set Dyjpersiry, that covers more revealing samples within rank 9

Ddiversity = {X|X € Dtentative, 0 < f(X> = 1} )
s.t. Rank(x) < 7

where Rank(x) denotes decreasing order of f(x). Next, we initialized Dy with sample Xj,, =

argMaxy e Dy, | (x), Xtop € Daiversity using confidence criterion parameter y. A sample from D jpersity

adds to Da. Dgipersity becomes the most similar sample in Dy in terms of confidence score, i.e.,

Xiop = argmaxy ¢ p diversity {maxxl., %] eDAd(xi, xj)} 3)

In this equation, we used Euclidian distance between two features to calculate d(xi, X ]-).

When the cardinality of D becomes v, the sample selection process is stopped, and the final
sample set is Dp. We retrained the CNN using the pool of samples, and the process was repeated until
a convergence criterion was satisfied. The entire process and parameters are summarized in Algorithm
1 and [44].

Algorithm 1. Open-set aware incremental active semi-supervised learning using outlier detection

Input: Confident labeled dataset D,
tentatively labeled dataset Dy,tytive, and dynamic HFM.
Output: Optimal dynamic HFM.
1: while Dytative # @ do
2:  Train initial CNN model f using Dyj.
3 while f not convergence, do
4: Select batch pool of candidate samples from Dyeptatie-
5 Select D tentatively labeled samples
filtered by 1, 9, vy parameters using (2) and (3).
and each selection criteria.
Assign pseudo-label and score to each unlabeled Dy .
7 Sort pseudo-labeled tentative samples D, in decreasing order.
8: Divide j bins sorted tentative samples in decreasing order.
i" bin has samples in range of (i — 1)/ |Da| to i/ [D|.

Generate bin sequence BSeq = [binj]l]-:o by partitioning Da.

9: while i <jdo
10: bin; = BSeqli], train f(+1)
using Dg:‘iin U bin; and calculate Accl(’gl .
11: If Acclitl) > Acc@, bin* = argmax {Acc“H)};
bin,'
(i+1) _ () e c(i41) (1)
train Dtrain v 'bli’l ’f<l )= fbin* :

Else if Acct1) < Acc() or outlier detected by (1),
oracle labels incorrectly labeled data in bin* and return f(+1) = £(0),

i++
12: end
13: Retrain f using Dyerr = Dyent Y Da; Dientative = Dientative — Da-
14: end

15: Update dynamic HFM with f.
16: end
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The computational complexity of Algorithm 1 depends on the number of bins and the augmented
classes used during our experiment, which we discuss in the next section. In some cases where many
unseen object classes were present or the number of bins increased as a result, the training time also
increased but the performance of the proposed method improved. In our experiment, we commonly
considered a smaller number of bins to optimize performance, that is, around ten.

7. Experiment

The main goal of our experiment was to identify the efficiency of our dynamic HFM tree
model framework using ASSL [44]. To achieve this goal, we conducted several experiments on
benchmark datasets, such as PASCAL VOC, MS COCO, and ILSVRC. We then compared the results
with advanced detectors such as Faster RCNN. We used the evaluation metric in the VOC development
kit. All implementations were on a single server with a single NVIDIA TITAN X and Tensorflow [45].

7.1. Dataset Overview

PASCAL VOC dataset. The PASCAL VOC 2007 dataset [17] has 20 classes with 9963 images
(train/validation/test) containing 24,640 annotated objects. PASCAL VOC 2012 also has 20 classes
and consists of 11,540 images (train/validation/test) containing 27,450 annotated objects. We used
other unseen object datasets to add to the PASCAL VOC 2007 test dataset for evaluating our method.
Our experimental settings for training and testing were as follows: we used the Darknet-19 model [9],
where the base detector is YOLOv2, which is trained by the PASCAL VOC 2007 and 2012 trainval
datasets, and the resolution of the input images was 416 x 416. Training parameters were the same
as [27,37].

Local dataset. In our experiment, we used the fire-extinguisher class and hog class dataset for
input and to train new classes to our model. This dataset [5-10] was trained with the existing PASCAL
VOC dataset. The fire-extinguisher class had 110 images that included 100 training-data images and
10 testing-data images. The hog class had a total of 110 images (100 training images and 10 testing
images).

MS COCO dataset. The MS COCO dataset has 80 object-detection classes. We used MS COCO
2017 as a training and validation dataset [18], which has 118,287 training images and 5000 validation
images. For ASSL training and evaluation, we used unseen training and validation dataset classes of
PASCAL VOC in MS COCO animal classes (bear, elephant, giraffe, zebra).

ILSVRC DET dataset. The ILSVRC DET dataset has 200 classes for object detection training.
We used the ILSVRC DET 2017 training and validation dataset [19], which contains 456,567 training
images, 20,121 validation images, and 40,152 testing images. For ASSL training and evaluation, we used
unseen training and validation dataset classes of PASCAL VOC in the ILSVRC vehicle classes (golf
cart, snowmobile, snowplow, unicycle, watercraft).

7.2. Results

Local dataset. In Figure 4al, it can be seen that the fire-extinguisher class was neighboring the
augmented class 9, and the hog class was similar to augmented classes 8, 11, 14, 17, and 22. Therefore,
it was possible to define the fire-extinguisher class and hog class, which had similar distributions to the
existing augmented class, as a new augmented class. When we applied dynamic HFM, we could see that
applying ASSL (Figure 4a2-a4 and VOC 2007 test + local dataset graph in Figure 5) could increase the
area and average precision of the precision-recall curve over time. In Figure 4a5, the fire-extinguisher
class was well separated from the existing augmented class 9, and the hog class was also different from
the existing augmented class.
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Figure 4. Result of applying dynamic HFM to other datasets. The visualization method was t-Stochastic
Neighbor Embedding (t-SNE). (a) Series in local dataset, (b) series from COCO animal dataset, and
(c) series from ILSVRC vehicle dataset. (al) Input data distribution and (a5) output data distribution
applied to our method. (a2-a4) Precision-recall curve in the training phase included in our ASSL
method. (a2) Initialized model result, (a3) training phase 1 result, and (a4) training phase 2 result.
COCO dataset and ILSVRC DET dataset results were similar to the local dataset.

VOC 2007 test + Local dataset

79
78

77
76
75
74

73

mAP

init bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin
o 1 2 3 4 S S 7 8 a o] 1 2 3 - > =} 7 8 =]

Phase 1 Phase 2

Training phase

VOC 2007 test + COCO Animal dataset

g — /w
(=™
< 71
=
70
69
init bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin
o 1 2 3 4 5 (] 7 8 =] o 1 2 3 4 5 6 7 8 =]
Phase 1 Phase 2

Training phase

VOC 2007 test + ILSVRC Vehicle dataset

a 0
<C
E 69
68
init bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin
o 1 2 3 4 S L] 7 8 ] o 1 2 3 4 5 6 7 8 =]
Phase 1 Phase 2

Training phase

Figure 5. Results of increasing performance over time in incremental ASSL training of each dataset.
Y-axis shows mean average precision (mAP), and x-axis shows number of bins and training phase.

MS COCO dataset.Figure 4b1 shows animal classes (bear, elephant, giraffe, zebra) neighboring
augmented classes 2, 12, 14, 16, 17. It was possible to define the COCO animal classes that had similar
distribution to existing augmented classes as a new augmented class. When we used our method,
we could see that the time-dependent change with ASSL (Figure 4b2-b4 and VOC 2007 test + COCO
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animal dataset graph in Figure 5) could increase the area and average precision of the precision-recall
curve over time. In Figure 4b5, it can be seen that the COCO animal classes were well independent
from existing augmented classes such as augmented classes 12 and 16.

ILSVRC DET dataset. In Figure 4c1, we can see that the ILSVRC DET vehicle classes were very
similar to augmented classes 8, 10, 12, 16, 21, and 23. It was possible to define vehicle classes that
had similar distributions to existing augmented classes as a new augmented class. When we applied
dynamic HFM, we could see that change in time sequence with ASSL (Figure 4c2—c4 and VOC 2007
test + ILSVRC vehicle dataset graph in Figure 5) could increase the area and average precision of the
precision—-recall curve over time. In Figure 4c5, we can see that the vehicle classes were well separated
from existing augmented classes like augmented classes 12 and 16.

Comparison with other detection methods. We experimented with other detection methods.
Table 1 shows that, in the case of other detection methods, we confirmed that performance was
significantly reduced because other methods did not know the class for the environment in which
the unseen object class appeared. However, dynamic HFM proved to be superior to other detection
methods such as Faster RCNN, SSD300, and YOLOV2 for unseen object classes. The number of
augmented classes in the dataset affects the performance of our method. As there are new augmented
classes, the performance of our method improves compared to the state-of-the-art methods.

Table 1. Comparison of other detection methods in data-mixture environments.

mAP
07 Test + 07 Test +
w Backbone 07;‘2 J('FiL;“‘I 07 Test + Local COCO 2017  ILSVRC DET
Extinguisher) Data (Hog) val Data 2017 val Data
gu (Animal) (Vehicle)
Faster RCNN VGG16 69.3 67.1 59.8 52.9
Faster RCNN Resnet101 75.5 75.8 59.7 55.8
SSD 300 VGG16 73.3 73.6 64.1 54.2
YOLOV2 Darknet19 71.5 72.3 61.4 57.9
YOLOvV2 Resnet50 67.3 67.6 57.0 54.1
YOLOV2 Resnet152 69.9 70.4 59.3 56.4
YOLOV2 Densenet201 71.9 72.5 61.4 58.1
Ours Darknet19 77.9 775 72.3 70.8

8. Conclusions

In this paper, we proposed an open-set object detection framework called dynamic HFM, which
provides incremental learning capabilities for unseen object classes. Data samples were clustered
into superclasses according to deep-feature hierarchy attributes using the agglomerative clustering
algorithm, and each superclass node was built to have multiple augmented class nodes instead of
directly associating with regular object classes as in many other hierarchical approaches. The dynamic
HFM discovers more informative deep-feature information with low mixture complexity by learning
an augmented class instead of learning a regular class with high mixture complexity. The dynamic
HFM was used to learn new object classes by imbedding outlier detection and a collaborative sampling
method based on incremental ASSL algorithms. Dynamic HFM nodes in the decision path were
assembled to constitute a prediction ensemble for associating to a regular object class. Finally, it adds
an unseen object class as a new regular class. Our suggested model delivers greater efficiency with
fewer mistakes, greater precision, and requires less human effort compared to other methods of pure
object detection. These achievements encourage further improvement to our proposed model. Future
research directions include finding ways to deal with huge datasets.
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