
symmetryS S

Article

Topological Design Methods for Mecanum Wheel
Configurations of an Omnidirectional Mobile Robot

Yunwang Li 1,2,*, Sumei Dai 2,3, Lala Zhao 1, Xucong Yan 1 and Yong Shi 2

1 School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China;
lala.zhao@cumt.edu.cn (L.Z.); yxc.cumt@hotmail.com (X.Y.)

2 Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA;
sumei-dai@hotmail.com (S.D.); yshi2@stevens.edu (Y.S.)

3 School of Mechanical and Electrical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
* Correspondence: yunwangli@cumt.edu.cn or yunwang.li@stevens.edu

Received: 20 August 2019; Accepted: 5 October 2019; Published: 10 October 2019
����������
�������

Abstract: A simple and efficient bottom-roller axle intersections approach for judging the
omnidirectional mobility of the Mecanum wheel configuration is proposed and proved theoretically.
Based on this approach, a sub-configuration judgment method is derived. Using these methods,
on the basis of analyzing the possible configurations of three and four Mecanum wheels and
existing Mecanum wheel configurations of robots in practical applications, the law determining
wheel configuration is elucidated. Then, the topological design methods of the Mecanum wheel
configurations are summarized and refined, including the basic configuration array method, multiple
wheels replacement method, and combination method. The first two methods can be used to
create suitable multiple-Mecanum-wheel configurations for a single mobile robot based on the basic
Mecanum wheel configuration. Multiple single robots can be arranged by combination methods
including end-to-end connection, side-by-side connection, symmetrical rectangular connection,
and distributed combination, and then, the abundant combination configurations of robots
can be obtained. Examples of Mecanum wheel configurations design based on a symmetrical
four-Mecanum-wheel configuration and three centripetal configurations using these topological
design methods are presented. This work can provide methods and a reference for Mecanum wheel
configurations design.

Keywords: Mecanum wheeled robot; omnidirectional motion; wheel configuration; symmetrical
configuration; topological design method

1. Introduction

Each Mecanum wheel has three degrees of freedom of motion in a plane [1,2], so a mobile
robot system consisting of three or more than three Mecanum wheels can achieve omnidirectional
motion in a plane only through the coordination of direction and rotation speed of wheels without
the assistance of an auxiliary steering mechanism. Because of the simple structure and good motion
flexibility, omnidirectional mobile robots with Mecanum wheels are widely used in various fields.
According to application needs in different fields, a variety of Mecanum wheel configurations can
be designed to develop various omnidirectional mobile robots. Some service robots usually adopt
three or four-Mecanum-wheel configurations [3,4]. In the industrial field, an AGV (automated guided
vehicle) with four Mecanum wheels, a kind of omnidirectional mobile robot, is also widely used [5–8].
For transporting large-scale equipment or components, a robot platform with multiple Mecanum
wheels [9–11] or multiple-Mecanum-wheeled robot platforms are used cooperatively [12,13]. In order
to design an omnidirectional mobile robot, it is necessary to select a reasonable Mecanum wheel
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configuration for the robot. However, not all combinations of Macanum wheels can implement
omnidirectional motion, and the arrangement of Mecanum wheels also influences the mobility
performance of the robot [14]. Therefore, designing a reasonable configuration of Mecanum wheels
constitutes the most basic and important technology problem in the design of omnidirectional mobile
robots. Firstly, these configurations must satisfy the conditions of realizing omnidirectional movement.
Secondly, motion performance, controllability, and structural rationality of these configurations must
be evaluated in order to select the optimal Macanum wheel configuration.

Some researchers have paid attention to the study of Mecanum wheel configurations.
The kinematics and dynamics of a Mecanum-wheeled mobile robot form the basic premise to
judge the robot to achieve omnidirectional movement in theory. Muir et al. [15,16] introduced a
methodology for the kinematic modeling of wheeled mobile robots, studied an omnidirectional
wheeled mobile robot with four Mecanum wheels, and derived the kinematic model of roller angle
dead reckoning robot position wheel slip. Angeles [17] deduced a general kinematics model of
the Mecanum-wheeled omnidirectional mobile system by vector method, and gave kinematics and
dynamics equations of three-wheel and four-wheel robots, respectively. Campion [18] used a matrix
transformation method to study the mobility characteristics of the robot under constraints, gave a
unified description of modeling of a wheeled mobile robot, and deduced the kinematics equation
of the three-wheeled robot. Gracia and Tornero [19,20] described the singular and heterogeneous
types of mobile robots based on Mecanum wheels and Castor wheels using a descriptive geometry
method, established the kinematics model of omnidirectional mobile robots under sliding conditions,
and further established the Lagrange dynamics model. Zhang and Wang [21,22] analyzed the steering
motion of a Mecanum-wheeled omnidirectional mobile platform, and established a control system
model and dynamic model in MATLAB and RecurDyn software, respectively. Using joint simulation,
the anisotropic motion characteristics of a mobile platform with different slip rates were obtained.
Wang and Chang [23,24] analyzed the condition of omnidirectional motion of a Mecanum-wheeled
mobile system and found that the Jacobian matrix of inverse kinematics velocity is a column full rank,
discussed the possible singularities and solutions in motion, and showed six types of Mecanum wheels
layouts and determined the four best Mecanum wheel layouts. Mishra et al. [25] proposed 10 possible
configurations of the omnidirectional mobile robot with four Mecanum wheels. Gao et al. [26] studied
a type of three-Mecanum-wheel omnidirectional mobile robot with symmetrical and concentric layout
structure, and the motion simulation of the three-Mecanum-wheeled platform is compared with that
of the symmetrical four-Mecanum-wheeled mobile robot platform. Zhang et al. [27] studied the three-
and four-Mecanum-wheeled concentric layouts and analyzed the influence of the angles between wheel
axes for a centered layout. He et al. [14] studied the two most used arrangement modes of Mecanum
wheels, Type-X and Type-O, and used the inverse velocity Jacobian matrix of the arrangement to judge
whether a vehicle can fulfill omnidirectional movement. The main contributions of these studies on
wheel configuration include: (1) the method of establishing a kinematics equation of an omnidirectional
mobile robot is proposed; (2) the method of judging omnidirectional mobility by rank of the Jacobian
matrix of inverse kinematics is obtained; (3) the possible configuration of three or four Mecanum wheels
is summarized and analyzed and compared. However, when using an inverse kinematics Jacobian
matrix to analyze a multiple-Mecanum-wheeled mobile robot system, the calculation process is complex.
Previous studies have not systematically summarized multiple-Mecanum-wheel (more than four
wheels) configurations, and have not explicitly proposed a method to obtain the wheel configurations
for omnidirectional mobile robots with more than four Mecanum wheels. This study explores a simple
and efficient method to judge whether the wheel configurations possess omnidirectional mobility. On
this basis, the common wheel configurations are judged and analyzed, the law of wheel configurations
is explored, and the topological design methods of wheel configurations for an omnidirectional mobile
robot are summarized and refined.

This paper is organized as follows: In Section 2, on the basis of studying the kinematic constraints
of a single Mecanum wheel in a mobile system, the kinematics model of an n-Mecanum-wheeled mobile
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robot is further deduced. In Section 3, the relationship between the intersections of bottom-rollers
axles of any three Mecanum wheels and the column rank of the Jacobian matrix of inverse kinematics
of the mobile robot is established, and a bottom-rollers axles intersections approach for judging the
omnidirectional mobility of Mecanum wheel configurations is proposed and proved theoretically, which
is a simple and efficient geometric method. In Section 4, the four-Mecanum-wheel configurations are
judged by using a bottom-rollers axles intersections approach, and the optimal four-Mecanum-wheel
configuration is selected through comprehensive analysis and theoretical verification. In Section 5:
firstly, the above method is used to judge the omnidirectional motion of a combined configuration
consisting of two four-Mecanum-wheel configurations, and then the sub-configuration judgment
method, which can be extended to N sub-configuration combinations is obtained. Secondly, this
judgment method is used to analyze the Mecanum wheel configurations and combination configurations
for common omnidirectional mobile robots, and clarify the law determining wheel configuration.
Finally, the topological design methods of the Mecanum wheel configurations are summarized and
refined, including the basic configuration array method, multiple wheel replacement method and
combination method. Furthermore, based on the symmetrical four-Mecanum-wheel configuration, the
Mecanum wheel configurations are generated by using the topological design methods.

2. Kinematics Model of an Omnidirectional Mobile Robot with n Mecanum Wheels

2.1. Mecanum Wheel Configurations of the Single Omnidirectional Mobile Robot

For an independent Mecanum-wheeled mobile robot, the wheel configurations can be mainly
divided into two categories: centripetal configuration and symmetrical rectangular configuration [24],
as shown in Figure 1. In Figure 1, the Mecanum wheel is represented by a rectangle with an oblique
line in the middle, in which the oblique line represents the bottom roller that contacts with the ground.
In the former configuration, the axles of all wheels intersect at the same intersection point, as shown
in Figure 1a. In Figure 1a, the centerline OOi of the mobile robot coordinate system XOY and wheel
local coordinate system XiOiYi is collinear with coordinate axis Xi. In order to balance the load of each
wheel, the wheels are evenly distributed in a 360◦ circumference. This centripetal configuration of an
omnidirectional mobile robot usually composes of three [1,26] or four [27] Mecanum wheels. In the
symmetrical rectangular configuration in Figure 1b, the Mecanum wheels are symmetrically arranged
on both sides of the line going through the center of the robot, and the overall structure is rectangular.
Based on the study of the kinematics constraints of a single Mecanum wheel, the kinematics model
of an n-Mecanum-wheel mobile robot can be further derived, and then the omnidirectional motion
characteristics of the mobile systems can be analyzed.
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Figure 1. Wheel configurations of the single-Mecanum-wheeled robot: (a) centripetal configuration; 
(b) symmetrical rectangular configuration. 
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(b) symmetrical rectangular configuration.



Symmetry 2019, 11, 1268 4 of 27

2.2. Kinematics Constraint Model of a Single Mecanum Wheel and Kinematics Model of an n-Mecanum-
Wheel Robot

The kinematics research of the Mecanum wheel is similar to that of a traditional wheeled mobile
system. The kinematics model of the Mecanum-wheel mobile system can also be built by a bottom-up
process. Each of the relatively independent Mecanum wheels contributes to the motion of the system
and is relatively constrained by the motion of the system. Because the Mecanum wheels are installed
on the chassis of a mobile system, the kinematic constraints of each wheel can be combined to describe
the kinematic constraints of the whole mobile system.

In this section, the kinematic constraints of a single Mecanum wheel are studied first, and then,
the linear mapping relationship between the velocity of the mobile system and the velocity of a single
wheel is obtained. Then, the kinematic constraints of each wheel are combined to describe the kinematic
constraints of the entire mobile system.

In order to reduce the difficulty of system kinematics modeling, several assumptions are usually
introduced to discuss the motion constraint relationship of wheels under ideal conditions. (1) Assuming
that the whole mobile robot, especially the wheels, is rigid, it will not undergo mechanical deformation;
(2) the entire range of motion is confined to a 2D plane, ignoring the impact of irregular ground;
(3) ignoring the factor of rollers slipping, that is, the roller has enough friction with the ground;
(4) assuming that the contact point between the roller and the ground is located directly below the
wheel center. Based on the above assumptions, the kinematic constraints of a single Mecanum wheel
will be derived by a vector method [17] and matrix transformation method [18].

(a) Vector Method
In order not to lose generality, a mobile robot consisting of n Mecanum wheels is designed,

in which the i-th wheel is mounted on the body at a certain angle, as shown in Figure 2. R and r are
the radius of the wheel and the radius of the roller, respectively; Oi is the center of the i-th wheel;
Zi represents the direction passing through the wheel center Oi and perpendicular to the ground; Pi
is the center of the roller contacting the ground, Qi is the contact point between the roller and the
ground, according to the hypothesis, both of them are under Oi at the same time; zi represents the
direction passing through the roller center Pi and perpendicular to the ground. Xi and hi represent the
rotation axis direction of an active Mecanum wheel and passive roller, respectively. The two angular
velocity vectors are

.
ϕi and

.
φi, and Xi and Yi constitute the right-handed Cartesian coordinate system

Oi −XiYiZi, hi and gi constitute the right-handed Cartesian coordinate system Pi − gihizi. (li,αi) is used
to describe the relative installation orientation of the origin O of the body coordinate system and the
center Oi of the wheel; the angle between the Xi axis and the li is βi, which is defined as the installation
attitude angle of the local coordinate system of the wheel; the velocity of the motion center is vo in the
current state, and the angle between the vo and the X axis is θo;

.
θ is the rotation angular velocity of the

system when moving in the plane. The angle between the projection of Xi and hi on the plane is the tilt
angle γi(0◦ <

∣∣∣γi
∣∣∣ < 90◦) of the roller.

According to the above definition, the motion relationship between the active wheel and the
passive roller can be expressed by the formula

voi = vpi + vi. (1)

In this formula, voi is the velocity vector of the center of the i-th wheel; vpi is the velocity vector of
the roller in contact with the ground; vi is the relative velocity vector of point Pi and Oi.
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Figure 2. Kinematic constraints of a Mecanum wheel and the coordinate systems of a mobile system:
(a) structural principle of a Mecanum wheel; (b) Kinematic constraints diagram of a Mecanum wheel
on the robot using a vector method; (c) Kinematic constraint diagram of a Mecanum wheel using a
matrix transformation method; (d) Location of the mobile robot in the global coordinate system and the
relationship regarding position between two local coordinate systems.

ωo and ωp represent the rotational angular velocity vectors of the active wheel and the passive
roller, respectively, as

ωo =
.
θZi +

.
ϕiXi, ωp = ωo +

.
φihi. (2)

then
vpi = ωp ×QiPi = −r(

.
ϕiYi −

.
φigi), vi = ωo ×PiOi = −(R− r)

.
ϕiYi. (3)

From Formulas (1) and (3), we obtain

voi = −R
.
ϕiYi + r

.
φigi. (4)

If the known moving system moves in the plane, the relation between the wheel center Oi and the
origin O of the body coordinate system can be expressed as

voi = vo +
.
θξli. (5)

In this formula,ξ =

[
0 −1
1 0

]
, which means that the vector li is rotated

90 degrees counterclockwise.
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The following formula can be obtained from Formulas (4) and (5).

−R
.
ϕiYi + r

.
φigi = vo +

.
θξli. (6)

According to the definition of vectors, we can obtain

hi · gi = 0, hi · Yi = sinγi. (7)

Since the roller rotates passively, its angular velocity
.
φi is an uncontrollable variable. According

to the calculation result defined by the vector in Formula (7), multiplying the vector hi at the same time
on both sides of Formula (6), the subformula containing the term

.
φi can be eliminated.

−R(sinγi)
.
ϕi = hT

i vo + hT
i

.
θξli. (8)

Then, the inverse kinematics equation of the i-th Mecanum wheel is

.
ϕi = −

1
R(sinγi)

[
hT

i ξli hT
i

] .
θ
vo

. (9)

Given the kinematic constraint equation of any Mecanum wheel in the plane, the inverse kinematics
equation of the omnidirectional motion system composed of n Mecanum wheels whose radii are R can
be expressed as 

.
ϕ =

[ .
ϕ1

.
ϕ2 · · ·

.
ϕn

]T

S = diag
(

1
sinγ1

, 1
sinγ2

, · · · , 1
sinγn

)

M =



hT
1ξl1 hT

1

hT
2ξl2 hT

2

...
...

hT
nξln hT

n


J = − 1

R SM

t =
[ .
θ vo

]T

.

.
ϕ = Jt

(10)

In the formula,
.
ϕ is the angular velocity matrix of the wheel; J is the Jacobian matrix of the inverse

kinematics velocity of the mobile robot, including the matrix S of tilt angle of rollers and the matrix M
of wheel installation orientation; t is the rotation matrix of the mobile system.

In this section, three coordinate transformation matrices—including translation transformation,
rotation transformation, and composite transformation—are introduced, which form an important
theoretical basis for studying the kinematics constraints of mobile systems. The kinematic constraints
of a single Mecanum wheel are derived by the vector method. On this basis, the general kinematic
model of the mobile system composed of n Mecanum wheels is obtained.

(b) Matrix Transformation Method
Matrix transformation is another common method for kinematics analysis of a wheeled mobile

system, which can be used for kinematics modeling of an omnidirectional wheel. The precondition
of using this method to study a single Mecanum wheel still needs to satisfy the above assumptions
and start with the study of rolling and sliding constraints of the wheel. The motion constraints of one
Mecanum wheel are shown in Figure 2c [23,24].

Based on the above assumptions, the motion between the roller and the ground satisfies the
condition of pure rolling, the contact point between the roller and the ground does not slip, and the
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instantaneous velocity is 0. According to the constraints of rolling and sliding, the following formulas
can be obtained 

.
x sin(αi + βi) −

.
y cos(αi + βi) − li

.
θ cos βi = R

.
ϕi − vgi cosγi

.
x cos(αi + βi) +

.
y sin(αi + βi) + li

.
θ sin βi = −vgi sinγi

. (11)

In the formula,
( .

x
.
y

.
θ

)T
is the motion state of the mobile system in its own local coordinate

system; vgi is the central velocity of the roller contacting the ground on the i-th Mecanum wheel.
Because the rollers rotate passively, the velocity of motion vgi is an uncontrollable variable, which is

usually not taken into account. By eliminating vgi from Formula (11), we obtain

.
x cos(αi + βi + γi) +

.
y sin(αi + βi + γi) + li

.
θ sin(βi + γi) = −R

.
ϕi sinγi. (12)

The inverse kinematics matrix equation of any Mecanum wheel is

[
cos(αi + βi + γi) sin(αi + βi + γi) li sin(βi + γi)

]
.
x
.
y
.
θ

+ R
.
ϕi sinγi = 0. (13)

The motion state in a local coordinate system can be mapped to a global coordinate system, as
shown in Figure 2d, which is expressed as[

cos(αi + βi + γi) sin(αi + βi + γi) li sin(βi + γi)
]
Rot(θ)

.
ζI + R

.
ϕi sinγi = 0. (14)

where

Rot(θ) =


cosθ sinθ 0
− sinθ cosθ 0

0 0 1

.
.
ζI = Rot−1(θ)

.
ζ = Rot−1(θ)


.
x
.
y
.
θ

.
3. Bottom-Roller Axle Intersections Approach for Judging Robot’s Omnidirectional Mobility

3.1. Conditions for Omnidirectional Motion of a Mecanum-Wheeled Mobile Robot System

If the Mecanum wheel configuration of a robot cannot achieve omnidirectional movement, it will
lose practical value. Therefore, it is necessary to study the relationship between the wheel configuration
and the realization of the omnidirectional movement of the mobile system. The inverse kinematics
velocity Jacobian matrix of a mobile system consisting of n(n ≥ 3) Mecanum wheels is Jn×3. According
to the kinematics principle of the robot, if the Jacobian matrix is a column full rank matrix, that is,
rank(Jn×3) = 3, the mobile robot system will have three degrees of freedom in the plane. The Jacobian
matrix Jn×3 is written into the form of block matrix, which is expressed as

Jn×3 =

(
J3×3

J(n−3)×3

)
. (15)

Assuming that the third-order square matrix J3×3 is an invertible matrix, i.e., rank(J3×3) = 3.
According to the elementary transformation theory of a matrix, the simplest matrix of the reversible
matrix J3×3 is the unit matrix I3 of the third order.

J3×3 → I3. (16)
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Extending this conclusion to the whole Jacobian matrix Jn×3, then

Jn×3 →

(
I3

(n−3)×3

)
. (17)

Therefore, in the mobile system composed of n Mecanum wheels, the system can achieve
omnidirectional movement, as long as the inverse kinematics velocity Jacobian matrix of any three
wheels is a column full rank matrix.

According to the basic theory of coordinate transformation, when the coordinate system changes,
the description of the motion state of the mobile system will change accordingly, and the Jacobian
matrix of its inverse kinematics velocity will change, which can be expressed by the following formula

J′n×3 = Jn×3K3×3. (18)

where, J′n×3 is the inverse kinematics velocity Jacobian matrix in the new coordinate system; Jn×3 is the
inverse kinematics velocity Jacobian matrix in the original coordinate system; K3×3 is reversible square
matrix of the third order, then, rank(K3×3) = 3.

Let C = JK, given K is an invertible matrix, |K| , 0, the inverse matrix exists, then CK−1 = J.
According to the properties of matrices—the rank of the product of the matrices is not greater

than the rank of each matrix—the following formulas can be derived{
rank(JK) ≤ rank(J)
rank(J) = rank(CK−1) ≤ rank(C) = rank(JK)

. (19)

According to the above formula, the rank of the product of J and K is equal to the rank of J, that is

rank(J′) = rank(JK) = rank(J). (20)

The above deduction shows that the change of the coordinate system will not change the rank of
the Jacobian matrix in the mobile system. Under certain circumstances, the appropriate coordinate
system can be selected to simplify the calculation of the Jacobian matrix rank.

3.2. Relation Between the Roller Axle Intersection Points Number on Three Mecanum Wheels and the Column
Rank of the Jacobian Matrix

The two straight lines in the plane have three positional relations: parallel, intersection,
and coincidence, and the corresponding number of intersections is 0, 1, and infinite. In a plane,
the number of intersections of three roller axles on three Mecanum wheels is 0, 1, 2, 3, and infinite.
Next, we will discuss the relationship between the number of intersections and the rank of the Jacobian
matrix. That is, the relationship between Mecanum wheel configurations and omnidirectional motion
is studied. In this paper, infinite intersection points are specialized into one intersection point, which is
discussed in detail below.

3.2.1. No Intersection of the Three Bottom-Rollers Axles

In Figure 3, the axles of any two bottom-rollers are parallel to each other, and the number of
intersections is 0. The mobile system coordinate XOY is established by choosing any point on one
of the roller axles as the origin, and then the local wheel coordinate systems XiOiYi (i = 1, 2, 3) are
established in counterclockwise order. (αi, βi, li) is used to describe the positional state of each wheel
relative to the coordinate system XOY of the mobile robot system. The radius of the Mecanum wheel
is R, and the tilt angle of rollers of each Mecanum wheel is γi. The relationship of the parameters is
shown in Table 1.
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Figure 3. Wheel configuration of the mobile robot with three Mecanum wheels whose bottom-roller
axles are parallel to each other.

Table 1. Relationship between the parameters of the three Mecanum wheels in Figure 3.

Serial Number |αi|∈[0◦,360◦) |βi|∈[0◦, 180◦] |γi|∈(0◦, 90◦)

1 α1 β1 γ1
2 α2 β2 γ2
3 α3 β3 γ3

The origin O of the coordinate system XOY is located on the bottom-roller axle of wheel O1,
and the axles of any two rollers are parallel to each other, so the following relationship is established as

β1 + γ1 = 0, αi + βi + γi = ci (i = 1, 2, 3). (21)

The tilt angles of the axles of the three rollers are the same, so let ci = α1.
From Formulas (10), (13), and (21), the inverse kinematics velocity Jacobian matrix of the system

is obtained as

J = −
1
R


cosα1
sinγ1

sinα1
sinγ1

l1 sin(β1+γ1)
sinγ1

cosα1
sinγ2

sinα1
sinγ2

l2 sin(β2+γ2)
sinγ2

cosα1
sinγ3

sinα1
sinγ3

l3 sin(β3+γ3)
sinγ3

 = − 1
R

SM. (22)

where

S = diag
(

1
sinγ1

,
1

sinγ2
,

1
sinγ3

)
, M =


cosα1 sinα1 l1 sin(β1 + γ1)

cosα1 sinα1 l2 sin(β2 + γ2)

cosα1 sinα1 l3 sin(β3 + γ3)

.
The roller tilt angle matrix S is a reversible square matrix of the third order. The rank of inverse

kinematics velocity Jacobian matrix J depends on the matrix M that describes the installation orientation
information of the Mecanum wheel, that is, rank(J) = rank(SM) = rank(M).

According to Formula (22), the following formula can be obtained.

det(M) = 0, rank(M) , 3. (23)

According to the multiplication theorem of the determinant, we obtain

det(J) = 0, rank(J) , 3. (24)

According to the above analysis, in a mobile system composed of three Mecanum wheels, if the
axles of rollers are parallel to each other and the number of intersection points is 0, then the mobile
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system has singularity. The inverse kinematics velocity Jacobian matrix of the system is not a column
full rank matrix, so the mobile system cannot achieve omnidirectional movement.

3.2.2. The Axles of the Three Bottom-Rollers Intersect at One Point

In Figure 4, the axles of the three bottom-rollers intersect at one point, and the coordinate
system XOY of the mobile robot system is established with the intersection point as the origin,
and the local wheel coordinate systems XiOiYi (i = 1, 2, 3) are established in a counterclockwise order.
The relationship of the parameters is shown in Table 2.
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Figure 4. Wheel Configuration of the mobile robot with three Mecanum wheels whose bottom-roller
axles intersect at one point.

Table 2. Relationship between the parameters of the three Mecanum wheels in Figure 4.

Serial Number |αi|∈[0◦,360◦) |βi|∈[0◦, 180◦] |γi|∈(0◦, 90◦)

1 α1 −γ1 γ1
2 α2 −180◦−γ2 γ2
3 α3 −γ3 γ3

According to the parameters in Table 2, we can obtain

βi + γi = ci (ci = 0◦ or ± 180◦ , i = 1, 2, 3) (25)

then,
sin(βi + γi) = 0. (26)

The matrix M of wheel installation orientation is

M =


cos(α1 + c1) sin(α1 + c1) l1 sin(c1)

cos(α2 + c2) sin(α2 + c2) l2 sin(c2)

cos(α3 + c3) sin(α3 + c3) l3 sin(c3)

 =


cos(α1 + c1) sin(α1 + c1) 0
cos(α2 + c2) sin(α2 + c2) 0
cos(α3 + c3) sin(α3 + c3) 0

.
The values of the third column of matrix M are all 0, then,

det(M) = 0, rank(M) , 3. (27)

then,
det(J) = 0, rank(J) , 3. (28)

In the mobile system composed of three Mecanum wheels, if the axles of the three bottom-rollers
intersect at one point, the mobile system has singularity, and the inverse kinematics velocity Jacobian
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matrix does not satisfy the condition of a column full rank matrix; therefore, the mobile system cannot
achieve omnidirectional motion.

If the axles of any two bottom-rollers coincide with each other or the axles of three bottom-rollers
coincide with each other, it can be concluded that the axles of two bottom-rollers intersect at one point,
which also satisfies the inference that the axles of three bottom-rollers intersect at one point. There are
four configurations of three Mecanum wheels whose axles intersect at one point, three of which have
collinear roller axles.

3.2.3. The Axles of the Three Bottom-Rollers Intersect at Two Points

According to the hypothesis, when two roller axles intersect at one point, the other roller axe must
be parallel to one of the roller axles. As shown in Figure 5, if any two roller axles coincide, the result
will inevitably be transformed into the case of axles intersecting at one point. The coordinate system
XOY is established by arbitrarily choosing one of the intersections as the origin O, and the local wheel
coordinate system XiOiYi (i = 1, 2, 3) is also established in counterclockwise order. The relationship of
the parameters is shown in Table 3.
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Figure 5. Wheel configuration of the mobile robot with three Mecanum wheels whose roller axles
intersect at two points.

Table 3. Relationship between the parameters of the three Mecanum wheels in Figure 5.

Serial Number |αi|∈[0◦, 360◦) |βi|∈[0◦, 180◦] |γi|∈(0◦, 90◦)

1 α1 −γ1 γ1
2 α2 −180◦−γ2 γ2
3 α3 β3 γ3

The system coordinate system XOY is established at the intersection of the roller axles of wheel
O1 and wheel O2, then we can obtain

βi + γi = ci (ci = 0◦ or± 180◦, i = 1, 2), sin(βi + γi) = 0. (29)

The roller axles of wheels O1 and O3 are parallel to each other, and the following relations
are established

αi + βi + γi = α1 (i = 1, 3). (30)
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Thus, the matrix M can be obtained ad

M =


cos(α1) sin(α1) l1 sin(c1)

cos(α2 + c2) sin(α2 + c2) l2 sin(c2)

cos(α1) sin(α1) l3 sin(β3 + γ3)


=


cos(α1) sin(α1) 0

cos(α2 + c2) sin(α2 + c2) 0
cos(α1) sin(α1) l3 sin(β3 + γ3)

.
The determinant of matrix M is

|M| = l3 sin(β3 + γ3)[ cos(α1) sin(α2 + c2) − sin(α1) cos(α2 + c2)]

= l3 sin(β3 + γ3) sin(α2 + c2 − α1)
(31)

Combining with the discussion in Section 3.2.2, the roller axle of wheel O3 does not coincide with
the straight line l3, so β3 + γ3 , 0 or ±180◦, then, sin(β3 + γ3) , 0.

Because the roller axles of wheels O1 and O2 intersect at one point, α2 + α1 , 0 or ±180◦ and
sin(α2 + c2 − α1) , 0, then, the following is established

det(M) , 0, rank(M) = 3. (32)

then,
det(J) , 0, rank(J) = 3. (33)

In the mobile system consisting of three Mecanum wheels, if the axles of the three bottom-rollers
intersect at two points, there is no singularity in the system, and the Jacobian matrix of the inverse
kinematics velocity is a column full rank matrix. The mobile system can realize omnidirectional
movement in the plane.

3.2.4. The Axles of the Three Bottom-Rollers Intersect at Three Points

When the axles of the three bottom-rollers intersect at three points, no two axles of the bottom-rollers
can be parallel or coincide with each other, as shown in Figure 6. The coordinate system XOY is
established by arbitrarily selecting one of the intersections as the origin. The relationship of the
parameters is shown in Table 4.
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Figure 6. Configuration of mobile robot with three Mecanum wheels whose roller axles intersect at
three points.
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Table 4. Relationship between the parameters of the three Mecanum wheels in Figure 6.

Serial Number |αi|∈[0◦, 360◦) |βi|∈[0◦, 180◦] |γi|∈(0◦, 90◦)

1 α1 −γ1 γ1
‘2 α2 −180◦−γ2 γ2
3 α3 β3 γ3

The coordinate system XOY is established at the intersection point of roller axles of wheel O1 and
wheel O2. The following formula can be obtained

βi + γi = ci (ci = 0 or ± 180◦, i = 1, 2), sin(βi + γi) = 0. (34)

The matrix M can be obtained

M =


cos(α1 + c1) sin(α1 + c1) 0
cos(α2 + c2) sin(α2 + c2) 0

cos(α3 + β3 + γ3) sin(α3 + β3 + γ3) l3 sin(β3 + γ3)

.
The determinant of matrix M is

|M| = l3 sin(β3 + γ3)[ cos(α1 + c1) sin(α2 + c2) − sin(α1 + c1) cos(α2 + c2)]

= l3 sin(β3 + γ3) sin(α2 + c2 − α1 − c1)
(35)

According to the discussion results in Sections 3.2.2 and 3.2.3, we can obtain

sin(β3 + γ3) , 0.

Roller axles of wheel O1 and wheel O2 intersect at one point, α1 − α2 , 180◦ ·m (m = 0,±1,±2,±3);
therefore, sin(α2 + c2 − α1 − c1) , 0. The value is substituted into Formula (35), we can obtain

det(M) , 0, rank(M) = 3. (36)

then,
det(J) , 0, rank(J) = 3. (37)

In a mobile system consisting of three Mecanum wheels, if the axles of the three bottom-rollers
intersect at three points, there is no singularity in the system, and the Jacobian matrix of the inverse
kinematics velocity satisfies the column full-rank condition, and the mobile system can achieve
omnidirectional motion in the plane.

According to the deduction of Formula (17) and the analysis results of the number of intersection
points mentioned above, the condition for the omnidirectional motion of the mobile system composed
of multiple Mecanum wheels (three wheels or more) is that any three axles of bottom-rollers in contact
with the ground in three Mecanum wheels intersect at two or three points, which can be called a
‘bottom-roller axle intersections approach. Table 5 illustrates the three-Mecanum-wheel configurations
of the omnidirectional mobile robot and shows the relationship between the number of intersection
points and the column full rank. Based on these illustrations, we can quickly judge whether the mobile
system can achieve omnidirectional movement using only wheel configurations.
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Table 5. Three-Mecanum-wheel configurations of the omnidirectional mobile robot.

Number of
Intersection Points Typical Configurations Column Full Rank

0
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3.3. Three-Mecanum-Wheel Configurations of the Mobile Robot

In order to balance the load, the three-wheel configuration usually adopts a circular array
arrangement. The common three-Mecanum-wheel configurations include a centripetal circular array
configuration [26], a non-centripetal circular array configuration [1], and a star-type circular array
configuration, as shown in Figure 7a–c, respectively. Mecanum wheels in three-wheel configurations
usually have the same structure, whose rollers have the same inclination. Judging by the bottom-roller
axle intersections approach, these configurations all have omnidirectional mobility performance.
The wheels in the three-wheel configuration are, typically, special Mecanum wheels whose rollers’
axles are orthogonal to the hub axle. These are known as omniwheels, transwheels, or multidirectional
wheels, as shown in Figure 7f. In this article, we use an orthogonal Mecanum wheel to name this kind
of wheel. The two typical orthogonal Mecanum wheel configurations are the centripetal circular array
configuration [18,28,29] and T-configuration, as shown in Figure 7d,e, respectively. The configuration
in Figure 7d is a rotational symmetry configuration, and this configuration is often used for indoor
mobile service robots and light-duty handling robots. In this article, the orthogonal Mecanum wheel
configurations are not studied in depth.
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Figure 7. Three-Mecanum-wheel configurations: (a) centripetal circular array configuration;
(b) Non-centripetal circular array configuration; (c) star-type circular array configuration; (d) centripetal
circular array configuration of orthogonal Mecanum wheels; (e) T-configuration of the orthogonal
Mecanum wheels; (f) an orthogonal Mecanum wheel.

4. Symmetrical Wheel Configurations of the Four-Mecanum-Wheel Mobile Robot

4.1. Judging the Four-Mecanum-Wheel Configurations by a Bottom-Roller Axle Intersections Approach

At present, the mobile robot with four Mecanum wheels is the most popular configuration in
both scientific research and industrial application. There are many possible wheel configurations
for the four-Mecanum-wheel robot [23,25,30], some of them are illustrated in Figure 8. In Figure 8,
the inclined line on the wheel in the figure represents the inclined direction of roller in contact with the
ground. Figure 8a–j show 10 rectangular configurations of four wheels that are arranged at the corner
and whose axles are parallel to the centerline of robot. Figure 8k–n show four possible centripetal
configurations of four wheels. Figure 8o shows a centripetal circular array configuration of four
omniwheels. In the configurations (a), (f), and (k), any three roller axles are parallel to each other
or coincide with each other. The number of intersection points of the three roller axles is 0 or 1 (the
overlapping axles are considered to intersect at one point). The column ranks of the Jacobian matrix of
these configurations are 2. These configurations obviously cannot achieve omnidirectional movement.
In the wheel configurations (b)–(e), (g)–(j), and (l)–(n), the axles of the bottom-rollers of three wheels
intersect at two points, so the Jacobian matrices of these wheel configurations are column full-rank
matrices. In theory, these configurations can achieve omnidirectional movement in the plane.

In practical applications, besides satisfying the conditions of the column full rank of the Jacobian
matrix, the configuration also needs good operability and driving performance. Wheel configurations
(b), (c), (d), (g), (h), (i), (l), and (m) can satisfy the conditions of omnidirectional motion, but the
symmetry and the driving performance of the mobile system is poor. Considering the influence of
dynamic factors, such as friction and moment of inertia, in actual operation, there will be a large
deviation in the motion. Therefore, these configurations are generally not used. In addition, if the
centers of four wheels in the configuration (j) form a square, the axles of the three bottom-rollers intersect
at the one point, the column rank of Jacobian matrix in these configurations will change from 3 to 2,
and it is no longer an omnidirectional mobile system. Configuration (n) has omnidirectional mobility,
but the motion friction component of the configuration cannot offset itself in the course of movement,
and there is a tendency to rotate in situ. Configuration (o) is the configuration (n) using orthogonal
Mecanum wheels, mostly for small robotic mobile platforms. The symmetry of wheels configurations
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(e) and (j) is the best among these wheel configurations that can achieve omnidirectional motion.
However, when rotating on the spot, the mobile robot system with the configuration (j) has a small
driving torque and a weak driving effect. Therefore, the configuration (e) is the optimal configuration
of a four-Mecanum-wheel system. The characteristics of the Mecanum wheel configurations in Figure 8
are summarized in Table 6.Symmetry 2019, 11, x FOR PEER REVIEW 16 of 29 
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Figure 8. Four-Mecanum-wheel configurations: (a)–(j) rectangular configurations of four wheels that
are arranged at the corner and whose axles are parallel to the centerline of the robot; (k)–(n) centripetal
configurations of four Mecanum wheels; (o) centripetal circular array configurations of four orthogonal
Mecanum wheels.

Table 6. Characteristics of the Mecanum wheel configurations in Figure 8.

Configurations in Figure 8 a b c d e f g h i J k l m n
Intersections 0 2 2 2 2 0 2 2 2 2 0 2 2 2
Column rank 2 3 3 3 3 2 3 3 3 3 2 3 3 3
Column full Rank N Y Y Y Y N Y Y Y Y/N N Y Y Y
Omnidirectional motion capacity n B B B G n B B B G/n n B B G

Note: Y = the Jacobian matrix is a column full-rank matrix, N = not; n = the mobile robot system does not have
omnidirectional mobility capacity; B = the omnidirectional motion capacity is not good; G = good motion capacity.

4.2. Theoretical Verification for the Symmetrical Rectangular Configurations with Four Mecanum Wheels

The two symmetrical rectangular configurations of the four-Mecanum-wheel mobile robot are
shown in Figure 9. Choosing the geometric symmetry center as the origin O, the rectangular coordinate
system XOY fixed with the mobile robot is established. The structural parameters of each Mecanum
wheel are the same; therefore, γ1 = −γ2 = γ3 = −γ4 = −γ (γ is positive) and

∣∣∣γi
∣∣∣ = 45◦ (i = 1, 2, 3, 4).
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Figure 9. Coordinate system assignments for the four-Mecanum-wheel robot with a symmetrical
structure: (a) wheel configuration in Figure 7e; (b) wheel configuration in Figure 7j.

In Figure 9a, the bottom-rollers’ axles of the four Mecanum wheels intersect at points A, B, C,
and D. According to the kinematics analysis of a single Mecanum wheel in Section 2.2, the relationship
between angle α1 and angle β1 corresponding to wheel O1 can be determined as

α1 + β1 = 0. (38)

By substituting the conditions of Formula (38) into Formula (13), we can obtain

[
cosγ1 sinγ1 l sin(β1 + γ1)

]
.
x
.
y
.
θ

+ R
.
ϕ1 sinγ1 = 0. (39)

Formula (39) can be written as

.
ϕ1 = −

1
R

[
1

tanγ1
1 W − H

tanγ1

]
.
x
.
y
.
θ

. (40)

Similarly, the inverse kinematics equations of the other three wheels are expressed as

.
ϕ2 = −

1
R

[
1

tanγ2
1 −W − H
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]
.
x
.
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.
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. (41)

.
ϕ3 = −
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[
1

tanγ3
1 −W + H

tanγ3

]
.
x
.
y
.
θ

. (42)

.
ϕ4 = −

1
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tanγ4
1 W + H

tanγ4

]
.
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.
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Because γ1 = −γ2 = γ3 = −γ4 = −γ = −45◦, the inverse kinematics equation of the
four-Mecanum-wheel mobile robot is [31]

.
ϕ1.
ϕ2.
ϕ3.
ϕ4

 = −
1
R


− cotγ 1 W + H cotγ
cotγ 1 −W −H cotγ
− cotγ 1 −W −H cotγ
cotγ 1 W + H cotγ




.
x
.
y
.
θ

 = − 1
R


−1 1 W + H
1 1 −(W + H)

−1 1 −(W + H)

1 1 W + H




.
x
.
y
.
θ

. (44)

The inverse kinematics velocity Jacobian matrix is expressed as

J = −
1
R


−1 1 W + H
1 1 −(W + H)

−1 1 −(W + H)

1 1 W + H

.
According to Formula (44), the symmetrical rectangular configuration of the four-Mecanum-wheel

robot shown in Figure 9a satisfies the column full rank of the inverse kinematics velocity Jacobian
matrix; therefore, it can achieve omnidirectional motion.

In the wheel configuration shown in Figure 9b, the bottom-rollers’ axles of the four Mecanum
wheels intersect at point O, therefore, W −H cotγ = 0. According to Formula (45) and the structural
parameters of the configuration shown in Figure 8b, the inverse kinematics equation of the mobile
robot is 

.
ϕ1.
ϕ2.
ϕ3.
ϕ4

 = −
1
R


cotγ 1 W −H cotγ
− cotγ 1 −(W −H cotγ)
cotγ 1 −(W −H cotγ)
− cotγ 1 W −H cotγ




.
x
.
y
.
θ

 = − 1
R


1 1 0
−1 1 0
1 1 0
−1 1 0




.
x
.
y
.
θ

. (45)

In Formula (45), the third column of the Jacobian matrix is all 0, which limits the central rotation
of the mobile robot. The Jacobian matrix of the inverse kinematics velocity is not a column full rank,
and the mobile system cannot achieve omnidirectional motion.

The above theoretical derivation verifies the correctness of the roller axle intersection approach.
It can be judged whether the wheel configuration has omnidirectional movement performance
according to the number of axle intersection points of the bottom-rollers in contact with the ground.
The position of the intersection points can also be used to judge whether the wheel configuration
has good or bad omnidirectional mobility performance. If the intersection position is symmetrical,
the wheel configuration has good omnidirectional mobility. As shown in Figure 9a, the axles of
the bottom-rollers of the four wheels of the symmetrical rectangular configuration intersect at four
points—A, B, C, and D—and the intersection points are located far from the geometric center and are
symmetrical. Therefore, this configuration has good omnidirectional mobility characteristics and is the
most widely used four-Mecanum-wheel configuration.

5. Design Method of Mecanum Wheel Configurations for the Omnidirectional Mobile Robot

5.1. Sub-Configuration Judgment Method for Judging the Omnidirectional Motion Capacity of the Wheel
Combination Configurations

In some applications, especially for moving large-scale components, it is necessary to combine
multiple robots to transport objects cooperatively. Figure 10 is a tandem configuration composed of
two four-Mecanum-wheel sub-configurations in Figure 9b. By using a roller axle intersection approach,
the omnidirectional movement performance of this configuration can be judged. If the bottom-rollers
axles intersect at one point of any four-Mecanum-wheel configuration, the Mecanum configuration
cannot achieve omni-directional motion. However, the four-Mecanum-wheel sub-configuration of 3,
4, 5, and 6 wheels does achieve omnidirectional movement, which is the same configuration as that
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shown in Figure 9a, and the configuration of 1, 2, 7, and 8 also achieves omnidirectional movement
ability. The tandem configuration shown in Figure 10 can move omnidirectionally. Therefore, if a
multiple-wheel configuration has any sub-configuration which has omnidirectional motion capacity,
it can also achieve omnidirectional motion. This judgment method is evolved from the approach of
bottom-roller axle intersection, which can be a called sub-configuration judgment method. As shown
below, the conclusion is validated by the Jacobian matrix of the inverse kinematics velocity of the robot
mobile system.
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Figure 10. A tandem configuration composed of two symmetrical
four-Mecanum-wheel sub-configurations.

In Figure 10, the coordinate system XOY located in the symmetric center of the tandem
configuration is established. Its offset relative to the two local coordinate systems X1O1Y1 and

X2O2Y2 is Hd. Let
( .

x
.
y

.
θ

)T
be the generalized velocity of the system and the angular velocity

of the i-th Mecanum wheel be
.
ϕi (i = 1, 2, · · · , 8). The inverse kinematics equations of the two

four-Mecanum-wheel configurations are derived when the original coordinate system is moved to the
designated coordinate system XOY.

.
ϕ1.
ϕ2.
ϕ3.
ϕ4

 = J1K−1
1 (Hd,−90◦, 0)


.
x
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y
.
θ

 = − 1
R


cotγ 1 −Hd cotγ
− cotγ 1 Hd cotγ
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where,

J1 = J2 = −
1
R


cotγ 1 0
− cotγ 1 0
cotγ 1 0
− cotγ 1 0


K−1

1 (Hd,−90◦, 0) =


1 0 −Hd
0 1 0
0 0 1


K−1

1 (Hd, 90◦, 0) =


1 0 Hd
0 1 0
0 0 1


In the above two formulas, the column rank of the Jacobian matrix of the inverse kinematics velocity

of a mobile robot is still 2, which verifies that the change of coordinate system will not change the rank,
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and the two mobile robots still cannot achieve omnidirectional motion alone. If the motion of two
mobile robots is considered as a whole, the inverse kinematics equation of the eight-Mecanum-wheel
configuration is

.
ϕ1.
ϕ2.
ϕ3.
ϕ4.
ϕ5.
ϕ6.
ϕ7.
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=

[
J1K−1
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cotγ 1 −Hd cotγ
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cotγ 1 Hd cotγ
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.
x
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y
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(48)

According to Formula (48), the inverse kinematics velocity Jacobian matrix of the eight-wheel
configuration is a column full rank matrix. The above deduction verifies the correctness of the
bottom-roller axle intersection approach and the sub-configuration judgment method. The coordinated
motion of the tandem configuration can be realized by controlling the rotational velocities of each wheel
of the configuration. This roller axle intersection approach can also be extended to the combination
configurations of N four-Mecanum-wheel mobile robots.

5.2. Analysis of Mecanum Wheel Configurations and Combination Configurations for Common
Omnidirectional Mobile Robots

Figure 11 shows the Mecanum wheel configurations and their application examples in practical
production. Based on the analysis of these configurations, the deduction method of multi-wheel
configurations can be synthesized. In Section 4, the optimal configuration of the four-Mecanum-wheel
robot has been obtained, which is a symmetrical rectangular configuration, and is denoted as
configuration W4. The front-right and rear-left wheels are right-handed wheels, and the four Mecanum
wheels are mirror-symmetrical in both the front and rear, and are mirror-symmetrical for the left and
right. The KUKA omniMove set with four Mecanum wheels, as shown in Figure 11a, adopts this
configuration W4.

In order to transport large objects, a single mobile robot system needs to use more wheels to
improve its carrying and transportation capacity. Figure 11b is a 12-Mecanum-wheel configuration
adopted by KUKA’s omniMove platform. This 12-Mecanum-wheel configuration consists of three
four-Mecanum-wheel configurations W4, as shown in Figuration 11a, which are connected end
and end to form a robot platform. In order to transport objects with larger volume and weight,
the 12-Mecanum-wheel configuration robot shown in Figure 11b can be combined to form a
36-Mecanum-wheel combination mobile robot platform. The combined AGVs of the KUKA Omnimove
AGV using configuration W36 can carry 63 tons of weight [10]. From Figure 11a–c, we can consider
that the configuration W4 shown in Figure 11a is a sub-configuration of the configuration W12 shown
in Figure 11b, while the configuration W12 is a sub-configuration of the configuration W36 shown in
Figure 11c. Using the sub-configuration judgment method proposed above, both configuration W12
and configuration W36 achieve omnidirectional mobility.
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typical four-Mecanum-wheel configuration W4; (b) a 12-Mecanum-wheel configuration W12; (c) a
combination configuration W36 with three W12; (d) a 24-Mecanum-wheel configuration W24; (e) an
eight-Mecanum-wheel configuration W8, the example: MC-Drive TP 200 of CLAAS; (f) the combination
configuration W16 with two W8, the example: the combination of two MC-Drive TP 200 [12];
(g) an eight-Mecanum-wheel configuration W8, which can combine into a 16-Mecanum-wheel
configuration [32]; (h) a rectangular combination configuration consisting of four W6 [13]. The examples
in (a–d,h) are KUKA omniMove AGVs.
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The 24-Mecanum-wheel configuration W24 in Figure 11d is adopted by KUKA, and the
eight-Mecanum-wheel configuration W8 shown in Figure 11e is adopted by AGV of CLAAS.
Configurations W24 and W8 have the same structural characteristics. The middle four-Mecanum-wheel
combination in W8 and W24 can be considered as configuration W4, as shown in Figure 11a. The four
wheels on both sides of the middle-four wheels constitute the W4 configuration. The configuration
is extended outward from the intermediate configuration W4. Configuration W16 in Figure 11f is a
combination of the two configurations of W8 in Figure 11e. The middle configuration W4 and the
outer layer configuration W4 are also considered as sub-configurations of the entire Mecanum wheels
configuration. The configuration W8 in Figure 11e is a sub-configuration of configuration W16 in
Figure 11f. The configurations in Figure 11d and 11e can be considered to be obtained by replacing
the Mecanum wheels of the basic configuration W4 with the wheel combination including a row of
wheels of the same specification. Mecanum wheels 1, 2, 3, and 4 of configuration W4 in Figure 11a are
replaced by wheels 1-1 and 1-2, 2-1 and 2-2, 3-1 and 3-2, 4-1 and 4-2, respectively. Thus, the wheel
configuration shown in Figure 11e is evolved. In this way, the configuration W4 is evolved into the
wheel configuration W8, which is shown in Figure 11e. In the same way, the configuration W24 in
Figure 11d can also be analyzed with the method. The configuration shown in Figure 11g1 can also
be obtained by replacing the wheel with the coaxial tandem wheel combination. The combination
configuration shown in Figure 11g2 is an end-to-end connection combination of the two configurations
in Figure 11g1.

Figure 11h shows a 24-Mecanum-wheel omnidirectional mobile system consisting of four
six-Mecanum-wheel configurations W6. The four KUKA omniMove platforms using this configuration
W24 are applied to move a railcar body at the Siemens plant. These four mobile robot platforms with
configuration W6 are not connected to each other, but each robot platform is connected to the railcar body,
thus achieving a fixed connection of the four robot platforms. Two six-Mecanum-wheel configurations
W6 are vertically connected to form the 12-Mecanum-wheel subsystem. Two 12-Mecanum-wheel
subsystems are connected horizontally to form the 24-Mecanum-wheel configuration W24.
The six-Mecanum-wheel configuration W6 consists of a W4 sub-configuration with omnidirectional
mobility and a wheelset. Although the configuration W6 is not symmetrical in the longitudinal
direction, the configuration W6 is used for combination. The 12-Mecanum-wheel configuration W12
and configuration W24 have symmetrical structures and omnidirectional motion capacity.

5.3. Topological Design Methods of Multi-Mecanum Wheel Configuration for Omnidirectional Mobile Robot

The bottom-roller intersection approach can be used to judge whether the wheel configuration
of a single mobile robot system has omnidirectional mobility. The omnidirectional mobility of a
multiple-wheel configuration can be judged by the sub-configuration judgment method. Through
comprehensive analysis and evaluation, the symmetrical wheel configurations are more conducive
to design, manufacture, and motion control. The symmetrical rectangular four-Mecanum-wheel
configuration is the optimal wheel configuration in the four-wheel configurations. Based on this basic
configuration, the multiple-Mecanum-wheel configuration of an omnidirectional mobile robot can be
deduced. In this paper, the topological design methods of the Mecanum-wheel configurations
are summarized and refined, including the basic configuration array method, multiple wheel
replacement method, and combination method. The first two methods can be used to create suitable
multiple-Mecanum-wheel configurations for a single mobile robot based on the basic Mecanum
wheel configuration.

Next, the topology methods are introduced in conjunction with Figure 12. The basic configuration
array method is obtained based on the sub-configuration judgment method, and it includes a linear
array method and a circular array method. The former can be used for new wheel configuration designs
base on the symmetrical rectangular wheel configuration, which includes end-to-end connection
method and side-by-side connection method. The latter can be used for the design of new wheel
configurations based on the centripetal wheel configuration. Using the basic configuration array
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method, the four-Mecanum-wheel basic configuration is linearly arrayed in two directions; then,
the configurations with end-to-end connection and side-by-side connection are obtained, as shown
in Figure 12a,b.

Using the multiple wheels replacement method, based on the basic four-Mecanum-wheel
configuration, each wheel of the four-Mecanum-wheel configuration is replaced with multiple
identical wheels. The wheel can be replaced by two types of wheel combinations: a series of
longitudinally arranged wheels and a series of coaxial wheels, and the new configurations can be
obtained, as shown in Figure 12c–e. If the number of longitudinally arranged wheels in the front-
and rear-array wheels is the same, a symmetrical Mecanum-wheel configuration can be obtained,
which is symmetrical in both left and right and in front and back, as shown in Figure 12c. If not,
the Mecanum wheel configuration is only symmetrical in left and right, and not in front and back,
as shown in Figure 12d. Among these configurations, configurations in Figure 12a,c are more
commonly used. Using the above two methods, the suitable wheel configurations for the single
mobile robot can be obtained. Multiple single robots can be arranged by combination methods,
including end-to-end connection, side-by-side connection, symmetrical rectangular connection, and
distributed combination methods; and then, the abundant combination configurations of robots can
be obtained, including end-to-end combination configuration (Figure 12f), side-by-side combination
configuration (Figure 12h), rectangular combination configuration (Figure 12g), and distributed
combination configuration (Figure 12i). The distributed combination configuration means that there
is no physical connection among the independent mobile robots. This belongs to the research field
of multi-robot cooperative motion. In this article, a detailed analysis of the distributed combination
configuration is not carried out.

Using the topological design method for Mecanum wheel configurations proposed in this
article, abundant wheel configurations can also be deduced based on other basic Mecanum wheel
configurations. Using the circular array method, the centripetal three-Mecanum-wheel configuration
shown in Figure 7a can be arrayed as a centripetal six-Mecanum-wheel configuration, as shown in
Figure 13a1. Using multiple coaxial wheels replacement method, the wheel configuration in Figure 13a2
can be obtained based on configuration in Figure 7a. Using the multiple wheels replacement method,
the configurations in Figure 13b1,b2 are obtained from the basic configurations in Figure 8n and the
configurations in Figure 13c1 is obtained from the basic configuration in Figure 8o. Using end-to-end
combination method, a combination configuration shown in Figure 13c2 can be obtained based on the
configuration in Figure 13c1.
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6. Conclusions

The condition that the Mecanum wheeled robot can achieve omnidirectional movement is that
the inverse kinematics Jacobian matrix of any three Mecanum wheels on the robot is a column
full-rank matrix. In this paper, the relationship between the intersections of bottom-rollers axles of
any three Mecanum wheels on the robot and the column rank of the Jacobian matrix is established.
A bottom-rollers axles intersections approach for judging the omnidirectional mobility of Mecanum
wheel configurations is proposed and proved theoretically, which is a simple and efficient geometric
method. If the number of axles intersections is 2 or 3, the column rank is full and the robot can achieve
omnidirectional motion in a plane; if the number of axles intersections is 0 or 1, this is not the case.

A sub-configuration judgment method for judging whether a Mecanum wheel configuration has
omnidirectional mobility is evolved based on the bottom-roller axle intersections approach. According
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to this method, if the multiple-Mecanum-wheel configuration has any individual sub-configuration
with omnidirectional motion capacity, it can also achieve omnidirectional motion.

The topological design methods of the Mecanum wheel configurations are summarized and refined,
including basic configuration array method, multiple wheel replacement method, and combination
method. The first two methods can be used to create suitable multiple-Mecanum-wheel configurations
for a single mobile robot based on the basic Mecanum wheel configuration. Multiple single robots
can be arranged by combination methods including end-to-end connection, side-by-side connection,
symmetrical rectangular connection and distributed combination, and then, the abundant combination
configurations of robots can be obtained.

Author Contributions: Methodology, Y.L. and S.D.; Validation, L.Z. and Y.S.; Formal analysis, Y.L. and S.D.;
Investigation, Y.L. and X.Y.; Writing—original draft preparation, Y.L., S.D., and X.Y.; Writing—review and editing,
Y.S. and L.Z.; Project administration, Y.L.

Funding: This work was financially supported by the National Natural Science Foundation of China (no. 51675518),
Six Talent Peaks Project in Jiangsu Province (no. JXQC-008), China Scholarship Council (no. 201706425041),
Jiangsu Government Scholarship for Overseas Studies (no. JS-2018-152), Science Foundation of Xuzhou
University of Technology (no. XKY2018129), and the Priority Academic Program Development of Jiangsu
Higher Education Institutions.

Acknowledgments: We would like to thank Robert Bauer of Stevens Institute of Technology for his advice.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gfrerrer, A. Geometry and kinematics of the Mecanum wheel. Comput. Aided Geom. Des. 2008, 25, 784–791.
[CrossRef]

2. Doroftei, I.; Grosu, V.; Spinu, V. Omnidirectional mobile robot-design and implementation. In Bioinspiration
and Robotics: Walking and Climbing Robots; Habib, M.K., Ed.; I-Tech Education and Publishing: Rijeka, Croatia,
2007; pp. 511–528.

3. Alvito, P.; Marques, C.; Carriço, P.; Freire, J. A Robotic Platform for the Social Robot Project. In Proceedings
of the 23rd IEEE International Symposium on Robot and Human Interactive Communication (ROMAN 2014)
Workshop on Interactive Robots for Aging and/or Impaired People, Edinburgh, UK, 25–29 August 2014.

4. Sanbot Max. Available online: http://en.sanbot.com/product/sanbot-max/specification (accessed on 20 May
2019).

5. Qian, J.; Zi, B.; Wang, D.; Ma, Y.; Zhang, D. The design and development of an omni-directional mobile robot
oriented to an intelligent manufacturing system. Sensors 2017, 17, 2073. [CrossRef] [PubMed]

6. Sun, S.; Hu, J.; Li, J.; Liu, R.; Shu, M.; Yang, Y. An INS-UWB based collision avoidance system for AGV.
Algorithms 2019, 12, 40. [CrossRef]
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