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Abstract: Accurate optic disc (OD) and optic cup (OC) segmentation play a critical role in automatic
glaucoma diagnosis. In this paper, we present an automatic segmentation technique regarding the
OD and the OC for glaucoma assessment. First, the robust adaptive approach for initializing the level
set is designed to increase the performance of contour evolution. Afterwards, in order to handle
the complex OD appearance affected by intensity inhomogeneity, pathological changes, and vessel
occlusion, a novel model that integrates ample information of OD with the effective local intensity
clustering (LIC) model together is presented. For the OC segmentation, to overcome the segmentation
challenge as the OC’s complex anatomy location, a novel preprocessing method based on structure
prior information between the OD and the OC is designed to guide contour evolution in an effective
region. Then, a novel implicit region based on modified data term using a richer form of local
image clustering information at each point of interest gathered over a multiple-channel feature image
space is presented, to enhance the robustness of the variations found in and around the OC region.
The presented models symmetrically integrate the information at each point in a single-channel
image from a multiple-channel feature image space. Thus, these models correlate with the concept of
symmetry. The proposed models are tested on the publicly available DRISHTI-GS database and the
experimental results demonstrate that the models outperform state-of-the-art methods.

Keywords: glaucoma; retinal image; optic disc; optic cup; image segmentation; active contour model
(ACM)

1. Introduction

Glaucoma is a degenerative optic neuropathy that progressively damages the optic nerve head
causing deterioration in vision and quality of life [1]. Approximately 12.3% of the persons on the
earth are likely distressed with glaucoma and are counted as the second major reason of blinding for
glaucoma in modern times. Glaucoma will affect approximately 80 million persons on the earth by
the year 2020 [2]. Because glaucoma is always asymptomatic, caused by progressive degeneration of
optic nerve fibers in the early stages, the glaucomatous patients are not perceived for the illness until it
has arrived with an obvious visual loss at a later period. Furthermore, the loss of vision is not able to
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be regained. Therefore, early detection and timely therapy for glaucoma are considered as the most
efficient ways to retard the procession of visual damage.

There are three principal methods for glaucoma detection that can be divided into the air-puff

intraocular pressure (IOP) measurement, visual field test, and optic nerve head (ONH) assessment.
However, the IOP general normal is not accurate enough to diagnose glaucoma and the visual field test
always requires specialized equipment that only exists in sophisticated medical centers. Hence, they are
inappropriate for early glaucoma detecting. ONH assessment using retinal fundus images is most
reliable, which is operated by the professional. However, manual assessment is laborious, expensive,
and highly subjective compared with the automatic optic disc assessment. Therefore, automatic ONH
assessment is the economic mode for estimating early-stage glaucoma and has been widely used in
recent years [3]. In retinal fundus images, ONH consists of a bright yellowish area named the optic disc
(OD) with a central maximum color contrast zone called the optic cup (OC), and the peripheral area
between the OD and OC boundaries called the neuroretinal rim, as shown in Figure 1. Considering
the characteristics of the OD, two strategies can be used for automatic ONH assessment. One is to
distinguish the healthy and glaucoma fundus images with image features [4]. However, the main
limitation is that it is hard to select suitable image features and classifiers. Apart from the above
strategy, the clinical indicator is the other way to evaluate ONH, for example, the vertical cup to
disc ratio (CDR) [5], ISNT rule [6], and notching. Among these clinical indicators, the CDR is well
accepted and generally applied to real applications. Although each of these clinical indicators for
evaluating ONH has a unique model for calculating, the commonality among them is that the accurate
information of the OD and the OC boundary is needed for effectively detecting glaucoma.
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Figure 1. Major structures of the optic disc (OD). White line: the OD boundary, black line: the optic 
cup (OC) boundary, and the area between the white line and the black line is the neuroretinal rim. 

There are a series of approaches that have been developed for segmenting the OD and the OC 
in retinal images, including more methods on OD [7–31] and fewer on OC [30–34] due to the OC’s 
complex anatomy structure relative to the OD, gradual variation in color intensity between the 
neuroretinal rim and the OC, and interlacement with blood vessels (Figure 1).  

For segmenting the OD, the real application is challenging mainly because of the complex OD 
appearance. Therefore, a lot of researchers have made various attempts to improve the performance 
for segmenting the OD, this research is respectively classified as template-based matching [7–11], 
morphology-based [12–14], active shape model (ASM)-based [15–17], classification-based [18–23], 
and active contour models (ACM)-based [24–31]. Pinz et al. [7], H. Li et al. [8], A. Bhuiyan et al. [9], 
A. Aquino et al. [10], and S. Sekhar et al. [11] have all proposed some template-based matching 
approaches, these approaches consider the prior information for the shape of the OD and use the 
circle templates or Hough transform technique to segment the OD. However, they generally fail to 
extract the unabridged OD boundary because the real OD shape is not a regular round or oval shape. 
Plenty of morphology-based methods have been researched by A.W. Reza et al. [12], D. Welfer et al. 
[13], and R. Srivastava et al. [14] for extracting the boundary of the OD. They modeled the bright of 
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There are a series of approaches that have been developed for segmenting the OD and the OC in
retinal images, including more methods on OD [7–31] and fewer on OC [30–34] due to the OC’s complex
anatomy structure relative to the OD, gradual variation in color intensity between the neuroretinal rim
and the OC, and interlacement with blood vessels (Figure 1).

For segmenting the OD, the real application is challenging mainly because of the complex OD
appearance. Therefore, a lot of researchers have made various attempts to improve the performance
for segmenting the OD, this research is respectively classified as template-based matching [7–11],
morphology-based [12–14], active shape model (ASM)-based [15–17], classification-based [18–23],
and active contour models (ACM)-based [24–31]. Pinz et al. [7], H. Li et al. [8], A. Bhuiyan et al. [9],
A. Aquino et al. [10], and S. Sekhar et al. [11] have all proposed some template-based matching
approaches, these approaches consider the prior information for the shape of the OD and use the circle
templates or Hough transform technique to segment the OD. However, they generally fail to extract
the unabridged OD boundary because the real OD shape is not a regular round or oval shape. Plenty
of morphology-based methods have been researched by A.W. Reza et al. [12], D. Welfer et al. [13],
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and R. Srivastava et al. [14] for extracting the boundary of the OD. They modeled the bright of the OD
for segmentation, but the intensity inhomogeneity as well as obscuration by the bridging retinal vessel
always affects the performance of these approaches. H. Li et al. [15] and F. Yin et al. [16,17] represented
the OD shape using statistical approaches. It can accurately describe the normal shape of the OD, but it
may fail in segmenting objects with variation and irregular boundaries. M. D. Abràmoff et al. [18],
M.K. Dutta et al. [19], N.M. Tan et al. [20], E. Saeed et al. [21], and W. Zhou et al. [22,23] extracted
the OD boundary using the image pixel-level characteristics or the superpixel-level characteristics,
achieved according to the retinal image information. However, these methods are usually affected by
sample size and are time consuming when a mass of fundus images are employed.

Compared with the above-mentioned approaches, the profound mathematical properties for
complex topology with effective level-set-based numerical schemes, prior knowledge (e.g., the
anatomical structure, intensity distribution), and some properties (e.g., edges, feature, statistics) of
the OD are fully applied by ACM-based methods to achieve higher accuracy than the other four
categories for segmenting the OD. Hence, there is an emerging trend to make use of ACMs in the OD
segmentation tasks [24]. Mendels et al. [25] processed the image by the local minima detection and
the morphological filtering. Then, the gradient vector flow (GVF) is employed to drive the contour,
which is initialized manually to achieve the whole OD boundary. Although the method evolves the
contour near the OD, the imprecise boundary of the OD can be obtained due to the high variation at
the vessel locations. Circularity constraint is introduced into the traditional Chan–Vese (C-V) model by
Tang et al. [26] and makes the segmented region restricted to a specific shape based on a random initial
curve. The method can handle some influence of the bright lesion, but it fails to describe the contours
of complex topology and extract accurate boundary for the OD, because the OD is not a regular round
or oval shape according to the clinical research. Wong et al. [27] modified the conventional level-set
approach to segment the OD using a fixed size initial contour, followed with the smoothed contour by
fitting an ellipse. It performs well in capturing a large range of image variations. However, this method
cannot work well in handling the OD regions with the shape irregularity because of a lot of pathological
variations and changes in view. Yu et al. [28] evolved the deformable contour by applying the local
edge vector, and the true boundary of the OD is achieved by covering the area information based
on the fixed size initial contour. It can fast extract a boundary for the OD. Nevertheless, the onerous
preprocessing step is necessary for achieving the contour when the deformable model method is
used. Esmaeili et al. [29] presented the new deformable model to segment the OD with the empirical
selecting initial contour. Compared with the other methods, a better convergence property along with
more outstanding computational efficiency is displayed. However, it is greatly influenced by intensity
inhomogeneity, which is produced by illumination variations or the imperfection of image devices.
Joshi et al. [30] used the region-based active contour model to extract the OD contour. Although
the model performs better in handling the local gradient variations in the retinal image, it cannot
distinguish the bright lesion that is similar to the OD. Thakur et al. [31] proposed a level set adaptively
regularized kernel-based intuitionistic fuzzy c means (LARKIFCM)-based method, which used the
level set combined with the clustering approach. The method can more effectively segment the OD
by taking the positive features of the combined approaches. However, it ignores the imperfection
of the single-feature information, and it is not able to well describe the complex OD appearance.
These methods present a potential for handling a series of the image variations. Nevertheless, these
methods have a problem to simultaneously deal with the complex OD appearance affected by intensity
inhomogeneities, blood vessels occlusions, ill-defined boundaries, irregular shape, and some anomalies
(e.g., peripapillary atrophy (PPA)), as shown in Figure 2. To address this challenge, this paper presents
a new approach for the OD segmentation by integrating the ample information describing the OD into
the effective LIC model.
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Figure 2. Intensity inhomogeneity challenges in the OD and the OC segmentation. 
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Compared with the OD segmentation methods, fewer of the OC segmentation methods [30–34]
have been presented from color retinal images because segmentation of the OC is further challenged
by the cup’s complex anatomy location relative to the OD, gradual variation in color intensity between
the neuroretinal rim and the OC, and the density of blood vessels covering parts of the OC, as shown
in Figure 1. In [32], a novel approach for segmenting the OC is designed by considering vessel bends
at the OC boundary. First, they extracted the initial OC boundary by the level set to generate the
image patches. Then, edge detection and wavelet transform are used for obtaining features that
identify likely vessel edges according to the statistical approach rule. Finally, the cup boundary
can be obtained by vessel bends, which are some vessel pixel points including the direction change.
However, this approach is sensitive to the blood vessels extraction, especially the inter-image variations,
which are highly reliant on the initial contour of the OC, and it cannot achieve an accurate segmentation
result when the vessel kinks are absent in the regions. An approach presented in [33] uses the
thresholding of the green color plane to derive cup pixels, and the cup boundary can be obtained
by ellipse fitting. Joshi et al. [30] proposed the method to obtain a range of latent pixels against
the OC edge via thresholding and then they used these pixels to fit an ellipse to determine the OC
borderline. Mittapalli et al. [34] proposed the novel approach in which an efficient clustering-based
thresholding algorithm is implemented to acquire useful information for the OC, and the information
is subsequently estimated by the symmetrical properties of the OC. The final borderline of the OC
is obtained by ellipse fitting. Thakur et al. [31] presented the hybrid method for segmenting the OC,
and the result obtained by the novel clustering method guides level set evolution to extract the OC
boundary. These methods can extract the boundary information from the OD. However, they are not
suitable for large inter-image intensity variations because of physiological difference among patients.
In this paper, in order to handle the above issues to provide robustness against variations found in
and around the OC area, the new preprocessing approach and the novel implicit region based on
modified data term that integrates the local image clustering information around the each point of
interest formed by the features like intensity and color from multiple image channels are presented.

The paper is organized as follows. The presented adaptive contour initialization is introduced in
Section 2.1. The local intensity clustering model extended (LICE) by integrating ample information
describing the OD is given in Section 2.2. In Section 2.3, a novel implicit region based on the modified
data term by a novel preprocessing approach is built. Section 3 explains the experimental results and
the comprehensive analysis of the result. Section 4 describes the conclusion and the future work.

2. Method

2.1. Rough Boundary Extraction

Considering that the active contour models (ACM) are sensitive to the initialization of the contour,
an imprecise initial contour will reduce the performance for ACM [35–37]. In order to handle these
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disadvantages and effectively segment the OD, a robust adaptive approach is proposed to initialize the
level set (details follow).

Our previous work [38], which is a saliency detection approach in cooperation with the feature
extraction, was applied for locating the OD in retinal image (Figure 3a). We clipped the pixels patch
area of interest (ROI) (Figure 3b), referring to the OD location. Considering that plenty of the choroidal
vessel was covered in the retinal image, which affects the performance of the segmentation method,
we processed each channel image using the morphological opening followed by closing operations,
and Figure 3c describes the vessels removal result. According to a large number of experimental
verifications, the basic structural element is set as a disk structure with a radius of 15 pixels to eliminate
the vessels. After that, comparing with the surrounding retinal areas, the OD area usually represents
a brighter pallor. Hence, the OD area can be considered as the salient objective that includes one
of the densest sites for the intensity density distribution in the retinal fundus images. According to
this concept, an efficient approach called mean-shift [39], which can automate classification was used
to detect the boundary of the OD. Each pixel is associated with a feature point and the produced
segmentation can be seen as the modes of the density of feature points estimated with a Gaussian
kernel [39]. The major region of the OD can be classified displayed in the Figure 3d from the vessel
removal image (Figure 3c). Then, for detecting the boundary of the classification result (Figure 3d),
we needed to convert the color classification image to grayscale, as shown in Figure 3e. We used the
canny approach to obtain the object edge in grayscale, Figure 3f shows the corresponding boundary
map. The corresponding edge map is marked on the ROI image displayed in Figure 3g. Finally, the OD
is approximate to the circular or oval-shaped object [1], so the edge of the OD (Figure 3h) is effectively
fitted by the circular Hough transform (CHT) based on the voted amount of the circular central points
from the enough edge information in Figure 3f. The achieving rough edge of OD is displayed in the
Figure 3i.
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Figure 3. Contour initialization. (a) Original retinal image, (b) clipped area of interest (ROI) around
the optic disc (OD), (c) vessels eliminated, (d) mean-shift result, (e) convert to the grayscale, (f) canny
detection results, (g) marking image of the OD, (h) circular Hough transform result for the OD, (i) rough
boundary extraction result for the OD, (j) retained result for the OD region, (k) the binary image of (j)
using the thresholding, (l) the edge image of (k), (m) marking image of the optic cup (OC), (n) circular
Hough transform result for the OC, (o) rough boundary extraction result for the OC.
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Compared to the OD, the extraction of the OC boundary is more challenging due to the OC’s
complex anatomy location relative to the OD, gradual variation in color intensity between the
neuroretinal rim and the OC, and the density of blood vessels covering parts of the OC. In this paper,
we also used the unsupervised learning technology to obtain the OC edge, and the main difference
between the OD and the OC contour initialization is the usage of the thresholding method. Considering
the OC is the highest intensity region inside the OD, the highest intensity based thresholding method
is appropriate for obtaining the OC initial contour. First, the OD region extracted by above method
(Figure 3i) was retained in the vessel removal image for the red channel, and the values of the other region
were set as 0 to exclude the unnecessary influence, as shown in the Figure 3j. Then, the thresholding [40]
was applied on the image (Figure 3j), with the value of threshold 10% of the highest intensity value,
and the obtained binary image is shown in the Figure 3k. The corresponding edge map (Figure 3l)
calculated by the canny approach was marked on the ROI image (Figure 3m). After that, because the
OC shape is predicted to be either an approximate circular or oval within the OD, a Hough transform
was done on the estimated the OC boundary (Figure 3l), which helped to achieve a more complete and
smoother OC boundary, as shown in the Figure 3n. Finally, the initialization contour for the OC was
extracted (Figure 3o).

2.2. Accurate Boundary Curve Extraction of the OD

The seriousness of glaucoma sickness will change with the changes of the OD and the OC. In order
to availably research the course of glaucoma disease and treatment results, the accurate boundary
information for the OD and the OC is required. Nevertheless, the retinal image for segmenting the OD
and the OC is generally affected by intensity inhomogeneity because of illumination variations or the
imperfection of image devices. In order to handle the issue, we introduce an efficient model—local
intensity clustering (LIC) [35]. This model defines a local clustering function for the intensity in a
neighborhood of each point, and it describes a partition of the image domain and a bias field that
accounts for the intensity inhomogeneity. The following objective function is minimized to evolve the
contour in the achieving clipped image.

ELIC(φ, c j, b) = (vL(φ) + µR(φ) + ε(φ, c j, b)) (1)

L(φ) =

∫
Ω

∣∣∣∇H(φ)
∣∣∣dy

R(φ) =

∫
Ω

1
2
(
∣∣∣∇φ∣∣∣−1)

2
dy

ε(φ, c j, b) =

∫
Ω

n∑
j=1

e j(y)M j(φ(y))dy

where

e j(y) =

∫
Ω

k(x− y)
∣∣∣I(y) − b(x)c j

∣∣∣2dx

M1(φ) = H(φ); M2(φ) = 1−H(φ)

where ∇ is defined as the gradient operator; H is the Heaviside function; L(φ) is the length term for
computing the length of the zero level contour; φ is a level set function; R(φ) is the regularization term;

< is expressed as the set of real number, pixel coordinates x, y ∈ Ω ⊂ R2,
{
Ω j

}N

j=1
form a partition of the

image domain Ω; Ω j can be expressed as the domain of the j-th object; N represents the total number of
objects in the image; ε(φ, c j, b) is the data term; b(x) is a bias field; I is the value of pixel; c j is a constant
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approximated by an area Ω j in the image; k is a truncated Gaussian function [35]; and M j(φ(y)) is the
membership function of the region Ω j.

Apart from the intensity inhomogeneity, a complex OD appearance is always affected by the blood
vessels occlusions, ill-defined boundaries, and some anomalies (e.g., PPA) making the segmentation of
the OD more challenging. In order to overcome many-sided distractions existing on the complex OD
appearance, the data term in the LIC model is extended by integrating ample local image clustering
information consisting of features like color and intensity, which complement each other’s advantages
for adequately describing the OD. In this paper, the original red color plane, vessel-free red color plane,
and value channel image from the vessel-free HSV color space constituting the three-element vector
(d = 3) can be integrated by the extended data term to enhance the information of an image point x.
Ii is expressed as the i-th feature of the image on Ω with i = 1, . . . , d. The extended data term in the
LIC model for the vector case is defined as follows:

εM_D(φ, c ji, bi) =

∫
Ω

n∑
j=1

e j(y)M j(φ(y))dy (2)

where

e j(y) =
1
d

d∑
i=1

∫
Ω

k(x− y)
∣∣∣Ii(y) − bi(x)c ji

∣∣∣2dx

M1(φ) = H(φ); M2(φ) = 1−H(φ)

Considering that the OD is a brighter object than the other areas in images, the number of objects
n is set as 2, c1i = (c11, c12, . . . , c1d), c2i = (c21, c22, . . . , c2d), bi = (b1, b2, . . . , bd) that are three constant
vectors, and d is set as 3. c1i and c2i, respectively, express the true signal of the OD and the background
for the i-th feature space. The bi is assumed to be the bias field function for the i-th feature space.
bi(x)c ji can be regarded as the spatial varying mean in each subregion Ω j ∩Ox for the i-th feature space.
We minimize the energy function (2) to obtain the optimal values of c1i, c2i, and bi. The LIC model
extended (LICE) by integrating (1) and (2) into a unified framework is expressed as:

ELICE(φ, c ji, bi) = (vL(φ) + µR(φ) + εM_D(φ, c ji, bi)) (3)

where v and µ are respectively the weight parameters for the length term and the regularization
term. There are three terms comprising the proposed object function. Each term has a unique
performance, which constitutes the advantage of the model to effectively segment the complex OD in
the retinal fundus image. Because contour evolution always generates the drastic protuberance and
is sunken frequently, the first term L(φ) can be applied to penalize the arc length of zero level of φ.
For avoiding the re-initialization procedure during the contour evolution, we use the second term R(φ)
to regularize the zero level of φ. Because of the many-sided distractions caused by the complex OD
appearance, the third term εM_D integrates various feature information of the OD to precisely depict
the boundary location.

We solved the presented LICE model in the Equation (3) by the standard gradient descent
method [35], and resolved the minimization problem for each variable alternatively to obtain a
minimizer of the Equation (3), because it is difficult to acquire a minimizer ELICE(φ, c ji, bi) for φ, c1i, c2i,
and bi simultaneously. For a fixed φ, the functional Equation (3) is minimized with respect to the c1i,
c2i, bi(i = 1, 2, 3) as follows:

c1i =

∫
Ω
[k(x− y) ∗ bi(x)]Ii(y)H(φ(y))dy∫
Ω
[k(x− y) ∗ b2

i (x)]H(φ(y))dy
(4)
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c2i =

∫
Ω
[k(x− y) ∗ bi(x)]Ii(y)[1−H(φ(y))]dy∫
Ω
[k(x− y) ∗ b2

i (x)][1−H(φ(y))]dy
(5)

bi(x) =

[k(x− y) ∗ (Ii(y)H(φ(y)))]c1i
+[k(x− y) ∗ (Ii(y)(1−H(φ(y))))]c2i

[k(x− y) ∗H(φ(y))]c2
1i

+[k(x− y) ∗ (1−H(φ(y)))]c2
2i

(6)

Keeping c1i, c2i, bi fixed, the energy functional Equation (3) is minimized with respect to φ,
the gradient vector flow is solved as follows:

∂φ
∂t = −δ(φ)(e1i − e2i) + vδ(φ)div( ∇φ

|∇φ|
)

+ µ(∇2φ− div( ∇φ
|∇φ|

))
(7)

where δ expresses the univariate Dirac function; t describes the time step of the experiment.

2.3. Accurate Boundary Curve Extraction of the OC

Compared with the OD segmentation, the extraction of the OC boundary is more challenging as
the OC’s complex anatomy location relative to the OD leading to the incapable segmentation for the
(ACM)-based methods. For the complete bright region (optic nerve head) consisting of both the OD
and the OC compared to the background, two-phase ACM representing two objects and four-phase
ACM representing four objects cannot directly describe the region of the OC. To handle the issue,
a novel preprocessing method, which introduces a structure prior information constraint into the
contour evolution, was presented to integrally describe the OC. In this paper, the evolution of the OC
contour is restricted in the OD region by our preprocessing, and the OD region can be regarded as a
region of the function φ greater than zero (φ > 0). This modified data term in the LIC model by our
preprocessing method is described as:

εP(ϕ, c j, b) =

∫
Ω

p∑
j=3

e j(y)M j(ϕ(y))dy (8)

where

e j(y) =

∫
Ω

k(x− y)
∣∣∣I(y) − b(x)c j

∣∣∣2dx

M3(ϕ) = H(φ)H(ϕ); M4(ϕ) = H(φ)(1−H(ϕ))

where OD includes two different regions, which are respectively the OC and the neuroretinal rim in
retinal fundus images, so p is set as 4. φ denotes the level set function of the OD. ϕ expresses the level
set function of the OC. b(x) denotes the bias field function; c j is a constant approximated by the j-th
object in the OD; M3 and M4 are proposed to express the intrinsic anatomical structure for the OC.
Furthermore, these two membership functions respectively describe the inner and the outer regions
for the OC within the OD, which was segmented by our approach mentioned in Section 2.2.

Considering smooth region transition between the OC and the neuroretinal rim, and blood vessel
cover makes OC segmentation a much more difficult case altogether. In this paper, the novel implicit
region based on a modified data term presented in Section 2.3, using a richer form of local image
clustering information at each point of interest gathered over the multiple-channel feature image
space is proposed to enhance the robustness of the variations found in and around the OC regions.
The multiple-channel feature images (m = 6) are respectively taken from the original red color
plane, vessel-free green color plane, and the value channel image from vessel-free HSV color space to
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construct the multi-element vector. The novel implicit region based on the modified data term can be
described as follows:

εP_M_C(ϕ, c ji, bi) =

∫
Ω

p∑
j=3

e j(y)M j(ϕ(y))dy (9)

where

e j(y) =
1
m

m∑
i=4

∫
Ω

k(x− y)
∣∣∣Ii(y) − bi(x)c ji

∣∣∣2dx

M3(ϕ) = H(φ)H(ϕ); M4(ϕ) = H(φ)(1−H(ϕ))

where m is set as 6 due to constructing the three-element vector, and the values of i are respectively
4, 5, and 6. Ii is denoted as the i-th feature space. c3i = (c34, c35, . . . , c3m), c4i = (c44, c45, . . . , c4m),
and bi = (b4, b5, . . . , bm) are respectively constant vectors. bi is referred to as a bias field function for
the i-th feature space inside the OD. c3i and c4i respectively express the true signal of the OC and the
neuroretinal rim for the i-th feature space. bi(x)c ji can be regarded as the spatial varying mean in each
subregion Ω j ∩Ox for the i-th feature space inside the OD. We minimize the energy function (9) to
obtain the optimal values of c3i, c4i, and bi.

The modified LIC model extended (MLICE), which integrates (1) and (9) into the unified framework
can be expressed as:

EMLICE(ϕ, c ji, bi) = (λL(ϕ) + γR(ϕ) + εP_M_C(ϕ, c ji, bi)) (10)

where λ and γ are weighting constants.
The solving method, which minimizes the proposed energy functional (Equation (10)) is similar

to the OD segmentation. After a series of calculations, the solutions are acquired:

c3i =

∫
Ω
[k(x− y) ∗ bi(x)]Ii(y)H(φ(y))H(ϕ(y))dy∫
Ω
[k(x− y) ∗ b2

i (x)]H(φ(y))H(ϕ(y))dy
(11)

c4i =

∫
Ω
[k(x− y) ∗ bi(x)]Ii(y)H(φ(y))[1−H(ϕ(y))]dy∫
Ω
[k(x− y) ∗ b2

i (x)]H(φ(y))[1−H(ϕ(y))]dy
(12)

bi(x) =

[k(x− y) ∗ (Ii(y)H(φ(y))H(ϕ(y)))]c3i
+[k(x− y) ∗ (Ii(y)H(φ(y))(1−H(ϕ(y))))]c4i

[k(x− y) ∗ (H(φ(y))H(ϕ(y)))]c2
3i

+[k(x− y) ∗ (H(φ(y))(1−H(ϕ(y))))]c2
4i

(13)

∂ϕ
∂t = −H(φ)δ(ϕ)(e3i − e4i) + λδ(ϕ)div( ∇ϕ

|∇ϕ|
)

+ γ(∇2ϕ− div( ∇ϕ
|∇ϕ|

))
(14)

The main steps describing the OD and the OC segmentation are summarized as follows:

1. Initialization: Input the set of multi-channel feature images including original red channel image,
vessel-free red channel image, vessel-free green channel image, and value channel image from
vessel-free HSV color space, bi(x) = 1, i = 1, 2, 3, 4, 5, 6. The level set functions φl = φ0,
ϕq = ϕ0. φ0 and ϕ0 are respectively initial level set function of the OD and the OC obtained in
Section 2.1. l and q are respectively defined as iterations.

2. Respectively update c ji and bi, j = 1, 2, i = 1, 2, 3, using (4)–(6).
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3. Evolve the level set functions, according to (7). If φ satisfies the stationary condition, stop;
otherwise, l = l + 1 and return to Step 2.

4. Input level set function φ of the OD obtained in Step 3.
5. Respectively update c ji and bi, j = 3, 4, i = 4, 5, 6, using (11)–(13).
6. Evolve the level set functions, according to (14). If ϕq satisfies the stationary condition, stop;

otherwise, q = q + 1 and return to Step 5.

3. Experimental Results

3.1. Database

For this section, to prove the availability of the presented approach, we select the publicly available
DRISHTI-GS dataset [41] based on the retinal fundus image for evaluating the segmented results.
DRISHTI-GS is made up of 31 normal images and 70 glaucomatous images. Both are produced with
the 30 degree field of view at a resolution of 2896 × 1944. Four glaucoma experts correctly mark the
OD and the OC in each image. For compensating variations marked by inter-observer, the majority
voting manual is regarded as the final ground truth (GT), indicating agreement among at least three
experts [41] to qualitatively assess the presented approaches. In our experiment, the initial contour is
achieved in Section 2.1 for methods to segment the OD and the OC. The segmentation methods for
evaluating experiments are calculated in the vessel-free image.

3.2. Evaluation Measures

For verifying the effectiveness of the two presented segmentation approaches for the OD
and the OC, the other seven methods are respectively compared with our method. For the OD
segmentation, four methods are implemented, namely Hough transform [42], GVF [43], C-V model [30],
and LARKIFCM [31]. Similarly, for the OC segmentation, the thresholding [30], ellipse fitting [33],
clustering [34], and LARKIFCM [31] are employed.

To further quantificationally evaluate the comprehensive property of the segmentation approaches,
some performance measures are used for quantitative analyses, which are respectively detected area,
detected boundary, and the CDR error estimation.

We quantificationally assess the property of method based on detected area in term of the GT
using the traditional F-score, which can be described as the harmonic mean of precision and recall.
First, the precision and recall values can be respectively described as:

precision =
tp

tp + f p
; recall =

tp
tp + f n

where tp is the value of true positive, fp is the value of false positive, and fn is the value of false negative.
The calculation of these based on the overlap region between the obtained segmentation area and the
GT area.

Then, the single performance F-score (F) can be expressed as:

F = 2
precision · recall

precision + recall

The scope of the value for F-score is between 0 and 1. If the performance of the method is excellent, the
F-score will get a high value.

A quantitative analysis based on a segmented boundary can be used to evaluate the property
of the method in term of the GT, and it is expressed as the distance D between Cg and Co, which are
respectively the boundary of the GT and the segmentation method.
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D =
1
k

θk∑
θ=1

√
(dθg)

2
− (dθo )

2

where k is defined as the total number of angular samples. According to [44], we set the k as 4 and
respectively assign 0◦, 90◦, 180◦, and 270◦ to the angular directions. dθg and dθ0 are defined as the
distances from the centroid of the curve Cg to points on Cg and Co, respectively, in the angular direction
of θ. Ideally, the value of D should approximate zero.

Third, the CDR depending on the diameters of the OD and the OC in the vertical direction can be
regarded as an important parameter for the glaucoma assessment. The CDR error estimation (Error) is
the metric applied to analyze the property of the segmenting method, the Error can be calculated and
defined as:

Error = |CDRG −CDRT |

where CDRG is solved based on GT, and CDRT is solved based on the automatic method.

3.3. Segmentation Results with Different Initial Contour

We compared the presented initial contour with the other different initial contours for segmenting
the OD and the OC, and the segmentation results achieved by different initial contours are displayed in
Figure 4, where there are some advantages for the presented adaptive initial contour. First, considering
that most of the ACM-based methods are sensitive to the initialization of the contour, the adaptive
initial contour is closer to the GT of the OD and the OC compared with the other initial contours to
accurately drive the contour evolution. Second, the designed method for extracting the initial contour
can automatically classify without class value based on the kernel density estimation to obtain the
high-efficiency outcomes. Furthermore, the proposed segmentation approach using an adaptive initial
contour is more robust to interference generated by the complex OD and OC appearance. The major
reason is the combined advantages of the adaptive initial contour and the multiple-channel features
incorporated into our model.

According to Table 1, these methods obtain the best segmentation results using the adaptive initial
contour, the average F-score, and the average boundary distance of OD can be respectively achieved as
0.948 and 8.885. The average F-score and the average boundary distance of OC can be respectively
obtained as 0.826 and 21.980.

Table 1. OD and OC segmentation results for different initial contour.

Methods F-Score for OD
(Average)

Boundary-Based
Distance for OD

(Average)

F-Score for OC
(Average)

Boundary-Based
Distance for OC

(Average)

Contour intersecting
the OD or OC 0.942 9.521 0.813 23.213

Contour within the OD
or OC 0.944 9.281 0.815 23.152

Contour outside the
OD or OC 0.945 9.162 0.818 22.965

Adaptive contour 0.947 8.885 0.826 21.980
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Figure 4. The segmentation comparisons with different initial contours. They respectively show
the comparison segmentation results based on adaptive initial contour and manual initial contour
respectively drawing outside of the OD or OC, inside of the OD or OC, or intersect of the OD or OC.
The ground truths are respectively marked with white and black lines for OD and OC.

3.4. Optic Disc Segmentation Results

The segmentation results shown in Figure 5 obtained from Hough transform [42], GVF [43],
C-V model [30], and LARKIFCM [31] are applied to assess the property for the presented method.
The segmented results are described with white lines marked by the expert and described with blue
lines marked by the methods. The first column lists the original clipped image, and the contours in
the second column are the adaptive initial contour achieved by the proposed approach mentioned
in the Section 2. The first two row images in Figure 5 depict the challenging situation for extracting
the boundary, which is the irregular shape of the OD. We can clearly see that the presented approach
extracted more precise and robust boundary results than achieved by the other methods due to the fact
that our method is unrestricted by the regular shape constraint and takes the sufficient information
of the OD. The third, fourth, and fifth row images contain the PPA having high gradient variations.
Because of the sensitivity to the local gradient variations, the Hough transform and the GVF achieve
an inaccurate boundary segmentation result. The C-V model can overcome this problem, but it is
influenced by the PPA because of a subtle difference presenting between the average intensity of the
segmented foreground and background areas. For the LARKIFCM method, it can overcome most of
the influences caused by bright regions of the PPA, owing to taking positive features of the combined
approaches, but it is misled in some regions where the single-feature information plays a decisive role,
which is insufficient. Comparing the segmented results of the presented approach with the others,
the OD boundary extracted by the presented method is matching closely with the GT because the
ample information describing the OD is integrated into the effective LIC model, which is robust to the
many-sided distractions.
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Figure 5. OD segmentation results. First column: original clipped images; second column: initial
contour; third column: Hough transform results [42]; fourth column: gradient vector flow (GVF)
model results [43], fifth column: Chan-Vese (C-V) model results [30]; sixth column: level set adaptively
regularized kernel-based intuitionistic fuzzy c means (LARKIFCM) results [31]; seventh column: ours.
White line: ground truth (GT); blue line: detected result by an approach.

For further assessing the properties of the presented approach, Table 2 shows the quantitative
analysis results according to the F-score and the boundary-based distance measures to compare the
presented approach with the other approaches. The highest F-score and the lowest average boundary
distance among all the approaches can be obtained, which make the presented method superior over
the other approaches.
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Table 2. OD segmentation results.

Methods F-Score (Average) Boundary-Based Distance (Average)

Hough [42] 0.836 43.126
GVF [43] 0.862 39.561
C-V [30] 0.881 27.578

LARKIFCM [31] 0.940 9.882
Ours 0.947 8.885

3.5. Optic Cup Segmentation Results

The property of our model extracting the OC boundary can be evaluated through comparison
with the other methods such as the threshold-based approach [30], ellipse fitting approach [33],
clustering-based approach [34], and LARKIFCM [31]. Figure 6 respectively presents obvious
segmentation results obtained by these methods. Seen from Figure 6, the OC boundary obtained by the
presented model has a small deviation from the GT both on the nasal and temporal sides. However,
the other approaches suffer from a significant influence on the segmentation accuracy when the dense
blood vessels are presented on the nasal side, which achieves a large deviation for the detected OC
boundary from the GT on the temporal side. As mentioned above, the proposed model is superior to
the other methods and is closer to the GT. The reasons are given as: (1) the introduced LIC model based
on the estimated bias field used for the intensity inhomogeneity correction can handle the intensity
inhomogeneity and then enhance the discrimination between the OC and the non-OC; (2) the novel
preprocessing method based on a structure prior information of the OD and the OC is integrated
into the LIC to guide the contour evolution in an effective area, excluding the negative effect of the
non-objects; (3) a novel implicit region based on the modified data term, which uses a richer form of
the local image clustering information at each point of interest gathered over the multiple-channel
feature image space, is presented to enhance the robustness of the variations found in and around
the OC regions. Table 3 quantificationally analyzes the segmentation results of the OC according to
the F-score and the boundary-based distance. Our model obtains a lower false positive (fp), false
negative (fn), and the highest F-score compared with the other three methods. Furthermore, the lowest
average boundary distance obtained by comparing our model with the other methods illustrates that
the segmented boundary from our model is closer to the GT. In summary, this proposed model has a
significant improvement in the segmentation performance in contrast to the other approaches.
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Figure 6. OC segmentation results. First column: original color image; second column: initial contour;
third column: threshold-based [30]; fourth column: ellipse fitting [33]; fifth column: spatially weighted
fuzzy c means (SWFCM) clustering [34]; sixth column: LARKIFCM [31], seventh column: Ours. Black
line: GT; green line: detected results obtained by an approach.

Table 3. OC segmentation results.

Method F-Score (Average) Boundary-Based Distance (Average)

Thresholding [30] 0.616 51.347
Ellipse Fitting [33] 0.651 48.799

SWFCM Clustering [34] 0.765 27.376
LARKIFCM [31] 0.811 23.335

Ours 0.826 21.980

3.6. Glaucoma Assessment

Based on the boundary information for the OD and the OC segmented by the method, the CDR
using the diameter measurement in the vertical direction (v-CDR) can be derived, which is a common
measurement for the glaucoma assessment. However, the OC may be oriented at different angles,
and the v-CDR describes precision only in a vertical direction and has an inadequate measure. Therefore,
the cup to disc area ratio (a-CDR) should be employed to assess the overall segmenting accuracy
derived simultaneously in all directions. Table 4 displays the mean error µError and the standard
deviation of the error σError in estimating the v-CDR and the a-CDR for all of the images. Seen from the
Table 4, the mean/standard deviation of error for v-CDR are 0.152/0.104 for normal case and 0.093/0.084
for glaucoma case, and the mean/standard deviation of error for a-CDR are 0.172/0.127 for normal case
and 0.101/0.091 for glaucoma case. The results show that mean error µError and standard deviation of
error σError are smaller in glaucoma images compared to normal images. Hence, the presented model
has a high sensitivity for the glaucoma detection.

Table 4. Error estimation in v-CDR and a-CDR (mean: µError /standard deviation: σError).

Retinal Image
Cup-to-Disc Vertical Diameter Ratio Cup-to-Disc Area Ratio

µError σError µError σError

Normal Images (31) 0.158 0.104 0.172 0.127
Glaucoma Images (70) 0.095 0.084 0.101 0.091

Total Images (101) 0.110 0.099 0.118 0.119

4. Conclusions and Future Work

The paper proposed the solution of glaucoma assessment in terms of the different estimation
parameters. Based on the requirement against the accurate boundary information of the OD and the
OC, the adaptive method for extracting the initial contour and two novel models for contour evolution
were presented by us. Considering the active contour models are sensitive to the initialization of
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the contour, the robust adaptive approach, which initializes level set was designed to increase the
performance of contour evolution. For extracting the precise boundary of the OD, the LICE model
was proposed. First, the introduced LIC model based on the estimated bias field used for the intensity
inhomogeneity correction can deal with the commonly occurred intensity inhomogeneity phenomenon.
Then, an ample information describing the OD was integrated into the effective LIC model to deal with
complex OD appearance affected by the pathological changes and the vessel occlusion. Meanwhile,
a novel segmentation model MLICE for the OC was presented. First, the novel preprocessing method
based on the structure prior information of the OD and the OC was used for modifying data term in
LIC to guide the contour evolution in an effective region excluding the negative effect of non-objects.
Second, a novel implicit region based on the modified data term, which uses a richer form of local
image clustering information at each point of interest gathered over a multiple-channels feature image
space was presented. It can provide robustness against variations found in and around the OC region.
The performance of two novel models for segmenting the OD and the OC is assessed on the publicly
available DRISHTI-GS database. According to the Tables 2 and 3, the presented models outperform the
other state-of-the-art approaches. Although the proposed models obtain the outstanding segmentation
performance, boundary estimation errors are mostly in the regions with no more prior knowledge cues
such as the shape. Considering that our models can make full use of prior knowledge to extract the
boundary of the OD and the OC, it will be investigated in our future work.
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