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Abstract: Hamiltonian mechanics plays an important role in the development of nonlinear science.
This paper aims for a fractional Hamiltonian system of variable order. Several issues are discussed,
including differential equation of motion, Noether symmetry, and perturbation to Noether symmetry.
As aresult, fractional Hamiltonian mechanics of variable order are established, and conserved quantity
and adiabatic invariant are presented. Two applications, fractional isotropic harmonic oscillator
model of variable order and fractional Lotka biochemical oscillator model of variable order are given
to illustrate the Methods and Results.
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1. Introduction

Fractional calculus was firstly proposed because the order of a function’s integral or derivative is
a non-integer constant. In fact, fractional calculus started more than 300 years ago when L'Hopital
and Leibniz were discussing the meaning of d'/2y/dx!/2. The development of fractional calculus
is much slower than that of integer calculus though many famous mathematicians, such as Fourier,
Euler, Riemann, Liouville, Letnikov, Grunwald, etc., have contributed to it (see [1-3] for the history of
fractional calculus). In recent decades, because of fractional calculus’s many applications in various
fields of science, engineering, biomechanics, economics, and so forth, it has gained more attention
(see [4-7] for a review). For example, fractional calculus has been applied to physics [8], quantum
mechanics [9-11], field theory [12,13], etc. Among several definitions of the fractional derivatives,
which are generally nonlocal operators and are historically applied to study time-dependent or nonlocal
processes, Riemann-Liouville fractional derivative and Caputo fractional derivative are the most
famous ones.

Furthermore, Samko and Ross [14] introduced a generalization of fractional calculus.
They considered the order of a function’s integral or derivative as a(-, -), where a(-,-) is a function
rather than a constant. Because of the nonlocality and memory of fractional order calculus, it is
reasonable that the order of a function’s integral or derivative may vary. Afterwards, several works
were dedicated to the properties and applications of the fractional operators with variable order [15-20].
For instance, Coimbra [17] examined dynamical behaviors with frictional force using the variable order
model. Diaz and Coimbra [18] utilized the differential equation with variable order to reveal some
dynamical control behaviors of the nonlinear oscillator. Sun et al. [20] investigated a class of fractional
models with variable order. Nowadays, more and more fractional models with variable order have
been applied to mechanics, mathematics, and other related subjects (see [21-24] and references therein).

In 1996, Riewe started the theory of the fractional calculus of variations by considering that the
first-order derivative terms should come from the half-order derivative terms [25,26]. From then on,
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scholars began to use fractional derivatives to describe the dissipative forces such as frictional forces for
the nonconservative systems. Then, fractional calculus of variations was studied by several scholars
such as Klimek [27], Agrawal [28,29], Baleanu et al. [30,31], Torres [32], etc. Moreover, the development
of the fractional calculus of variations with variable order also made great progress. In [33-35],
several results for the fractional calculus of variations with variable order were obtained. Particularly,
motivated by references [36-38], a linear combination of the fractional derivative of variable order was
introduced. Based on a combined Caputo fractional derivative of variable order (CCVO), the necessary
optimality conditions for variational problems were established [39,40], the fractional variational
problem of Herglotz type with variable order was studied [41], and two fractional isoperimetric
problems and a new variational problem subject to a holonomic constraint were presented [42].

After differential equations of motion are established through the calculus of variations, the next
task is to find the solutions to them in dynamics. In fact, the solution to the equations can be given
if one can find all of the integrals of the equations. An integral is a conserved quantity; therefore,
people try their best to find all of the conserved quantities of a mechanical system. By means of
the analysis of forces, Newtonian mechanics gives three conservation laws, i.e., the conservation of
momentum, the conservation of mechanical energy, and the conservation of moment of momentum.
By means of the analysis of the form of Lagrangian, Lagrangian mechanics gives two conservation
laws, i.e., the conservation of generalized energy and the conservation of generalized momentum.
The conservation of generalized momentum may be a conservation of momentum, a conservation
of moment of momentum, or neither. The physical meaning of the conservation law in Lagrangian
mechanics is less clear than that in Newtonian mechanics, whose three conservation laws have very
clear physical meaning. However, the conserved quantities deduced by Lagrangian mechanics are
more than those deduced by Newtonian mechanics. Since German mathematician Emmy Noether
published her famous paper [43], the Noether symmetry method has become a modern method for
seeking the conservation law of mechanical systems (see [44] for a review). Similarly, although the
physical meaning of the conservation law obtained from the Noether symmetry method is less than
that obtained from Lagrangian mechanics, the numbers of the conserved quantities deduced by the
Noether symmetry method are more than those deduced by Lagrangian mechanics.

Recently, fractional Noether symmetry and fractional conserved quantity are also under strong
research. There are two different definitions of fractional conserved quantity. One was introduced
by Frederico and Torres [45] by means of a bilinear fractional operator D (D(C) = 0), and the other
was introduced by Atanackovi¢ [46] by means of the classical definition (dC/dt = 0), where C means
a fractional conserved quantity. Fractional Noether symmetry and fractional conserved quantity
have been investigated through both definitions. For example, works [47,48] were done based on
the former definition, and results [49-53] were obtained on the basis of the latter one. Furthermore,
the study of the fractional Noether symmetry and fractional conserved quantity with variable order
has also begun. For instance, Odzijewicz, Malinowska, and Torres [54,55] investigated Noether
theorem and the second Noether theorem for the fractional Lagrangian system with variable order.
Yan and Zhang [56,57] studied Noether symmetry and conserved quantity for the fractional Birkhoffian
system in terms of Caputo fractional derivative of variable order (CVO), Riemann-Liouville fractional
derivative of variable order (RLVO), Riesz—Caputo fractional derivative of variable order (RCVO),
and Riesz—Riemann-Liouville fractional derivative of variable order (RVO).

When a dynamical system is disturbed by small forces, the conserved quantity, which refers
to the integrability of the system, may also change. Therefore, the research on the perturbation to
Noether symmetry and adiabatic invariants is also of great significance for a dynamical system [58,59].
A classical adiabatic invariant means a certain physical quantity that changes more slowly than the
parameter that varies very slowly. That is, when a dynamical system is disturbed by small forces and
varies very slowly, a slower physical quantity, i.e., adiabatic invariant, will be found. Some important
results on the study of perturbation to Noether symmetry and adiabatic invariants for constrained
mechanical systems have been obtained [60,61]. Very recently, we studied the perturbation to fractional
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Noether symmetry for the Hamiltonian system [53] as well as the Birkhoffian system [62]. Besides,
the results on perturbation to Noether symmetry with RLVO for the fractional generalized Birkhoffian
system [63] were also presented.

The purpose of this paper is to generalize the problem of the calculus of variations, Noether theory,
and perturbation to Noether symmetry to the fractional Hamiltonian systems in terms of combined
Riemann-Liouville fractional derivatives of variable order (CRLVO) and combined Caputo fractional
derivatives of variable order (CCVO), respectively. Here, the CRLVO and the CCVO are the first time
to be introduced, and many results obtained before are the special cases of this paper. As the main
results, Hamilton equations with the CRLVO and the CCVO are established. Then, Noether symmetry
and conserved quantities for the fractional Hamiltonian systems with the CRLVO and the CCVO are
presented. Perturbation to Noether symmetry and adiabatic invariants for the disturbed fractional
Hamiltonian systems with the CRLVO and the CCVO are also investigated, and two applications are
given to illustrate the Methods and Results of this paper.

In a word, there are mainly three factors for presenting this paper. Firstly, analytical mechanics.
Lagrange was the first man to publish the famous book Analytical Mechanics. Lagrange felt proud when
he successfully described mechanics problems mathematically without any diagrams because within
the framework of Newtonian mechanics, mechanical phenomena are treated mostly schematically.
In fact, the representation by means of analytical mechanics is more general as well as convenient.
Secondly, Noether theory. Noether theory not only has mathematical importance but can also be helpful
in understanding some inherent physical properties of a dynamical system. Generally, conserved
quantity helps reduce the degrees of freedom and make it easier to find the solutions to the differential
equations of motion. Thirdly, fractional calculus. Fractional calculus is a useful tool to deal with the
dissipative systems, and, as early as 1993, Miller and Ross [64] once said that fractional calculus has
been involved in almost every field of science and engineering.

This paper is constructed as follows: Combined fractional derivatives of variable order and their
properties are given in Section 2. Differential equations of motion for the Hamiltonian system of variable
order are established in Section 3. In Sections 4 and 5, Noether symmetry and conserved quantity,
and perturbation to Noether symmetry and adiabatic invariants are investigated. The Results and
Methods are illustrated in Section 6 with two applications and we finish with Section 7 for Conclusions.

2. Combined Fractional Derivative of Variable Order

Following the references [54,57], we list the left and right Riemann-Liouville fractional integrals
of variable order, the left and right RLVO, and the left and right CVO by

WL £ () = f 0 e M)
t
al) ey [ 1 a(nh
B0 = [ = @)
R g = & pe = & f e O e )

REDPC f(1) = (—%)tﬁz_a("')f (t) = (—%) ft 2 mﬁ— 5~ f(r)dr (4)
t
al) _ 1 —a(t,T) d
S50 = [ ey g0 ®)

1)
D0 = [ e g ©
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where 0 < a(-,-) < 1, T(:) is the Gamma function, f(t) € Lq[ty, 2], tlltl_a("')f(t) € AClh, ],

tltlz_a("')f(t) € AC[ty, tp]. In this paper, we assume that a(t,7) = a(t — 1), a(t,t) = a(t - t).
Based on the definitions of the RLVO and the CVO, the RVO and the RCVO are defined in [57] as

RO £ = 2800 £ - FD (o) )
FDi) £ = 3] S0p £ - ED1 £0)| ®)
In this paper, CRLVO and CCVO are constructed as
REDCIED f(1) = yRED £(8) = (1= )DL £ (1) ©)
Dy (1) = yEDF f(8) - (1= )DL £ (1) (10)

where 0 < a(,-) <1,0 < B(-,-) <1, " Df("') and thz("') show the arrow of time, and y is a parameter,
0 <y <1, which determines the different quantities of information from the past and the future.

The CRLVO and the CCVO are the most general operators with variable order to some extent.
From Equations (9) and (10), the RVO, the RCVO, the left and right Riemann-Liouville fractional
derivatives (RL), the left and right Caputo fractional derivatives (C), the Riesz—Riemann-Liouville
fractional derivative (R), the Riesz—Caputo fractional derivative (RC), the combined Riemann-Liouville
fractional derivative (CRL), the combined Caputo fractional derivative (CC), and the classical integer
derivative can be deduced as special cases. We list them as follows:

Letp=a,y= % in Equations (9) and (10), so the RVO and the RCVO can be achieved.

When a(-,-) = a, B(-,-) = B, with two constants 0 < @, B < 1, the left and right RL, the left and
right C, the R, the RC, the CRL, and the CC can be obtained as

t
DL = Fray e, () A an
{{LD?Z (t):ﬁ(—%)ftzﬁ—f)_af(ﬂ“ (12)
t
D30 = gy (0 g0 13
5]
fD?;f(t)—ﬁ [ e e (14
[ DY f(t) - F-Df £ (1)) (15)
RCDg f(t [ DEf(t) - £D3 £(1)] (16)
REpSPf(t) = thLD“fU (1-)RD] £(1) (17)
CDYPf(t) = yEDEF(E) - (1= y)EDL F(1) (18)

Equations (11) to (18) can be found in [65].
When a(-,-) — 1, we have

Ript) = Cpet) = dydt, RLD“( ) = tCsz("') — —d/dt (19)
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The formulae of integration by parts for the CVO are

[ s5ore o)ar= [ peofEor s ac (s s ) 0

J Cs0(eDy po)ae = J S s (o s )le e
The formulae of integration by parts for the RLVO, RVO, and RCVO are

J " s(ofD1 o))t - J. (D sw)ae-[(, 17 £ )sto)] 22)

J A R0) T U ) T (M) )

[ ao(Roe f))ar = [ £o (RD“ O)at+ 31 FO)s 0

-3 f(t)) | 0
J " s(fDL ) e = - J S s o) e

For more details about the above Equations (19)—(25), please refer to [54,57,65].

3. Hamilton Equation of Variable Order

A unified Hamilton action and Hamilton principle of variable order will be given first, and then
the Hamilton action and Hamilton principle in terms of the CRLVO and the CCVO will be
discussed, respectively.

)a(-,-),ﬁ(-/)

Assuming the Lagrangian of variable order is Lylt,q;,D qj), then the generalized

momentum of variable order and the Hamiltonian of variable order can be listed as

aLU(t/q]/D;)f(/)/ﬁ(/)q/)
pui = L,

HU = PUi'D;L(".)’ﬁ(.’.)Qi - Lu(t/ ‘7]/ D)Dj(/),ﬁ(/)q])/ l/] =12 ,n

And the functional
& al-) ()
St = f [pueD5 g = Hu(t, 95, puj) 27)
t

Represents a unified Hamilton action of variable order, where g;, pu; € C!, Hy is a C! function
with respect to all its arguments.
The formula

15)
OSHu = 6]; [pul"D)Dj(' V8L )ql —Hu(t, q],Pu/)]dt =0 (28)
1
with [57]
6, D g =, DFog;, 6,00 g = DI ogi, aifi—t, = oaife=s, =0 (29)

is called a unified Hamilton principle of variable order.
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3.1. Hamilton Equation with the CRLVO

When we consider the CRLVO, the Lagrangian of variable order can be denoted by

LRL(t, qj, RLD;("')’IS ) qj). The generalized momentum of variable order and the Hamiltonian of

variable order are
aLRL (t’q]_’RLD;’j('r'>r5<'r') q])
7

aRLDi’f("')/ﬁ(‘r') qi (30)
Hio = pras D5 Ly 1, D)

PRLi =

Under this condition, Hamilton action of variable order is

19)
SHRL—f [PRL:"RLD;(’)'M')%‘—HRL(t,q]',PRLj)]df (31)

51

Hamilton principle of variable order is

2 a() B()
OSHRL = 5[ [PRLi‘RLDy VB qi—HRL(t, q]‘,pRL]')]dt =0 (32)
f)
with [57]
6§LD?(~,')qi _ ﬁLD?(.,.)éqi, 6FLD62(.,.)% _ fLDﬁ( )5% 5qi|t:t1 _ 5qi(t:t2 -0 (33)

It follows from Equation (32) that

OSHRL = 6ft2 [pRLi-RLDa("')'ﬁ("')qz' — Hre(t, ), PRLj)]dt

f LRLDS a()B(, )qi+P ,,5RLDa(v~),ﬁ(v)q._5HRL(t qjrPRLj ]dt
f SpRL RLD B g RLDlli(y) A pri = HRLéql gZLLépRLl)dt (34)
f [5PRL1 (RLD )ﬁ(r)qi ngLLl) 5; (RLDllﬂ(y) a(, )PR l+a§1;m)]dt:0
where
ft?pRLi,éRLD;‘( B gidt = f pRL [7/ (/')qi_(1_y)§Lsz('r')qi]dt
= ftz YPRLIA D g - (1~ Y)PRLi"} RLDﬁ( Dog;at
_fz 57" LD( )PRLz 5q;-(1 - y)RLDﬁ( )PRLi dr (35)
ffz [5% RL Dﬁ( () PRU] dt
From Equations (30) and (34), we have
RLDECAC g % RLpfaC )pm:—% (36)

Equation (36) is called the Hamilton equation with the CRLVO.

3.2. Hamilton Equation with the CCVO

When we consider the CCVO, the Lagrangian of variable order can be denoted by
Lc(t, qjs CDz("')’ﬂ ("')q ]-). The generalized momentum of variable order and the Hamiltonian of variable

order are

aLc(t, q], CD;(‘I')/IS('#)%)

DR

pei = He = pCi.CDg(w),ﬁ(w)qi _ Lc(t, 7 CDi("')’ﬁ("')q]‘) (37)
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Under this condition, the Hamilton action of variable order is

15)
SHCZI [PchDﬁ(’)’ﬁ(')qz‘—Hc(t,qj,ch)]dt (38)
1

The Hamilton principle of variable order is

t2
5Spc = f [pei D3P g; = He(t g pey)|at = 0 (39)
ty
with [57]
6D g = EDFeg,, 5°DE g = DI ogi, aifer, = 6gifi—r, =0 (40)
Similarly, from Equations (37) and (39), we can get
_ 9Hc ripptat), _ _9Hc

C ll(-,-),ﬁ(-,-) J— —_——_—
Dy ‘71 8PC[ 7 1_)/ pCl aql (41)

Equation (41) is called the Hamilton equation with the CCVO.

Remark 1. When B(-,-) = a(,+), y = %, the Hamilton equation in terms of the RVO can be obtained from
Equation (36) as

Rpat), _ OHR Rpat,) _  OHR
nDy i = 5, nPy PR =m0 (42)
JdLr t,qj,f D;l(')q] o o
where pr; = —(aR Di(_ﬂfq‘ ), Hgr = pR,»-lef;( )q,- - LR(t, qj,lef;( )q]').
t t !
Similarly, the Hamilton equation in terms of the RCVO can be obtained from Equation (41) as
repal), _ 9HRC Rpyat), __9Hre
51 th 1 apRCi s 4Py, PRC= aql (43)
dLrc tqu/FCD;X(‘/')qj
where prc; = —tgch;“"'); ) Hgc = PRCi'ﬁCDZ( )qi - LRC(t/ q9j, ﬁCDZ( )q]‘)-
1 2
Moreover, Equations (42) and (43) can also be obtained through their respective Hamilton principles.
Remark 2. From Equations (30) and (36), the Lagrange equation with the CRLVO can be obtained as
8LRL(t, q], RLD)Dj(’),'B(/)QJ) AL foral) aLRL(t/ q], RLD;!(,)/ﬁ(,)q])
e DA =0 (44)
aQi 1-y aRLD;('r')/ﬁ('f')qi
It is noted that Equation (44) can be obtained through
— 5" RLH* () B(r) —
OSIRL = (5];1 LRL(t, qjs DV q])dt =0, (45)
5§LDf(.’.)’7i = ﬁLD‘tX(".)é% 5§LD52(.'.)‘71‘ = FLDfZ(.'.)(SQi/ 54i|t:t1 = 0gi|t=t, =0
Similarly, from Equations (37) and (41), the Lagrange equation with the CCVO can be obtained as
aLc(f, qi, CD;)f('f‘)/.B('r‘)qj)
aL_C _ RLDﬁ('/')fa('r') =0 (46)

. 1- -),B(
94; v e IRy
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And Equation (46) can also be obtained through

Y

5Sic = 5]25 cht,qj,CDa(')'ﬁ(')qj)dt =0, 6ng(')qi = ng(’)éqi, “7)
oF D} ;= CDLoqi, oqili=t, = oaifi—s =0

Remark 3. When a(-,-) = «, B(-,-) = B, Hamilton equations of variable order, i.e., Equations (36) and (41)
reduce to

RLyaB . OHRLE Rppa JHRLE
DY, — , RLp e 48
Y 4 pr— 1y PRLF 20 (48)
e JH JH
CpaB . _ CF RLpBo  _ _9HICF
Dy qi apCiF, Dl—;/ CiF 8% (49)
Equations (48) and (49) are the Hamilton equations with the CRL and the CC, respectively.
Lagrange equations of variable order, i.e., Equations (44) and (46) reduce to
RLp&P RLpp
(9LRLF(f, qj,~D,, q]-) _RLppe 9LRLF(t,6]j, D, qj) 0 (50)
&qi =y aRLD;f/ﬁ qi
and p
dLcr i‘,q‘,CDa' qi
ILcr _rLppa (t9;,D5 ):0 (51)

94 -y BCDif"6 qi

Equations (50) and (51) are the Lagrange equations with the CRL and the CC, respectively. It is noted that
Equations (48) to (51) are consistent with the results in [53].

Remark 4. When a(-,-), B(-,-) = 1, Hamilton equations of variable order, i.e., Equations (36) and (41) reduce
to

JH(t,q:,p; JH(t,q:,p;
=) o) o

Lagrange equations of variable order, i.e., Equations (44) and (46) reduce to

i

IL(t,qj, q].) d IL(t, qj,q].)
2 dt  9g,

=0 (53)

Equations (52) and (53) are the classical Hamilton equation and the classical Lagrange equation, respectively,
which is consistent with the results in [66].

4. Noether Symmetry and Conserved Quantity

The classical Noether symmetry means the invariance of the classical Hamilton action under the
infinitesimal transformations of time and coordinates. A Noether symmetry can lead to a conserved
quantity. Here, we generalize the classical definition of Noether symmetry to fractional form with
variable order. Then Noether symmetry and conserved quantity will be discussed in detail with the
CRLVO and the CCVO, respectively.

Under the infinitesimal transformations

t=t+ At ﬁi(z) = qi(t) + Ag;, ﬁul(z) = pui(t) + Dpui (54)
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Whose linear parts are

=t+ GéuO(t E]],pu]) qI(E> - %‘(t) + eé(&i(tl Qj/PUj)/

(55)
Pul( ) pui(t) + 97]8[1-(15, %Pu]')
The unified Hamilton action of variable order, i.e., Equation (27) changes to be
3 & paCB) 7 i
SHu = f [ﬁw 5~ Huff, qj'ﬁuj)]dt (56)

where 6 is an infinitesimal parameter, and 58{0' égh., and '7811‘ are infinitesimal generators.

Let ASpy; denote the linear part of Shu — Shu, if there exists infinitesimal generators satisfying
ASpxy = - ftfz %(AG%)dt, then fractional Noether symmetry with variable order can be determined
by the corresponding infinitesimal transformations, where AG(ZI = QG%(t, q9j, puj>, and G?I is called a
gauge function.

For a certain mechanical system, conserved quantity can be deduced from Noether symmetry.
A conserved quantity can be seen as a solution to the differential equation of motion of the mechanical
system, and help reduce the freedom of the mechanical system

A quantity Ij; is called a conserved quantity if and only 1f 3lu = 0.

4.1. Noether Symmetry and Conserved Quantity with the CRLVO

When we consider the CRLVO, the infinitesimal transformations can be expressed as

t=t+4+At, ql( ) = q;(t) + Aq;, PRLZ( ) prei(t) + Aprri
(t = t+Oriépyg Kt %IPRLJ) ( ) = qi(t) + QRLg?sz(t' qf/pRLf)’ ®7)
t

PR ) = prei(t) + GRLWRLz(t qJ'pRL]))

Under the action of Equation (57), the Hamilton action of variable order, i.e., Equation (31) becomes

—_ EZ — (- B(-- - - - =
SHRL = ft [PRLi‘RLDg( g - Hi (57 i pRLj)]dt (58)
1
Then we get

ASprL = SHRL — SHRL
f { HRL(erAt q]+AL]],PRL]+ApRL]) [RLD;'/‘(‘) B )ql+AthLD a(, )ﬁ()ql

altty) R )
_VQi(tl)Afldth +RLD CoBL )6Qi+(1_V)Qi(t2)Af2$mW]

t Y
“(Prei + APRU)}'(l + aAt)df - Z[PRL"RLDQ( g, HRL<t/ qjs PRLj)]df (59)
_ ftiz[pRLi,RLD;(»-),ﬁ( Vg, +(m LR a(, )ﬁ(")qi—“;%)At

_ a(tty)
—)/PRLiqi(tl)Atl%mw + (PRLi-RLDV( B )q. _ HRL)‘%N

_p\Bliah) 9
+(1-y)preigi(t2) At & (rt(zl_%(t%t)) HRL A%]dt

where B
RLD;(') B(-, )ﬁz RLD a(, )ﬁ(")qi—i—RLD)Of('”)’ﬁ("')éqi+At%RLD;("')’ﬁ("')qi
(t t)” a(tty) d (t2_t)-ﬁ(fz'f) (60)
—y4i(h) B S a ey T (= V)ai() Mg T sm )
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Let ASprr = f 1t2 4 (AGO )dt and we obtain

),B( . 2,8 p)
PRU'RLD;f( )B( )<510m_‘1i5?m)+(PRLi'%RLDa( )B( )oh— I;fL)E%LO
Y .0
+(PRLi'RLD;(')'ﬁ(’)Qi_HRL)'fERLo aHR é?m +GRL(t q]/PRL])
(tt1)
_VPRLiQi(tl)fS%LO(tlzqj(tl)/PRLj(tl))%ww

_nBltah)
+(1- V)PRLiQi(tZ)é?QLO(tZrQj(tZ)rPRLj(tZ))%g%j)ﬁw =

(61)

Equation (61) is called Noether identity with the CRLVO.

Theorem 1. For the Hamiltonian system with the CRLVO (Equation (36)), if there exists a gauge function G%L
such that the infinitesimal generators &9 R0 Nd E%Li satisfy Equation (61), then there exists a conserved quantity.

Inrro = f [F’RU RLD (5RL1 qléRLO) <5RL1 qIERLO) RLDQS()/) ()PRLi]dT+(PRLi'
(x=ty) (")

RLDy( 2 )q HRL) &0 fPRLz[Wz(tl)chLO(fllq](fl) PRL](tl))dTm (62)

d (b-1) B(tp,7)
~(1-7)4i(t2) E%y (2, 9(t2), Prej(t2) ) 4 m]dt +GY,

Proof. Using Equations (36) and (61), we have

dRLD al)pGr) JdHpy, JHgyp. OJHgp.

RLya()B() _ _ — .
D qi ot aql qi &pRLipRLl)

d .
aIHRLO = (pRLi' y qi + PRLi*

) B(-- -0 .
'E?{LO + (PRU'RLD(VX( L )‘71‘ - HRL)'ERLO + PRLz y( L (éRLz ‘71'5?&0) + (E%Li

d (t - t1)_a(t't1)

)'RLDf(_.'.)'a(.'.)PRLi - ypruigi(t1 )E%Lo(tl, qi(t1),prej(t1 ))& TA-ath)

_I?z‘gRLO

d (t2 _ t)—ﬁ(fz,f) .0

+(1- V)pRqul(t2)5RLo(t2rq](t2) PRL](tz))dtm + Ggre

. - ),Br aHRL &HRL . ), o &HRL
Z(PRU‘RLD;( V¢ >’7i_ aq; 9= e PRLz) ERLo (5?2Li_‘7i5?2L0)'RLD€(— al )PRU+ oq E%Li
. ()al) JHgy,
= (5%Li—fii5?aLo)'(RLle_y N prei + 20, ) 0

4.2. Noether Symmetry and Conserved Quantity with the CCVO

When we consider the CCVO, the infinitesimal transformations can be expressed as

E=t+ At G ) = qi(t) + Agi, Pei(E) = peilt) + Apci,
(t =t+ QCECO(t q/,Pc]) Q( ) = qz( ) + ecé(():l‘(t’ q]'/PCj)r (63)
Pcl( ) pei(t) + Gchi(t’ q],r?c]')-

Under the action of Equation (63), the Hamilton action of variable order, i.e., Equation (38) becomes

— t 2 - _ _
Suc :f [730 CD ol )ﬁ(’)qi—HC(t,q]-,pC]-)]dt (64)
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Then let ASyc = Syc — She = — ft f %(AG?:)dt, and we obtain

pCi.CD;"/('I')/ﬁ('r‘)((SO — qiéTO ) + (pCz dtCDa( ) ( ) q; aaHtC )5
(t4) .0
—ypci€y(tai(t), pC](tl))(meqz(tl) (PCz Dt g, Hc)'éco (65)

tr—t ﬁ(fz'f) .
+(1- V)Pc@co(fzfQj(fz)/PCj(fz))(rfl_zgw%(fz) - a—qiECi + Gc(f/ %Pc;‘) =0
Equation (65) is called Noether identity with the CCVO.

Theorem 2. For the Hamiltonian system with the CCVO (Equation (41)), if there exists a gauge function Gg
such that the infinitesimal generators ‘Sgo and EOCI. satisfy Equation (65), then there exists a conserved quantity.

Inco = f[PCz cpgt (5 = :62%0) + (&2, - ;€2 )RLDQ;(),) ot )PCi]dT+(PCi
. T a(tty)
cpgt bt )qz'—Hc)‘ECO A Pc:[V5c0 t1,q;(h), Pc;(fl))%(fl)((lhiw (66)
)

. ) Bl
-(1- V)Qi(tZ)égo(tz' qf(tZ)’pCf(t2>) (rt%l—l;(tz,r)) ]dT + GOC

Proof. The proof is similar to that in Theorem 1 and thus is omitted. O

4.3. Some Explanations

We will present some special cases in this section on the basis of Theorems 1 and 2, which are the
main results of fractional Noether symmetry and fractional conserved quantity with variable order in
this paper.

Remark 5. Let B(-,-) = a(-,-), y = %, and conserved quantities for the Hamiltonian systems with variable
order (Equations (42) and (43)) can be achieved as follows:

Theorem 3. For the Hamiltonian system with the RVO (Equation (42)), if there exists a gauge function
G%(t, qj,pRj) such that the infinitesimal generators é%o(t, i, pR]-) and E%i(t, qj, pR]-) satisfy

. P} o -0
PRZ t tz (é qlé%()) (PRI drty fz qi — HR (SRO + (pRj‘R Da( )‘71 — HR)'éRO
_VPRiqi(tl)ERO(tllq]'(tl)/PRj(tl))%mw — oHg Tkt (67)
ﬁ(fz £)
(=i (12) % (k2. 45(12), i (42)) S Ty = O

then there exists a conserved quantity.

taro = [ [P D8, 18) + (68, ~ % KDL sl + (pre kD g
—a(tty)

—HR)-&pg f pRlI:yql(tl)éRO(tl’q](tl) pRJ(tl))c?_T_(l“T(_lt]i(Ttl)) (68)
(1 V)fiz(tz)ERo(fz,q](fz) PR](fz))dme]d +G0
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Theorem 4. For the Hamiltonian system with the RCVO (Equation (43)), if there exists a gauge function
G%C<t, qj,pRCj) such that the infinitesimal generators ‘ngco(t' qj, PRC]') and é?{Ci(t’ i, pRC]') satisfy

. oH
PrCi‘y t1 (‘ERCZ %'5?«:0) (pRCZ dtRCDa( & 9= 3 )51«:0
& (t (t ), ( ))M (t) + ( RCD alr) . _ g )'éo (69)
—YPRCi RCO 1,‘1] 1 PRC] 1 r(1 a(ttl))qz 1 PRC: qi RC RCO

Blta) 5 0
+(1 = 9)prcitSe(t2, ﬂlj(tz),PRCj(fz))qui(fz) HRC &t Gre =0

then there exists a conserved quantity.

Inrco = f [PRC: RCD (éRCZ ‘LSRCO) (5RCZ ql‘cho) a(-'.)PRCi]dT‘f'(PRCi

a a(tty)
ﬁCD( Vgi- HRC) o~ fPRCz[VERCO(fL%(tl) PRC](tl))%(tl)% (70)

-(1- V)%(fz)ERCO(leQj(fz),PRc]'(tz))(rtflT]df +GY

Remark 6. Conserved quantities for the Lagrangian systems with variable order (i.e. Equations (44) and (46))
can be achieved as follows:

Theorem 5. For the Lagrangian system with the CRLVO (Equation (44)), if there exists a gauge function

GgRL(t q]-,RLD;)f("‘) A )q]) such that the infinitesimal generators ELRLO(t q]) and éLRL (t qj) satisfy

aLRL(t,qleLD;"('r‘)/ﬁ('/‘)
ORL D;Y/(‘r),ﬁ(v)

) RL L oL
D (5LRL1 ql‘SLRLO) + LRe: 5RL0 + GLRL + 50 ELRLz ( o

qi
ILRyL clRL () yq;(t1)dLgr q (t=ty)oth) 71
DT, i Dy ”h)‘fmo WELRLO(tl’q](tl))dtm 1)

t)ﬁtzt

(- V)%(f 3L d (b _
+ oRLDEC) e 5LRLo(tz'qf(tZ))a (0] — O

then there exists a conserved quantity.

— t(=0 RLHB()a() ILRL ILRyL
ILRLO—f [(ELRLZ ql‘SLRLO) Dy AR T GRUpECRTT

1

. t QL
KDy A (5LRL1 qz‘ggRLo)]dT+LRL'5LRL0 b LD B [Wl O CRICY) @2)

d (=t d (t r)
de Tmateny ~ (- y)q’(tz)éLRLO(tZ’q](tZ))dT ril ﬁ(tz r)) ]dT + Gire

Theorem 6. For the Lagrangian system with the CCVO (Equation (46)), if there exists a gauge function
ch(t, qjs CD;‘("’)’ﬁ(”')q]-) such that the infinitesimal generators égco(t, q]-) and EgCi(t, q]-) satisfy

aLc(t,qj,CDgf“')”“‘ ) ) IL 4 Crmal),B0r)
Eare D ((SLO qléLCO) (3CD;Y(»~)C,ﬁ(w)q’_'$ Dy i
oL oL (ty—t) P2 ) L
C)‘SLCO (1 7’)ac D) A ELco(i'L2"7J(i'L2)) T(1-(f2, t))q( 2) + CEL& (73)

9
)/QCD LC 5L(j(](tl’ q](tl)) E“t(]tl()x(tt )) ql(tl) +Lc éLCO + GLC =0
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then there exists a conserved quantity.
_ IL cpatBC) (g0 _ o <0 0 _ ;20
lico = |, [aCDg("'f’“"') 0 Dy (&6 = 4i€hco) + (s = 10c0)
pl)al) oL g (x—ty) )
KDY acDa<~,-fﬁ<~,-> ql]dT b 2D IR [yéLCO(tl’qJ(tl))qz(tl) Tli-ale) 74)
t
—(1- 7/)‘7z(t2)‘5Lc_“o(t2' qJ(t2))( f1 T;(tz o) ]dT +Le)ey + Gl

Remark 7. When a(-,-) = a, B(-,-) — B, conserved quantities for the Hamiltonian systems with the CRL
and the CC (Equations (48) and (49)) and the Lagrangian systems with the CRL and the CC (Equations (50) and
(51)) can be deduced as follows:

Theorem 7. For the Hamiltonian system with the CRL (Equation (48)), if there exists a gauge function
G%LF<t, qj, pRL]'p) such that the infinitesimal generators E%Lop(t, qj, pRLjp) and é?{LiP(t’ q]',PRL]'P) satisfy

. : B OH .
preir-RLDY ﬁ(g) RLIE qz“f?sz) (PRLiF' $RLDS Pai- = )cf RLOF (PRLz‘F'RLDg Pgi

aHRLF Gl T Crir — HE qz(h)E%LOF(fl,‘Jj(h)/PRLjF(tl))% (t=t)™" (75)
+ rg’fg;* 0i(12) &% op(f2, 9;(12), PRUjE(12)) & (12 = 1) F =

~HRrr)-Erior —

then there exists a conserved quantity.

Inrior = f [pRLlF KD ﬁ(émzp qIERLOF) (5 RLiF qléRLOF) RLD!lg )/PRLiF]dT + (Preir
RLDOP g — Hrpp )9 05 - ftl pzaup[??{ - ERLOF(tl,qj(tl) prje(t)) s (T— 1) (76)
(1-7)gi(t2)
_rgl—zﬁ)z‘g%Lop(h'q]'(t2)'PRLJ'P(t2))E(tZ —7)" ]dT +Grer

Theorem 8. For the Hamiltonian system with the CC (Equation (49)), if there exists a gauge function
GOCF(t, 9, pcjp) such that the infinitesimal generators égOF(t, q]‘,PC]‘F) and E%Z.F(t, i, pcjp) satisfy

8Hcp

pcirD ﬁ(gcm qlégOF) ngiF‘%CD;'ﬁqi £ )edr .
_VPCiF(SCOF(tlrQj(tl)/PCjF(tl))%qi(tl) + (PCiF'CDy qi — HCF)'Ecop (77)
B B} -0
+(1=)pcirelop(t2,95(12), peje (8)) By ait2) = L2, + G = 0

then there exists a conserved quantity.

IHCOF = ft [pCiF'CDa,ﬁ(goclP - ‘715%01:) (é(():lF qzécop) RLD!j ),PCiF]dT + (PCiF
€D} ﬁqz HCF) EQ0E — by PCZF[VECOF t,q;(t1), PC]F(tl))qz(tl)(T(ltl)a) (78)
—(1 = )i (120 2 5(02), e (1) BT [ + G2,
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Theorem 9 For the Lagrangian system with the CRL (Equation (50)), if there exists a gauge function

GgRLF(t, q]-, q ) such that the infinitesimal generators ELRLOP(t q]-) and égRLiF(t, q]-) satisfy
Arr(b; " DY 0;) pp aL
RLDIPg, D, (‘5LRL1F qléLRLOF) + Lrer ‘SRLOF + 2 aq ELRL:F ( o
IL dRLHA | <0 yqi(h) _IL , d -a
+ aRLgfffq a Dy ql)éLRLOF - )aRLDRZ;g ‘SLRLOP(tl'qJ(tl))E(t —t) (79)
(1=y)gi(tz) _aL , e
+ T(1-6) aRLDRD[:If; ELRLOF(tz’q](tz))ﬁ(tz_t) + Grrer =0
then there exists a conserved quantity.
RLpP _ILrir ILRLE
ILrror = f (éLRLzP qlgLRLOF) 1=y gRLp%Fg, T GRLDPg,
RLy%B oL
=Dy (ELRLIF qléLRLOP)]dT+LRLF'éLRLOP ftl (;RLDRLF [7/‘71 f ‘SLRLOF(tlqu(tl)) (80)

T—t (t T
'%(mi)a) (1- V)ql(t2)5LRL0F<t2'qf(t2))dT rzl -B) ]d T+ Glre

Theorem 10. For the Lagrangian system with the CC (Equation (51)), if there exists a gauge function
GgCF(t q9j, CDg’ﬁq]’) such that the infinitesimal generators £2COF<t’ qj) and égCiF(t, qj) satisfy

ILce(tq;,°D Vﬁ q
cr(tg; ) cDaﬁ(éLClF 30 )+ ( ILck éithy 0

¢9CDaﬁql oCDY ﬁq
P) J J
LCF)éLCOF +( _V)gc;v% 5LCOF(tLqJ(tZ))( (1 )/3) q;(t2) + LCFELCzF (81)
J
aq;fﬁ SLCOF(tLq](h))( = 1 a9i(t) + Ler: ‘SLCOF + GLCF =0

then there exists a conserved quantity.

— [t cp aﬁ
Iicor = ﬁl[QCDg’l; (ELCzF qléLCOF) (CSLCZF qléLCOF)
RLBa JL JL, (1—t1)”
R i = !0 i) ®

(1- y)ql(tz)émp(tz, ﬂl](fz))( L T+ Ler € e + Gl

Remark 8. The results of Theorems 7—10 are consistent with those in [53].

Remark 9. When a(-,-),B(-,-) — 1, conserved quantities for the Hamiltonian system (52) and the Lagrangian
system (53) can be obtained as follows:

Theorem 11. For the classical Hamiltonian system (Equation (52)), if there exists a gauge function Go(t, qj,p j)
such that the infinitesimal generators £8<t, qj, pj) and 5?(t, qj, pj) satisfy

-0 8H .0 OH -0
pi&i = 5 ~HE, - q;?+c =0 (83)

then there exists a conserved quantity.
lo = pi&] —H& + G (84)
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Theorem 12. For the classical Lagrangian system (Equation (53)), if there exists a gauge function Gg(t, qj.9 j)
such that the infinitesimal generators égo(t, q]') and E(L)l.(t, qj) satisfy

oL(t,49;.4))

.0 0 .0 JL JdL
aq (éLz qiém) + L'éLO + GL + a—qlégl + Eégo =0 (85)

1

then there exists a conserved quantity.

L .
Io = a—q(éﬁi — ;&) + L&y + G (86)

Remark 10. The results of Theorems 11 and 12 are consistent with those in [66].

5. Perturbation to Noether Symmetry and Adiabatic Invariants

Noether symmetry is one of the methods of finding the solutions to the differential equations
of motion. However, if the mechanical system is disturbed by small forces, the original conserved
quantity may also change. Perturbation to Noether symmetry and adiabatic invariants will be studied
in this section because they also have a close relationship with the integration of the mechanical system.

Supposing the mechanical system is disturbed by ¢Wyj;, the way of disturbing the infinitesimal
generators and the gauge function is set as

GU:G?,I+&G%I+F'2G%J+’ 5u0:5%0+gé%10+g25%10+...

(87)
Sui = &+ &l + &8 4 nui = 0, en + i+

where Gy; is the gauge function of the disturbed system, and &y, £yi, and 71y; are the infinitesimal
generators of the disturbed system.

If a quantity I, which has a parameter ¢ and the highest power of ¢ as z, satisfies the rule that
dI,/dt is in direct proportion to 7!, then the quantity I, is called an adiabatic invariant.

Then we have:

Theorem 13. For the disturbed Hamiltonian system in terms of the CRLVO

RLpya()BC) , _ FHRL RLppeoat,), _ OHRL
D)/ ! 5PRL1 1-y PRLi = aql SWRLz(t qj, PRL]) (88)

If there exists a gauge function G}?L(t, qj, pRL]») such that the infinitesimal generators ég‘m(t, qj, pRL]') and
5%”“(1‘, q]-,pRLj) satisfy

priiRE D;(v),ﬁ(v-)(

ARLpACIBL) aHRL) (pRLi,RLD;‘('f)'ﬁ(‘/‘)qi

ERi — 0 R10) + (p RLi" cro

-m a (:tl)
—HRL)-Erro = % rL T G~ yprudi(t )ERLO(fL%(fl) PRL](tl))dth (89)

Bt2.t)
+(1- V)PRLifli(tz)égw(fz, qj(tz),PRLj(fz))%mw - WRLi(éR qléRw)
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then there exists an adiabatic invariant.

z
Iyrrz = m);@ Sm{f [PRLz RLp3 AL )(EQ?U—%EKLO)Jr(ERLZ q; ?Lo) RLDﬁ( Jat )pRLl] + (Prui
a(tty)

,RLD;‘('/')rﬁ('/')qi - HRL)-E}’{LO A PRLz[)/q,(h)éRLO(tl,q](tl) pRL](tl))dT mw
m t
-(1- V)qi(tZ)‘SRLO(tLqj(tZ)/PRLj(t2))ddT mw]dT GRL}

(90)
where éRLl ERLO = 0whenm = 0.
Proof. Using Equations (88) and (89), we have
d - . . d ) OHgr. OHgp.
aIHRLZ = mz_aem[(pRU.RLD;f( B )ql +PRL1 RLD al,),B( )qi_ aql q;— apRLipRLi
_JH B m ,
&fL) Erio t (PRL:"RLD;( A )%' - HRL)'ERLO + pri® y( L <5RL1 %“%Lo)
—a(th)
om \ Rl d (t-t)™"
+(Em - aiém o)D) 1oy PRLI~ yprui(t) &R (1, q;(h), PRL](h))d TA=alth)
d (tz _ t)_ﬁ(tZVt) m
— . . m . . —
+(1 V)PRLZQZ(tZ)‘SRL()(tZ/ qj (t2)rpRL](t2))dt (1 —,B(fz, t)) + Ggrr,
z
. )l JH
=Y gm[(ggu - qiggLO)-(RLDf(_y) g + WITL) + Wi €85~ 4i€Rio )]
m=0
= Z m[_gwRLl(éRLl ql‘ERLO) + WRU(ERLl —3i€R10 )] SZHWRU(‘S?{U — i %LO)
|
Theorem 14. For the disturbed Hamiltonian system in terms of the CCVO
cpatBe), _ 9He ripptaats), __9Hc
Dj, Ll DL pai = o eWeilt, g5, PCj) 1)

If there exists a gauge function GE”(t, q9j, pcj) such that the infinitesimal generators é*c”o(t, qj, pcj) and
Eg(t, qj, pcj) satisfy

)P m S Em : 2 b Em—
PCi'CDa( )B( )( Ci_qiéco) (PC! dtCD al,)B( )%'— (I;tc) WCZ((SC _qiécol)

(tt1) .m
—VPCIECO(tMI](h) pc(t ))%%(fl) (PCi'CD (’)’ﬁ(’)q-—Hc)éCO (92)
Blto.t)
+(1 = )peicly(ta,a5(t2), pej(t) [y di(te) - G + Ge = 0

Then there exists an adiabatic invariant.
z t B .
Inc: = mEO Em{ftl [PC:"CD;( H )< ci 4 7c”0) +( = 4; co) RLDﬁ( Jat )PCi]dT + (pci

al-),B( m t m . T— —a("(,tl)
.CD)/( )B( )l/]i_HC)' —f pCi[yECO tquj(tl) pcj(tl))ql(tl)(r(ltliw (93)
~(1= )i ()22, 502), (1)} B e + G
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where E’gi_l = é’go_l = 0 whenm = 0.

Theorems 13 and 14 are the main results of this paper for the disturbed Hamiltonian systems with
variable order. Based on the two theorems, adiabatic invariants for the disturbed Lagrangian systems
with variable order can also been obtained.

Theorem 15. For the disturbed Lagrangian system in terms of the CRLVO

QLRL(t, qj, RLD;/X(.’.)’ﬁ(T)q])

RLDﬁ( Jaly)__ OLRL gWLRLZ-(t qi RLD“(’)’ﬁ(’)q') (94)
) - a)B( T r !
EN y 8RLD]/( )B( )Qi

If there exists a gauge function GLRL(t qj, RLDja,("')’ﬁ("')qj) such that the infinitesimal generators E’L”RLO(t, qj)
and ELRLl.(t, qj) satisfy

ILRL
3RLD;E(%')/}9('/')L]’_

gy dRLpCBCD) Nem  _ _v2it)ILRL o d (t=tp) )
QRLDa<»->,ﬁ<»,->ql ar Dy JiJeLrro aRLDgn,-),ﬁ(-,-)qi LRLO(tl’q](tl))dt T(1-a(tt)) (95)

(1~ y)ql(t )oL 4 (=) P2
+ o 2 RLéLRLo(tzl q](tz))dt r(21—5(t2 D) —WLRLi(ETRLl qlELRLO)

X ),B( aL aL
KD ;( I )( IRLi ~ qléLRLO) + Lre: ‘ERLO + GLRL + RL (SLRLZ ( a?L

Then there exists an adiabatic invariant.

- t : pC)als) oL JL
I _ e mo g cm RLD 7 ) RL RL
LRLz mEO ft] ( LRLi qz‘SLRLo) 1-y R SRR

1

. t oL
’RLD;( e )(ganLi_qiETRLO)]dT_FLRL'gLnRLO ftl R A [V‘iz al 5LRL0(f1/q](f1)) (96)

(x=ty) ") (t r)W
dir( ey~ (1= V)‘?l(t2>5LRLo(t2'qf(tZ))dr rfl ﬁ(tzT))]dT+GLRL}

where ELRL = 0 whenm = 0.

= ELRLo

Theorem 16. For the disturbed Lagrangian system in terms of the CCVO

oL (t, . CDa('/')'ﬁ('ﬂ) )
e _ruppeiat) T Ty i
aq; 1=y oC D;(»-),ﬁ(v-) g

_ gWLCi(f, 9 CD;‘("')'ﬁ("')qj) (97)

If there exists a gauge function GTC(t, qj, CDa( VA ) such that the infinitesimal generators & LCO(t’ q]') and
E1'ci(ta) satisfy

dLc B (em _ o em dLc .dcpals)Ber) 3Lc
2D Dy (& = 0:870) + 3ch(»->,ﬁ<~,->%_ ar Dy 9+ 5 JeLco

E) -l p)
+(1- wﬁgmo(t% qJ(fZ))(rtfl—t;%qu(tZ) + g8 + Lo+ Gre (98)
JLc (t tl)fa(['tl) .

_Vachyv(»f)ﬁ( Ta Teoltr 9j(t)) ety i) = Wici(&e! - 4:87e) = 0
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Then there exists an adiabatic invariant.

_ ¥ t dLc cp()BC) : :
lie: = mZ:O Em{ftl[acDg(v»ﬁ(w)qi' Dy (& = 0¢fico) + (16— 48 o)

B(--)al) oL t L (r—t)"(@H)
Dy -y aCDgf("'fﬁ“')qi]dT ftl m(—c[yémo(h,q](tl))q (tl)m (99)

~(1=9)d;(t2) o (2, %‘(fz))mW]dT +Lcéfg Gi”c}

m-1 _ cm-1 _
where &G =<¢lq =0 when m = 0.

Moreover, adiabatic invariants for the disturbed Hamiltonian systems with the RVO and the
RCVO, the disturbed Hamiltonian systems with the CRL and the CC, the disturbed Lagrangian systems
with the CRL and the CC, the disturbed classical Hamiltonian system, and the disturbed classical
Lagrangian system can also be deduced. We only present them in the forms of remarks rather than
describe them in detail.

Remark 11. Let §(-,-) = a(-,-), y = 3, so adiabatic invariants for the disturbed Hamiltonian systems in terms
of the RVO and the RCVO can be achieved.

Remark 12. Let a(-,-) = «, B(-,-) — B, so adiabatic invariants for the disturbed Hamiltonian systems with
the CRL and the CC as well as the disturbed Lagrangian systems with the CRL and the CC can be deduced.

Remark 13. Let «a(-,-),B(-,-) = 1, so adiabatic invariants for the disturbed classical Hamiltonian system and
the disturbed classical Lagrangian system can be deduced.

6. Applications
In this section, we present two applications to illustrate the Methods and Results.

Application 1. The differential equation of the Lotka biochemical oscillator [67] of variable order is

RLDﬁ( D)

RLya()B()
DV 1-y

X1 = ag + prexpxy, X2 = ap + frexpxi (100)

where ay, ap, B1, and B, are constants.

Let x; = g, xo = prr, so the Hamiltonian can be expressed as

HRr = aapre — @2q + p1exp pre — P2 expq (101)
From Equation (61), we have

RL () B()

pRL éRLO ar y q + (pRL.RLDa('/')/ﬁ('/')

-0
q—aiprr + azq - 131 eXP Prr + P2 exp Q)'Em

d (t=t) ™) RL ) -0 (102)
—prYa(1) &R o(t1,qj(h), PRL](tl))dtm + prL: D (5 ~ &%) + Gre

g (b= P02
+(az + Brexp )&y, +pre-(1-7)q (tz)éRLo(fzfq/(fz) PRL/(fz)) & Ty = ©

It is obvious that
0 0
ERLO -1, & =0, G, =0 (103)

satisfies Equation (102), where [57]

d (t—t)™th

(tZ _ t) —Blta,t)
dt (1 -a(t )

T pmn) oY

d -V B(r al,
_RLDy(/)rﬁ(/)q:RLDy( B, )q+yq(t1)

= - (1-p)(e) S



Symmetry 2019, 11, 1270 19 of 23

Then, a conserved quantity can be obtained from Theorem 1 as
t
d : B
[ f (pRL'aRLD;f( DB 4 GRL Dﬁ( Dl )PRL)dT _ (pRL.RLD;f( B HRL) (105)
ty
When the Lotka biochemical oscillator model is disturbed as

RLDﬁ( D)

RLya()B()
DV —}I

q = a1 + p1expprL, PrRL = a2 + Prexpq—e(29+1) (106)

We can get the following solution to Equation (89)
Ero=1 & =0, Gp =" +9 (107)
Then, the first order adiabatic invariant can be obtained from Theorem 13 as

IR = ﬁi(pRL%RLD;( )8 >q 4 qRLDﬁ( y) a(, )PRL)dT _ (pRL.RLD)Df(-,-),ﬁ(,.)q — daprL + a2q
—B1rexpprr + P2expq) + e|q> +q+ (pRL-RLD ("')’ﬁ("')q — qpPRL + @2q — 1 €Xp prL + P2 exp q) (108)

- tl(m LRI >q+qRLD/13(y) a(. >m)dT]

When a, f — 1, the classical differential equation of the Lotka biochemical oscillator, the classical
Hamiltonian, the classical conserved quantity, and the classical adiabatic invariant can be obtained,
which are consistent with the results in [66].

Application 2. The Lagrangian of the two-dimensional isotropic harmonic oscillator of variable order is

L %m[(CD;(-) B >q1) + (D50, ]__k[ n+ )] (109)

where k and m are constants.

Firstly, the generalized momentum and the Hamiltonian of variable order can be obtained from
Equation (37):

aLC(t, q]’ CD;‘(/)'ﬁ(/)q])

Cpy()BC)
pa1 = =m-D 7
aLc(ta;, D5 gy) s
_ _ Rt
pe2 ol B0 ey m
3CD)/ o q2

He = pCl_CDDj(-,-)rﬁ('/')ql + pCZ_CD;('r')/ﬁ('r')qz _ Lc(t, qi, CD;(')"B(’)(]])
2 2
= per i+ per 2 - b (5 + (22| + 3007 + (22)7] (110)
2 2
— o 0 P s ]

From Equation (41), we have

Cpel)Bt), _ pa

14
RLDﬁ( Dl ) _ (111)

And from Equation (65), we find that

0 0 0
,=-1,8,=&,=0G62=0 (112)
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is a proper solution. A conserved quantity can be obtained from Theorem 2 as
prop q

Naf.. 2 2
Tyco = [PCl ()BC )171 +PC2'CD;§(')'!3(')!72 _ (PZC’L) _ (pZC;) _ %k((%)z + (qz)z)]
f (PCl 4 )/ﬁ(v‘)ql +PC2'£CD“ )P 0 +q1,RLDﬁE/')/“(‘/‘)pCl (113)

‘7 RLDf()/) al(, )PCZ)dT

When the isotropic harmonic oscillator model of variable order is disturbed as

CD;‘(-,-)rﬁ(',')ql — P%/ C a(',')rﬁ( )q — %, RLDf(_‘;)rOI(-,-)pCl — —klh —eqn (114)
RLDllg(_y)a( pc2 = ~kg2 — e
we obtain
Lo =1 &6 = &6 =0, Ge = qna (115)

which satisfies Equation (92). Then, the first order adiabatic invariant can be obtained from Theorem
14 as

. . . . 2 2
Inc1 = _[pCTCDa( B )171 + Pcz'CDa( L )172 - % - % - %k((‘il)z + (‘72)2)]

+f (Pc1 ch al)B( )LI1+PC2 4 D( )B(, )q2+17 RLDﬁ(~) )pClJrqz
RLDﬁ( Jal, )PCZ)dT_E{f (PCl dTCD ( B )q1+Pc2 4 D ol )8 (,.)‘72_'_‘.71 (116)

2
—% - % - lk((&h) + (qz)z)] - qwz}

When «, f — 1, the classical Lagrangian, the classical Hamiltonian of the two-dimensional
isotropic harmonic oscillator, the classical conserved quantity, and the classical adiabatic invariant can
be obtained, which is consistent with the results in [66].

7. Conclusions

Equations of motion, Noether symmetry and conserved quantities, and perturbation to Noether
symmetry and adiabatic invariants are investigated here. Hamilton equations with the CRLVO
(Equation (36)), CCVO (Equation (41)), RVO (Equation (42)), RCVO (Equation (43)), CRL (Equation
(48)), and CC (Equation (49)) are established. Then, Noether symmetry and conserved quantities are
studied for those six Hamiltonian systems (Theorem 1, Theorem 2, Theorem 3, Theorem 4, Theorem 7,
and Theorem 8). Meanwhile, Lagrange equations with the CRLVO (Equation (44)), CCVO (Equation
(46)), CRL (Equation (50)), and CC (Equation (51)) are presented. Then Noether symmetry and
conserved quantities are investigated for those four Lagrangian systems (Theorem 5, Theorem 6,
Theorem 9, and Theorem 10). As for perturbation to Noether symmetry and adiabatic invariants,
only adiabatic invariants with the CRLVO and CCVO for the Hamiltonian systems and the Lagrangian
systems are studied and described in detail (Theorem 13, Theorem 14, Theorem 15, and Theorem 16).

Among the results obtained in this paper, Equations (36), (41)—(44), and (46), Theorems 1-6,
and Theorems 13-16 are new. Equations (48)—(53) and Theorems 7-12, which are deduced from the
main results of this paper, are consistent with the existing results.

It is generally known that there are three kinds of symmetry in analytical mechanics, i.e., Noether
symmetry, Lie symmetry, and Mei symmetry. Noether symmetry plays an important role in finding the
solutions to the differential equations of motion for mechanical systems because conserved quantities
can be deduced from it. In fact, Lie symmetry and Mei symmetry are also able to deduce conserved
quantities under certain conditions. The Lie symmetry means the invariance of the differential equations
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of motion under the infinitesimal transformations of time and coordinates. The Mei symmetry means
the invariance under which the transformed dynamical functions still satisfy the original differential
equations of motion. The conserved quantities deduced directly by the Lie symmetry and the Mei
symmetry are called the Hojman conserved quantity and the Mei conserved quantity, respectively.
However, only Noether symmetry is considered here, so Lie symmetry, Mei symmetry, perturbation
to Lie symmetry, and perturbation to Mei symmetry are important and valuable aspects waiting to
be studied.
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