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Abstract: The properties of localization of the I(ω) electric current function in non-periodic
electrical transmission lines have been intensively studied in the last decade. The electric
components have been distributed in several forms: (a) aperiodic, including self-similar sequences
(Fibonacci and m-tuplingtupling Thue–Morse), (b) incommensurate sequences (Aubry–André and
Soukoulis–Economou), and (c) long-range correlated sequences (binary discrete and continuous).
The localization properties of the transmission lines were measured using typical diagnostic tools of
quantum mechanics like normalized localization length, transmission coefficient, average overlap
amplitude, etc. As a result, it has been shown that the localization properties of the classic electric
transmission lines are similar to the one-dimensional tight-binding quantum model, but also features
some differences. Hence, it is worthwhile to continue investigating disordered transmission lines. To
explore new localization behaviors, we are now studying two different problems, namely the model
of interacting hanging cells (consisting of a finite number of dual or direct cells hanging in random
positions in the transmission line), and the parity-time symmetry problem (PT -symmetry), where
resistances Rn are distributed according to gain-loss sequence (R2n = +R, R2n−1 = −R). This review
presents some of the most important results on the localization behavior of the I(ω) electric current
function, in dual, direct, and mixed classic transmission lines, when the electrical components are
distributed non-periodically.
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1. Introduction

Disordered one-dimensional quantum systems have been studied intensively since the pioneering
work of Anderson [1]. It has been discovered that for one-dimensional uncorrelated disordered
(random) systems, all states become localized states at the thermodynamic limit. Conversely, in
periodic systems, all states are extended states, but for short-range or long-range correlated disorder, it
is possible to find discrete sets or bands of extended states, respectively [2–29]. Also, these results have
been verified experimentally [30–35]. In addition to correlated disordered systems, the fundamental
properties of aperiodic systems have been extensively studied [36–74]. Aperiodic systems are formed
by incommensurate systems and self-similar systems, and aperiodic incommensurate systems are
generated by two superimposed periodic structures with incommensurate periods. The origin
of incommensurability may be structural or dynamical. In the first case, there are two or more
superimposed periodic structures whose periods are incommensurate, and in the second case one
periodicity is related to the crystalline structure and the other to the behavior of elementary excitations
that propagate through the crystal. On the other hand, self-similar systems are generated by specific
substitutional rules.

After systematic studies of their properties, aperiodic systems can be classified based on two
aspects: the spectral measures of their lattice Fourier transform and their Hamiltonian energy spectrum.
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According to the Lebesgue’s decomposition theorem, the energy spectrum of any measure inRn can
be uniquely decomposed into three types of spectral measures, namely (a) purely point spectra (µp),
(b) absolutely continuous spectra (µac) and (c) singularly continuous spectra (µsc). In addition, a
combination of these measures is possible. Using spectral measures, Maciá [71,73] introduced a
classification chart which includes periodic, amorphous and aperiodic systems. In this chart the
abscissa is represented by the lattice Fourier transform and the ordinate is represented by the energy
spectrum. In particular, we can see that the Fibonacci and the Thue–Morse systems share the same
kind of singular continuous energy spectrum, known as a critical state. In this state, the wave function
amplitude presents strong spatial fluctuations; however, the decaying envelope of the local maxima
cannot be fitted to an exponential function, like the exponentially localized functions. On the other side,
the spectral measure of the Fourier transform is different for these two self-similar systems, namely
purely point spectra (µp) for Fibonacci systems, but singularly continuous spectra (µsc) for Thue–Morse
systems. This way, the Fibonacci systems can be classified as quasi-periodic and the Thue–Morse
systems are classified as aperiodic but not quasi-periodic. Despite this fundamental difference, most
self-similar systems present an infinite number of gaps and consequently, the integrated density of
states shows a fractal behavior. Also, the total bandwidth goes to zero in the thermodynamic limit
N → ∞.

This review presents recent results about the influence of the disordered distribution of electric
components (capacitances and inductances) in the localization properties of dual, direct and mixed
classical transmission lines (TL) [75–89]. To study the localization behavior of these non-periodic
systems, the electric components have been distributed in a variety of forms: (a) aperiodic, including
self-similar sequences (Fibonacci and m−tupling Thue–Morse), (b) incommensurate sequences
(Aubry–André and Soukoulis–Economou), and (c) long-range correlated sequences (binary discrete
and continuous). Although we are studying classical systems, the localization properties of the
transmission lines are measured using the typical tools used in quantum mechanics to characterize the
localization behavior of disordered systems. Specifically, we use the normalized localization length
Λ (ω), the inverse participation ratio IPR (ω), the transmission coefficient T (ω), the global density
of states DOS (ω) , the average overlap amplitude Cω, etc. Our studies indicate that the localization
behavior of the classical electric transmission lines is similar to the one-dimensional tight-binding
quantum model, but also displays some significant differences. Therefore it is important to keep
investigating this type of classical disordered systems.

This review proceeds as follows. Section 2 describes the three ways to build classic electric
transmission lines: dual, direct and mixed. Also, the allowed frequency spectrum for each kind of
transmission line is calculated and, at the same time, the methods used to obtain the localization
properties of these systems are described. Section 3 presents the localization behavior of transmission
lines with different kinds of disorder, like aperiodic disorder and long-range correlated disorder.
Section 4 shows the main results obtained so far in relation to the localization behavior of non-periodic
electrical transmission lines. Also, a possible application to the study of electrical communication
between neurons in included. Finally, two new lines of research to study the effect of the disorder on
the localization properties of the electric current function are indicated.

2. Electric Transmission Lines

2.1. Direct and Dual Transmission Lines

We analyze ideal classical electric transmission lines considering three possible configurations, i.e.,
dual, direct, and mixed. We introduce the non-periodic disorder through the values of the inductances
and capacitances of each cell of disordered TL [75–89].

Figure 1 shows a segment of a transmission line (dual or direct), with horizontal impedances
denoted by Zn and vertical impedances labeled γn. For direct TL the impedances are Zn = (iωLn) and
γn = (iωCn)

−1 , but for dual TL we have Zn = (iωCn)
−1 and γn = (iωLn) . Here, Cn and Ln denote

the capacitance and inductance values in cell n, respectively. To study the localization properties of the
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electric transmission lines, capacitances Cn, inductances Ln, or both are distributed using aperiodic
sequences. Applying Kirchhoff’s Loop Rule to three successive unit cells of the ideal TL shown in
Figure 1, we obtain a linear relationship between the electric currents circulating in the (n− 1)th, nth
and (n + 1)th cells.

Figure 1. A partial view of an ideal transmission line. Zn (γn) represent horizontal (vertical)
impedances, respectively. For direct TL, Zn is associated with inductances and γn with capacitances.
Conversely, for dual TL, Zn is associated with capacitances and γn with inductances. The arrows
indicate the direction of the electric current in each cell. We arbitrarily consider the initial flow from the
left, because we are using open boundary conditions

Specifically, for the direct transmission line, we find(
C−1

n−1 + C−1
n −ω2Ln

)
In − C−1

n−1 In−1 − C−1
n In+1 = 0 (1)

The corresponding equation for the dual TL, can be obtained using the following substitutions
ω → (ω)−1 , Cn → (Ln)

−1 , Ln → (Cn)
−1, namely(

Ln−1 + Ln −
(

ω2Cn

)−1
)

In − Ln−1 In−1 − Ln In+1 = 0 (2)

In both cases, Equations (1) and (2) can be put in a simple generic form

Dn In − Bn−1 In−1 − Bn In+1 = 0 (3)

where
Dn = (Bn−1 + Bn − An) (4)

Notice that An always depends on frequency ω and the values of capacitances Cn or inductances
Ln, while Bn only depends on Cn or Ln. To be specific, for direct TL we have An = ω2Ln and Bn = C−1

n ,
but for dual TL we have An =

(
ω2Cn

)−1 and Bn = Ln. Please note that when we introduce disorder
in the off-diagonal terms, this disorder simultaneously appears in the diagonal term Dn.

2.2. Mixed Transmission Lines

The spectrum of allowed frequencies of periodic dual and direct transmission lines contains a
single band. To obtain a frequency spectrum with more bands, namely a frequency selector, recently a
combination of dual and direct cells, called mixed transmission line, has been studied. [87,88]. These
electric systems are formed by a basic unit of d = (p + q) cells consisting of a set of p successive direct
cells followed by q successive dual cells. The N total number of cells in the mixed TL is given by
N = d Ns, where Ns is the number of times we repeat the basic unit. Figure 2 shows a segment of a
mixed TL with p = 2, q = 3 and d = 5. Applying Kirchhoff’s Loop Rule to this system, we find a set of
equations similar to Equations (1) and (2). Consequently, equations describing mixed transmission
lines can also be written in the same form as the generic Equation (3), but now both coefficients Dn and
Bn usually depend on the frequency ω, the parameters p, q and capacitances Cn,x, Cn,y, and inductances
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Ln,x, Ln,y, corresponding to direct and dual cells, respectively. Consequently, mixed TL contain a richer
parameter space to study the localization properties of the I (ω) electric current function. This allows
obtaining exactly d = (p + q) bands separated by gaps, containing extended and localized states and
even gaps. In this way, the mixed transmission line becomes a frequency selector.

Figure 2. A segment of a mixed transmission line formed by p = 2 direct cells and q = 3 dual cells. The
full system is formed by the repetition of the basic unit formed by d = (p + q) cells. Inductances are
represented by rectangles and capacitances by circles. In addition, dual cells are marked with orange
color-filled symbols. The arrows indicate the direction of the electric current in each cell.

2.3. Relation with the Tight-Binding Model

The generic Equation (3) describing the relationship between three consecutive electric current
amplitudes In−1 (ω), In (ω) and In+1 (ω) in the classical electrical transmission lines, has the same
form that the equation describing the relationship between three consecutive amplitudes φn−1 (E),
φn (E) and φn+1 (E) of the wave function of the one-dimensional tight-binding quantum model.
This correspondence has allowed to test the effects of the disorder in one-dimensional quantum
systems using classical electrical circuits with random distribution of capacitances and inductances.
Consequently, Equation (3) can be mapped to the quantum one-dimensional tight-binding model

(E− εn) φn −Vn−1φn−1 −Vnφn+1 = 0 (5)

where εn is the site energy, Vn the hopping between neighboring sites, E the eigenenergy, and φn

is the eigenfunction. In this quantum model, it is always possible to study separately the diagonal
disordered case and the off-diagonal disordered case. However, in classical electrical TL, indicated by
relations (1) and (2), the introduction of disorder in the off-diagonal terms necessarily implies that the
disorder appears in both the diagonal and off-diagonal terms. Nonetheless, a correspondence between
the tight-binding Equation (5) and Equations (1) and (2) exists. Applying the following transformation
in the tight-binding Equation (5) we obtain the direct TL (1),

E = −ω2, εn = −L−1
n

(
C−1

n−1 + C−1
n

)
, φn = In (Ln)

− 1
2 (6)

Vn−1 = C−1
n−1 (Ln−1Ln)

− 1
2 , Vn = C−1

n (LnLn+1)
− 1

2 (7)

To obtain the dual TL (2) from the tight-binding equation, it suffices to do the following changes
in transformations (6) and (7), that is ω → (ω)−1 , Cn → (Ln)

−1 , Ln → (Cn)
−1 . This correspondence

between the tight-binding quantum model and the classical transmission lines allows checking the
localization behavior of quantum disordered one-dimensional systems using disordered TL.

2.4. Spectrum of Allowed Frequencies

To obtain the spectrum of allowed frequencies of dual and direct TL, the generic Equation (3),
Dn In − Bn−1 In−1 − Bn In+1 = 0, can be written in the following form:
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In+1 =
Dn

Bn
In −

Bn−1

Bn
In−1 (8)

Considering the trivial relation In = In, we obtain a map in the plane (In, In+1)(
In+1

In

)
= Mn

(
In

In−1

)
(9)

where matrix Mn is given by

Mn =

(
Dn
Bn
− Bn−1

Bn

1 0

)
(10)

The trajectories of the map (9) can be used to determine the extended or localized character of the
electric current function In (ω), i.e., for extended states the trajectories are bounded, but unbounded
for localized states. Also, the λn eigenvalues of the Mn matrix can be written in the following
complex form:

λn =
Dn

2Bn
± i

√
Bn−1

Bn
−
(

Dn

2Bn

)2
(11)

For a given frequency ω, the map (9) is stable if the eigenvalues λn of the matrix Mn are complex
numbers, which also implies that the trajectories of the map are bounded, which in turn means that the

electric current In (ω) is an extended function. λn is a complex number if condition
(

Bn−1
Bn

)
>
(

Dn
2Bn

)2

is met. For
(

Bn−1
Bn

)
=
(

Dn
2Bn

)2
we find the separatrix between localized states

((
Bn−1

Bn

)
<
(

Dn
2Bn

)2
)

and

extended states. Consequently, the spectrum of allowed frequencies for direct and dual TL is given by
general condition (√

Bn −
√

Bn−1

)
<
√

An <
(√

Bn +
√

Bn−1

)
(12)

The coefficients An and Bn depend on the type of transmission line considered, direct or dual. For
direct TL we have Bn = C−1

n and An = ω2Ln and the allowed frequencies are given by(
(LnCn)

− 1
2 − (LnCn−1)

− 1
2
)
< ω <

(
(LnCn)

− 1
2 + (LnCn−1)

− 1
2
)

(13)

For pure direct TL with Ln = L0, Cn = C0, ∀n, we find the typical band of frequencies, i.e.,
0 < ω < 2√

L0C0
. Conversely, for dual TL we have Bn = Ln and An =

(
ω2Cn

)−1 and the allowed
frequencies are (√

CnLn +
√

CnLn−1

)−1
< ω <

(√
CnLn −

√
CnLn−1

)−1
(14)

For pure dual TL with Ln = L0, Cn = C0, ∀n, we also find the typical band of frequencies, i.e.,
1

2
√

L0C0
< ω < ∞.

Next, we determined the frequency spectrum allowed for mixed transmission lines with p direct
cells and q dual cells in the basic unit. The frequency spectrum shows a set of d = (p + q) allowed
bands separated by gaps in a bounded region of frequencies. The size and position of these d bands
depends on the set of parameters that define the mixed TL, namely p, q, and the values of capacitances
Cn,x, Cn,y, and inductances Ln,x, Ln,y in direct or dual cell, respectively. Using the generic Equation (3)
we write the relationship between three consecutive cells of the mixed TL. Starting from the first
site with index n belonging to the direct type cell, we write p equations. After that we write q
equations corresponding to dual cells. We repeat this process until we generate the complete mixed
TL. Using a matrix decimation process [90,91] we can eliminate equations with sites between (n + 1)
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and (n + d− 1) , and between (n + d + 1) and (n + 2d− 1) and so on. This process allows us to write
a new generic equation with renormalized coefficients DR

n+jd and BR
n+jd, which connects sites that are

separated by a distance d, namely

DR
n+jd In+jd − BR

n+(j−1)d In+(j−1)d − BR
n+jd In+(j+1)d = 0 (15)

where j = 0, 1, 2, 3, ... Studying bounded trajectories of the new renormalized map, we obtain the
spectrum of allowed frequencies for mixed TL, i.e.,∣∣∣DR

n+jd

∣∣∣ < 2
√

BR
n+(j−1)dBR

n+jd (16)

From this relationship, two algebraic inequations of degree d in the variable ω2 are found. Solving
both inequations, exactly d = (p + q) bands are obtained, within which we can observe extended
and localized states, and even gaps. The size and position of these d = (p + q) bands depends on the
number of direct cells p and the number of dual cells q that form the mixed TL, as well as on the values
of capacitances Cn,x, Cn,y and inductances Ln,x, Ln,y of direct and dual cells, respectively.

2.5. Methods to Obtain the In (ω) Electric Current Function

The In (ω) amplitudes of the electric current function, are obtained solving the generic Equation (3).
In this paper we only consider two methods to solve this equation: (a) the recurrence method and (b)
The Hamiltonian map method.

2.5.1. Recurrence Method

The In (ω) electric current amplitude in each cell, can be calculated using the following method.
First, the generic Equation (3) is divided by In and then γn is defined as follows

γn =

(
Bn

In+1

In

)
(17)

Then, Equation (3) is transformed into a recurrence equation for γn,

γn = Dn −
1

γn−1
(Bn−1)

2 (18)

where 2 ≤ n ≤ N. Iterating this equation, and starting with γ1 = D1 = (B1 − A1) , the full set of γn

values, with n = 1, 2, 3, ..., N is obtained. With these γn values, and using an arbitrary initial amplitude
value I1 = 1, the full set of amplitudes {In} of the electric current function, can be calculated, i.e.,

In+1 =

(
γn

Bn

)
In (19)

with 1 ≤ n ≤ (N − 1) . After that, the electric current function is normalized, i.e.,
N
∑

n=1
|In|2 = 1.

Exactly the same procedure can be applied to calculate {In} for mixed transmission lines, because
the coefficients γn are always defined from the generic Equation (3), so it is not necessary to use the
renormalized generic Equation (15). Also, the same is valid for the Hamiltonian map method.

2.5.2. Hamiltonian Map Method

Starting from the generic Equation (3), Dn In − Bn−1 In−1 − Bn In+1 = 0, we are building a
two-dimensional map (the Hamiltonian map) [28,81,83,87,88]. From the study of this map we will
obtain (a) the full set of electric current amplitudes {In} (from which we will obtain the localization
properties) and (b) the T (ω) transmission coefficient of the disordered TL (a crucial localization tool).
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Using electric current amplitudes In, we define the coordinate xn at cell n, and the momentum pn

(Hamiltonian description) in the following form:

xn = In (20)

pn = Bn−1 (In − In−1)

The generic Equation (3) can also be written using the coordinate xn,

Dnxn − Bn−1xn−1 − Bnxn+1 = 0 (21)

with Dn = (Bn−1 + Bn − An) . After some algebra, we obtain the Hamiltonian map as a function of the
coefficient An, αn and βn

xn+1 = αnxn + βn pn (22)

pn+1 = −Anxn + pn

where for simplicity we have defined βn =
(

1
Bn

)
and αn = (1− Anβn). This map can be written as

Zn+1 = Mn Zn, where Zn+1 =
(

xn+1 pn+1

)τ
and Mn is given by

Mn =

(
αn βn

−An 1

)
(23)

The trajectories of this map in the phase space (x, p) determine the localization properties of the
In (ω) electric current amplitudes, namely for bounded trajectories In (ω) is an extended function,
but for unbounded trajectories In (ω) is a localized function. Importantly, the study of the map’s
evolution (22) at “time” n, is similar to the transfer matrix method [5,28] used to study the localization
behavior of disordered systems. On the other hand, starting from this map, the spectrum of allowed
frequencies we can be calculated studying the complex eigenvalues of the Hamiltonian matrix Mn (see
Section 2.4).

Next, variables (x, p) of the map (22) are changed by the canonical variables (r, θ) in the
following way

x = r sin θ (24)

p = r cos θ (25)

Using (24) and (25) the map (22) becomes

rn+1 sin θn+1 = αnrn sin θn + βnrn cos θn (26)

rn+1 cos θn+1 = −Anrn sin θn + rn cos θn (27)

Dividing Equation (26) by Equation (27) we obtain a recurrence equation from which we can
calculate θn+1 as a function of θn, namely

tan θn+1 =
βn + αn tan θn

1− An tan θn
(28)

Now, squaring Equations (26) and (27) and adding them together, we have(
rn+1

rn

)2
=
(

α2
n + A2

n

)
sin2 θn +

(
β2

n + 1
)

cos2 θn + (αnβn − An) sin 2θn (29)
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Defining Γn as

Γn =
rn+1

rn
(30)

the recurrence equation to calculate rn+1 as a function of rn, is as follows

rn+1 = rnΓn (31)

In this way, for a fixed frequency ω, and starting with an initial condition (r0, θ0), the full set of
values of θn and rn. can be obtained. Then, using In = xn and xn = rn sin θn, we can calculate the
following relationship

In+1

In
=

xn+1

xn
=

rn+1 sin θn+1

rn sin θn
= Γn

(
sin θn+1

sin θn

)
(32)

from which we obtain the recurrence relation to calculate all electric current amplitudes In, as a function
of Γn and θn, namely

In+1 = Γn

(
sin θn+1

sin θn

)
In (33)

where 1 ≤ n ≤ (N − 1) .

2.6. Diagnostic Tools

Diagnostic tools have been introduced in the literature to study disordered quantum systems,
because the Bloch theorem cannot be applied in the non-periodic case. To accurately estimate the
degree of localization of the quantum wave function, it is generally necessary to simultaneously apply
two or more different diagnostic tools. It is important to note that these diagnostic tools also allow
us to determine the localization properties of classical systems, such as harmonic chains and electric
transmission lines.

2.6.1. Usual Diagnostic Tools

To study the localization behavior of the disordered electric TL as a function of the frequency
ω and as a function of the kind and degree of disorder, we deploy tools used in the study of the
localization behavior of quantum systems: the Lyapunov exponent λ (ω), the normalized localization
length Λ (ω), the participation number D (ω), the inverse participation ratio IPR (ω), the global
density of states DOS (ω) and the transmission coefficient T (ω) . In addition, to characterize the
localization behavior of disordered TL, we study the Rq (ω) Rényi entropies [92] and the moments
µq (ω). All localization tools are defined as a function of the normalized electric current amplitude
In (ω) , namely ∑N

n=1 |In (ω)|2 = 1. In the quantum case, the localization properties are measured
using the φn (E) amplitude of the normalized quantum wave function.

The λ (ω) Lyapunov exponent is defined as

λ (ω) = lim
N→∞

1
N

N

∑
n=1

ln
∣∣∣∣ In+1

In

∣∣∣∣ (34)

For extended states the following condition is met: λ (ω) ≤ 1
N . From (34) we define the Loc (ω)

localization length as Loc (ω) = λ−1 (ω) . Then, the Λ (ω) normalized localization length is defined as

Λ (ω) =
Loc (ω)

N
= (Nλ (ω))−1 (35)

For extended states we have Λ (ω) ≥ 1 and for localized states we obtain Λ (ω) < 1.
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Next, we considered the µq (ω) moments of the In (ω) electric current function. Given that we

are working with normalized electric current
N
∑

n=1
|In|2 = 1, we can define the moments µq (ω) in the

following form

µq (ω) =
N

∑
n=1
|In|2q (36)

For homogeneous distribution of In (ω), i.e., for In (ω) = 1√
N

, ∀n, we find µq (ω) = N−(q−1).
This case corresponds to the most extended case. Conversely, for fully localized states in which In (ω) =

δn,m, we obtain µq (ω) = 1. The participation number D (ω) can be defined using µ2 (ω) namely

D (ω) =
1

µ2
=

(
N

∑
n=1
|In|4

)−1

(37)

with 1 ≤ D (ω) ≤ N. For extended states, D (ω) scales proportional to the N system size, which
implies that ln (D (ω)) versus ln (N) is a straight line with slope m approximate to m = 1. Also,
we can define the ξ (ω) normalized participation number as ξ (ω) = D(ω)

N , with 1
N ≤ ξ (ω) ≤ 1.

Consequently, for extended states, ξ (ω) tends to a constant value as a function of N. In particular, for
periodic systems ξ (ω) =

( 2
3
)

. Conversely, for localized states ξ (ω)→ 0. In addition, the moment µ2

is known as the inverse participation ratio IPR (ω) = µ2 = D−1 (ω) . Consequently, 1
N < IPR (ω) ≤ 1.

Sometimes it is useful to calculate (N × IPR) . In this case, for localized states (N × IPR)→ N and for
extended states (N × IPR) ≈ 1. In particular, for the most extended case (N × IPR) =

( 3
2
)
. Notice

that ξ (ω) = (N × IPR)−1 .
Also, some of these magnitudes can be obtained as a special case of the Rq (ω) Rényi entropies [92]

defined as

Rq (ω) =
1

1− q
ln

N

∑
n=1
|In|2q , q 6= 1 (38)

In the limit q→ 1 we obtain the Shannon entropy (S (ω) = limq→1 Rq (ω) = R1)

S (ω) = −
N

∑
n=1
|In|2 ln |In|2 (39)

For q = 2 we find R2 (ω) = ln D = − ln IPR. Moreover, the Rényi entropies Rq (ω) can be
defined using the µq (ω) moments in the following form

Rq (ω) =
1

1− q
ln µq (ω) , q 6= 1 (40)

2.6.2. The Average Overlap Amplitude Cω

Another tool recently introduced in the literature is the Cω
ij overlap amplitude [84,86–88]. For fixed

frequency ω, this quantity measures the overlap between electric current amplitudes Ii (ω) and Ij (ω) ,
corresponding to two cells i and j of the TL and is defined as Cω

ij = 2
∣∣Ii (ω) Ij (ω)

∣∣. For homogeneous

distribution of Ij (ω) , i.e., for Ij (ω) = 1√
N

, ∀j, we find Cω
ij = 2

N . This case corresponds to the most
extended case. On the contrary, for fully localized states such as Ij (ω) = δi,j, we obtain Cω

ij = 0. Given

that Cω
ij depends on each pair of sites i and j, we define the average overlap amplitude Cω =

〈
Cω

ij

〉
considering all cells of the TL, namely

Cω =
〈

Cω
ij

〉
=

1
d ∑

i<j
Cω

ij (41)
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where d = 1
2 N (N − 1) . The overlap amplitude is based on the definition of quantum entanglements

between a pair of qubits, i and j, called pairwise entanglement (pairwise concurrence) [93,94].
Next, we considered the power of 2q of the overlap amplitude, Cω

ij , i.e.,(
Cω

ij

)2q
= 22q ∣∣Ii (ω) Ij (ω)

∣∣2q (42)

The average of this quantity over all cells of the TL, is given by〈(
Cω

ij

)2q
〉

=
22q

d ∑
i<j
|Ii (ω)|2q ∣∣Ij (ω)

∣∣2q (43)

After some algebra [84], this expression can be written as a function of the µq moments (36) of the
electric current function, namely 〈(

Cω
ij

)2q
〉

=
22q−1

d

((
µq
)2 − µ2q

)
(44)

This relationship indicates that
〈(

Cω
ij

)2q
〉

can determine the localization degree for any

disordered system. For the case q = 1
2 , we obtain a simple expression to calculate the average

overlap amplitude Cω, i.e.,

Cω =
〈

Cω
ij

〉
=

1
d


(

N

∑
n=1
|In|
)2

− 1

 (45)

Also, for q = 1,
〈(

Cω
ij

)2
〉

can be calculated as a function of the ξ (ω) normalized participation

number [84,95], 〈(
Cω

ij

)2
〉

=
2
d

{
1− 1

Nξ (ω)

}
(46)

For localized states ξ (ω) → 1
N , which implies that

〈(
Cω

ij

)2
〉
→ 0. Conversely, for extended

states ξ (ω)→ 1, then
〈(

Cω
ij

)2
〉

=
( 2

N
)2

.

In general, for any value of q, for homogeneous extended states, the following scaling relationship
is obtained 〈(

Cω
ij

)2q
〉

=

(
2
N

)2q
(47)

but for fully localized states, we find
〈(

Cω
ij

)2q
〉

= 0. In particular, for q = 1
2 , we find that

(
N
〈

Cω
ij

〉)
scales like (NCω)→ 2, which means that for extended states, (NCω) is independent of system size N.

In this way, the average overlap amplitude and its powers
〈(

Cω
ij

)2q
〉

can adequately determine

the degree of localization of the disordered TL. Finally,
〈(

Cω
ij

)2q
〉

can also be expressed as a function

of the Rényi entropies [84,95]〈(
Cω

ij

)2q
〉

=
22q−1

d

{(
eRq
)2(1−q)

−
(

eR2q
)(1−2q)

}
(48)

The results shown in this subsubsection are valid even for the quantum case, considering that
Cω

ij represents the quantum entanglements between a pair of qubits CE
ij , i and j, called pairwise
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entanglement (pairwise concurrence) [93,94], i.e., CE
ij = 2

∣∣φi (E) φj (E)
∣∣, where φj (E) represents the

amplitude of the quantum wave function for the eigenstate with eigenenergy E.

2.6.3. The Transmission Coefficient Tω

To study the transmission properties of disordered TL using the Hamiltonian map (22), the
disordered segment must be embedded in two semi-infinite ordered TL, in a similar way to the transfer
matrix method [5,28]. From the Hamiltonian map formalism discussed above, the transmission
coefficient T (ω) can be calculated from the expression [5,28,81,83]

T (ω) =
2

1 + ZN
(49)

For bounded trajectories of the Hamiltonian map (22), we have ZN → 1 and T (ω) → 1. This
behavior indicates that the electric current function I (ω) is an extended function. On the contrary, for
unbounded trajectories we have ZN → ∞ and T (ω)→ 0. In this case, I (ω) is a localized function. ZN
is defined as

ZN =
1
2

((
r(1)N

)2
+
(

r(2)N

)2
)

(50)

where r(1,2)
N are the radii of two trajectories at “time” n = N that start from two perpendicular initial

points, i.e.,

(
r(1)0 , θ

(1)
0

)
= (1, 0) (51)(

r(2)0 , θ
(2)
0

)
=

(
1,

π

2

)
The radii r(1,2)

N can be calculated using the relationship (31), i.e., rn+1 = rnΓn, then
(

r(j)
N

)2
is

given by

(
r(j)

N

)2
=

N

∏
n=1

(
Γ(j)

n

)2
, j = 1, 2 (52)

Or in another form

(
r(j)

N

)2
= exp

(
2

N

∑
n=1

ln
(

Γ(j)
n

))
, j = 1, 2 (53)

Therefore, ZN is given by

ZN =
1
2

[
exp

(
2

N

∑
n=1

ln
(

Γ(1)
n

))
+ exp

(
2

N

∑
n=1

ln
(

Γ(2)
n

))]
(54)

In this way we have a procedure to calculate the transmission coefficient T (ω) .

3. Disordered Transmission Lines

In this section, we study the localization behavior of the I (ω) electric current function when
we distribute capacitances and inductances in a non-periodic way in dual, direct and mixed
transmission lines. Here we will consider (a) aperiodic systems formed by self-similar sequences and
incommensurate sequences, and (b) long-range correlated sequences. The general results indicate that
the band structure of non-periodic systems is determined by the type of transmission line (dual, direct
or mixed) in which the disorder is introduced, and that the existence of discrete sets or extended state
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bands in the thermodynamic limit, it depends on the type of aperiodic disorder used to distribute the
electrical components.

3.1. Aperiodic Transmission Lines

3.1.1. Generalized Fibonacci Sequence

The generalized Fibonacci quasi-periodic sequence is given by substitution rule A → AmBn,
B→ A. The corresponding substitution matrix M is given by

M =

[
m n
1 0

]
(55)

where the elements of the substitution matrix indicate the number of times a given letter, A or B,
appears in the substitution rule, without considering the order in which these letters occur. The number
of letters that appear after applying the substitution rule j times, is given by the generalized Fibonacci
numbers Fj, namely Fj = mFj−1 + nFj−2, j ≥ 2, with F0 = F1 = 1. When the number of iterations j
goes to infinity, the ratio between two consecutive Fibonacci numbers Fj and Fj−1 tends to a constant
number σm,n called the mean of incommensurability, i.e.,

σm,n = lim
j→∞

(
Fj

Fj−1

)
=

1
2

(
m +

√
m2 + 4n

)
(56)

In addition, the relative frequency of both types of letters nA = NA
N and nB = NB

N in the limit
j→ ∞ is given by nA = σm,n

σm,n+n and nB = n
σm,n+n . Please note that the mean of incommensurability σm,n

can also be obtained as the maximal eigenvalue λ = σm,n of the substitution matrix M (55). For the
case m = 1 and n = 1, we obtain the golden mean σ1,1 = 1

2

(
1 +
√

5
)

, and the corresponding Fibonacci
sequence is the following:

A→ AB→ ABA→ ABAAB→ ABAABABA→ · · ·

Some of the other Fibonacci means [71,73,74] which have been studied are: the Silver mean
σ2,1 =

(
1 +
√

2
)

, the Copper mean σ1,2 = 2, the Bronze mean σ3,1 = 1
2

(
3 +
√

13
)

, the Nickel mean

σ1,3 = 1
2

(
1 +
√

13
)

, etc. See Maciá [73] for a spectral classification of one-dimensional binary aperiodic
crystals, studying the eigenvalues λ± and the determinant |M| of the substitution matrix M.

The Fibonacci tight-binding quantum disordered systems have been studied exhaustively
by [37,38,40–46,59,60,63,71]. For the diagonal disordered case, the global number of sub-bands is
exactly four. However, in the off-diagonal disordered case, the global number of sub-bands is exactly
three. In both cases, each sub-band is divided into three sub-bands until it is resolvable. This
self-replication behavior is characteristic of quasi-periodic systems. On the other hand, in classical
electric systems, dual and mixed transmission lines have been studied [78,87] using a Fibonacci
distribution of two different values of inductances LA and LB, namely

LALBLALALBLALBLALALBLALALB... (57)

Notice that when we introduce disorder in the inductances of the dual or mixed TL, the generic
Equation (3) shows that the disorder appears simultaneously in the diagonal and non-diagonal part.

In dual transmission lines, the localization behavior of the Fibonacci quasi-periodic distribution
of inductances Ln, keeping constant the capacitances Cn = C0 ∀n, has been studied [78] analyzing
the spectrum of the generalized Rényi entropies Rq (ω) versus ω and the spectrum of the inverse
participation ratio N × IPR (ω) versus ω. For each q value, Rq (ω) and N × IPR (ω) show more than
four global sub-bands. This happens because the allowed frequency band of the dual transmission
lines is unbounded from above, namely every frequency of the spectrum is greater than a critical
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frequency ωc, i.e., ω > ωc. At the same time, the spectrum of Rq (ω) and N × IPR (ω) clearly shows
the self-replication behavior, where each sub-band is divided into three sub-bands until it is resolvable
(see Figures 2 and 3 of Ref. [78]). This localization behavior is characteristic of quasi-periodic Fibonacci
systems. Inside each sub-band, we find extended and localized states and gaps. When system size
N grows, the number of gaps and localized states increases in such a way that the integrated density
of states IDOS (ω) behaves in a fractal way. As a consequence, the total bandwidth goes to zero
in the thermodynamic limit N → ∞. In Figure 3a) we show the Shannon entropy S (ω) (39), which
corresponds to the R1 (ω) Rényi entropy discussed in Ref. [78]. Notice that the number of global
sub-bands is greater than four. Figure 3b) shows the three sub-bands existing in the global sub-band
indicated by the vertical arrow in Figure 3a). These previous results about the number of global
sub-bands of the dual TL shown in Ref. [78] change when the Fibonacci disorder is introduced in the
mixed transmission line [87]. However, the self-replication of the spectrum is maintained for all kinds
of mixed TL formed by p direct cells and q dual cells.

1 2 3

10.38

10.41

10.44

0.7 0.8 0.9 1.0
10.32

10.36

10.40

10.44 b)

a)
R1=Shannon entropy

R
1

R
1

Figure 3. (a) Global sub-band structure of the Shannon entropy S (ω) = R1 (ω) versus ω, for the
Fibonacci quasi-periodic distribution of inductances Ln discussed in Ref. [78]. (b) Self-replication
structure of the sub-band indicated by the vertical arrow in (a).

Remember that mixed TL are generated by a repetition pattern formed by a group of successive
p direct cells, followed by a group of successive q dual cells. This topology generates a spectrum of
allowed frequencies formed by exactly d = (p + q) bands, as indicated in Section 2.4. In Ref. [87], only
the q inductances of the dual cells of mixed TL were distributed according to the Fibonacci sequence,
keeping constant the values of the other capacitances and inductances. The localization behavior of the
average overlap amplitude (NCω) versus ω for the case p = 2 and q = 1, shows three (d = 3) allowed
bands (see Figure 10 of Ref. [87]). These d bands exist regardless of the type of disorder and the
degree of correlation; however, the position of these d bands depends on the values of all capacitances
(Cn,x, Cn,y) and inductances (Ln,x, Ln,y) of direct cells (labeled x) and dual cells (labeled y), and the
values of p and q. The average overlap amplitude (NCω) versus ω shows four global sub-bands, where
each sub-band is divided into three sub-bands until it is resolvable (see Figure 11 of Ref. [87]). This
result coincides with the one obtained from the quantum tight-binding model with diagonal Fibonacci
disorder. This coincidence occurs because both models (mixed TL and tight-binding model) have
bounded spectra and because in both models the Fibonacci disorder appears in the diagonal part of
the corresponding dynamic equations (Equations (3) and (5)). Conversely, this result is different from
the case of the dual transmission line shown in Figures 2 and 3 of Ref. [78], where the number of
global sub-bands is greater than four, because the frequency spectrum of the dual TL is unbounded
from the above. Interestingly, when p and q change, each of the d = (p + q) bands of the mixed TL
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can accommodate a different number of global sub-bands. However, the self-replication is always
present. To observe this behavior, let us consider the case with fixed p = 2, and two different values of
q, namely q = {2, 3} . Figure 4 shows the average overlap amplitude (NCω) versus ω, for (a) q = 2
(d = 4 bands) and (b) q = 3 (d = 5 bands). There we can see that the full spectrum of frequencies of
mixed TL is contained only within the d bands.

0 1 2 3 4

0

1

2

0 1 2 3 4

0

1

2 b)

a)

p=2, q=2

N
C

p=2, q=3

N
C

Figure 4. (NCω) versus ω for the Fibonacci distribution of inductances Ln, for mixed TL with fixed
p = 2, considering two values of q. (a) q = 2 (d = 4 bands) and (b) q = 3 (d = 5 bands). Vertical arrows
indicate the bands to be studied in Figure 5.

Figure 5 shows (NCω) versus ω for the third band and fourth bands shown in Figure 4b. In
addition, Figure 5b,d show the self-replication behavior of each sub-band indicated with a vertical
arrow in Figure 5a,c, respectively. In this figure we can see that the number of localized states and gaps
increases after each self-replication.
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Figure 5. (NCω) versus ω for the Fibonacci distribution of inductances Ln for mixed TL, for p = 2, q = 3.
A detail of Figure 4. (a) Third sub-band, (c) fourth sub-band. Figures (b,d) show the self-replication of
the sub-bands indicated by vertical arrows in (a,c), respectively.

In summary, for arbitrary values of p and q forming the mixed TL, the set of d = (p + q)
bands accommodates the full spectrum generated by the Fibonacci distribution of inductances Ln.
Inside each of the d bands, the number of global sub-bands is always greater than or equal to four,
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and the self-replication behavior corresponding to quasi-periodic systems is always present. In the
self-replication process, new localized states and gaps appear repeatedly. Consequently, the integrated
density of states has a fractal behavior and IDOS (ω)→ 0 in the thermodynamic limit.

3.1.2. Generalized Thue–Morse Sequence

The generalized Thue–Morse (TM) aperiodic sequence can be generated by means of the
substitution rule A→ AmBn, B→ Bn Am. The corresponding substitution M matrix is given by

M =

[
m n
m n

]
The λ maximal eigenvalue of M is λ = (m + n) . For the case m = 1 and n = 1, we obtain the

usual Thue–Morse sequence: A→ AB, B→ BA, namely

A→ AB→ ABBA→ ABBABAAB→ · · ·

The maximal eigenvalue λ = (m + n) = 2 is thus the length of the substitution, which means
that N = λk is the number of the A and B letters in the kth iteration. For the generalized Thue–Morse
sequence, the relative frequency of both types of letters, nA and nB, is the following nA = m

(m+n) and
nB = n

(m+n) . Another generalization of the Thue–Morse sequence is the m−tupling sequence generated

by the substitution rule A→ ABm−1, B→ BAm−1, with m ≥ 2. In this case, the maximal eigenvalue
of the corresponding substitution M matrix is λ = m, and the number of letters N in this sequence
also increases geometrically, i.e., N = mk, where k is the iteration order. Here nA = nB = 1

2 . For m = 2
we return to the usual Thue–Morse sequence. A spectral classification of one-dimensional binary
aperiodic crystals as a function of the substitution matrix M is shown in Ref. [73].

For the tight-binding quantum model, the aperiodic properties of the generalized Thue–Morse
systems have been studied in great detail by [47–58,60,62,71]. Additionally, in classical dual and direct
transmission lines the Thue–Morse and the m−tupling distribution of capacitances and inductances
have been studied by [83–85]. For direct TL, two values of inductances LA and LB, where distributed
according to the m−tupling substitution rule LA → LALm−1

B , LB → LBLm−1
A , m ≥ 2, keeping constant

the capacitances [83,84]. For m = 2 we obtain the usual Thue–Morse substitution rule LA → LALB,
LB → LBLA. One of the principal findings of these studies was that the localization properties of the
usual Thue–Morse case, namely m = 2, is markedly different to the m = 3 case. In general, although
in the m−tupling sequence the number of letters A and B in each iteration is the same (nA = nB) for
any value of m, the number of extended states in the m−tupling inductance distribution depends
on the specific value of m. This was demonstrated numerically using different localization tools,
like normalized localization length Λ (ω) , participation number D (ω) , normalized participation
number ξ (ω) , global density of states DOS (ω) , transmission coefficient T (ω) and the average
overlap amplitude (NCω) . In addition, it was shown that inside the m−tupling family, starting with
m = 3, the number of extended states increases as the value of m increases, so that for m >> 3, the
allowed spectrum is similar to the spectrum of the case m = 2 (Thue–Morse). This can be seen in
Figure 6 where we show the normalized participation number ξ (ω) for three values of m, namely
m = {2, 3, 13} (a) to (c). Also, in Figure 6d we indicate with a short vertical bar the spectrum of the
extended states, namely the frequencies for which the Λ (ω) normalized localization length meets
the condition Λ (ω) ≥ 1. The image shows that the number of extended states for m = 3 is small
compared to the case m = 2. However, for the case m >> 3, namely m = 8 and m = 13, the number of
extended states becomes comparable with case m = 2.
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Figure 6. ξ (ω) versus ω for the m−tupling distribution of inductances Ln in the direct TL, for three
values of m, namely m = {2, 3, 13} (a–c). (d) Λ (ω) versus ω. A short vertical bar indicates the existence
of an extended state (Λ (ω) ≥ 1). The number of extended states for m = 3 is very small compared to
the case m = 2. Conversely, for m >> 3 (m = 8 and m = 13), the number of extended states increases
and becomes comparable to the m = 2 case.

When comparing the spectrum for cases m = 2 and m = 13, in a restricted region of frequencies
(see Figure 7), it can be observed that the number of extended states which fulfills the condition
ξ ≈ 0.667, corresponding to the periodic case, is reasonably similar in both cases. Also, we can see that
the sub-band of extended states of the Thue–Morse case with m = 2 (Figure 7a) is much wider than
the sub-bands of extended states of the m−tupling case with m = 13 (Figure 7b).
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0.6
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0.0
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0.9 b) m=13
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Figure 7. ξ (ω) versus ω for m−tupling distribution of inductances Ln in direct TL in a restricted region
of frequencies of the Figure 6. (a) m = 2, (b) m = 13. We can see that the sub-bands of extended states
(ξ ≈ 0.667) for m = 2 is much wider than the sub-bands of extended states of case m = 13.

In sum, for direct transmission lines with m−tupling distribution of inductances, the frequency
spectrum of the Thue–Morse sequence (m = 2) can be considered the limit of the m−tupling sequence’s
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frequency spectrum when m� 3. On the other hand, the number of extended states for the case m = 2
decreases dramatically when m changes to m = 3, as shown in Refs. [83,84] and Figure 6.

As an extension of these ideas, the localization behavior of dual transmission lines with non-linear
capacitances has been studied [85]. The non-linear behavior of capacitances is introduced through the
VC,n potential difference across each capacitance, i.e.,

VC,n = qn

(
1

Cn
− εn |qn|2

)
(58)

Cn is the linear part of the capacitance VC,n and εn is the amplitude of the non-linear term. The equation
corresponding to this dual case is given by(

Ln−1 + Ln −
1

ω2Cn
+

εn |In|2

ω4

)
In − Ln−1 In−1 − Ln In+1 = 0 (59)

When the non-linear amplitudes εn go to zero (εn → 0), we return to the dual linear Equation (2).
The localization behavior of this non-linear dual TL has been studied using two values of the non-linear
amplitude εn, namely εA and εB, distributed according to the m−tupling Thue–Morse sequence [85],
i.e., εA → εA εm−1

B , εB → εB εm−1
A , m ≥ 2, but keeping constant the capacitances Cn and inductances

Ln, namely Cn = C0, and Ln = L0 ∀n. In this case, the aperiodic disorder appears only in the diagonal
term of the dynamic Equation (59).

The same fundamental result about the localization degree of the m = 2 case in comparison with
the m ≥ 3 case reappears in this non-linear case, that is, for fixed values of εA and εB, the m ≥ 3 family
does not belong to the family corresponding to m = 2, and in addition, for m >> 3 the frequency
spectrum begins to resemble the spectrum of the case m = 2. To be specific, for m = 2 we can see a
large number of extended states across the entire frequency spectrum, mixed with localized states
and gaps. On the contrary, for m = 3, almost the entire frequency spectrum is formed with localized
states and gaps, accordingly showing a huge decrease in the number of extended states. This behavior
can be seen in Figure 6 of Ref. [85] that shows ξ (ω) versus ω for m = {2, 3, 5, 9}. To compare the
cases for m = 2 and m = 3 in more detail, in Figure 8 we show the average overlap amplitude (NCω),
for m = {2, 3} with εA = 0.1 and εA = 0.03, keeping constant the values of capacitances Cn and
inductances Ln. When m changes from m = 2 to m = 3, the number of extended states decreases
markedly, almost tending to zero. The horizontal dashed line corresponds to the periodic linear case,
εA = εB = 0, for which (NCω) fulfills the condition (NCω) ≈ 1.62. Moreover, at the top of each figure,
we indicate with a short vertical bar the presence of an extended state, namely Λ (ω) ≥ 1. Both results
about the number and position of the extended states in each case match each other. This localization
behavior coincides with the results shown in Figure 6 of Ref. [85], when studying the localization
behavior of the normalized participation number ξ (ω) and Λ (ω) . This way, we have demonstrated
that the m = 2 (Thue–Morse) case is different than the m = 3 case (m−tupling).
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Figure 8. (NCω) versus ω for the m−tupling distribution of amplitudes εn of non-linear capacitances
of the dual TL with εA = 0.1 and εB = 0.03. (a) Case m = 2 and (b) case m = 3. The horizontal dashed
lines indicate the value (NCω) ≈ 1.62, for the periodic linear case, i.e., εA = εB = 0.0. In addition,
at the top of each figure, we indicate with a vertical bar the presence of extended states which meet
condition Λ (ω) ≥ 1.

Consider now the localization behavior of the integrated density of states IDOS (ω) for the
non-linear case, with εA = 0.1 and εA = 0.03. In Figure 9a we show the IDOS (ω) for four values of m,
namely m = {2, 3, 8, 13}. For each m we use a constant size Nm = mk, namely Nm =

{
221, 313, 87, 136} .

There we can see that for the case m = 2, the IDOS (ω) is always greater than the IDOS (ω) of any
other value of m ≥ 3. However, when m grows (m = 8 and m = 13), the IDOS (ω) grows, approaching
the values for the case m = 2. This behavior confirms the conjecture that the Thue–Morse sequence
(m = 2) can be considered to be a limit case of the m−tupling sequence when m � 3. We now turn
to the behavior of the IDOS (ω) for fixed m = 3, as a function of the N = 3k system size, with
k = {10, 12, 13} (see Figure 9b). For the minimum value k = 10, the IDOS (ω) is the greatest of
all, but when N increases (the value of k increases), the number of extended states decreases (the
IDOS (ω) decreases), and new localized states and gaps appear that barely contribute to the integrated
density of states. As a consequence, the IDOS (ω) tends to zero. This behavior is characteristic of
aperiodic systems.

On the other hand, for fixed value of m, when the difference |εA − εB| between the values of the
amplitudes of the non-linear term increases, so does the disorder degree of the transmission line, which
tends to localize the electric current function I (ω) , and as a result, the integrated density of states
IDOS (ω) go to zero. This behavior can be observed in Figure 5 of Ref. [85], for m = 2 (Thue–Morse
case), considering a fixed value εA = 0.0 (the periodic linear case) and three different values of εB,
namely εB = {0.01, 0.03, 0.07} .
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Figure 9. The integrated density of states IDOS (ω) versus ω for the m−tupling distribution of
amplitudes εn of the non-linear capacitances of the dual TL for εA = 0.1 and εB = 0.03. (a) IDOS for
four m values, i.e., m = {2, 3, 8, 13}. For each m, we used a fixed Nm, i.e., Nm =

{
221, 313, 87, 136} . The

IDOS for m = 2 is the greatest of all, and the IDOS for m = 3 is the smallest of all. For increasing
values of m (m = 8 y m = 13), the IDOS tends to the value corresponding to m = 2. (b) Fixed m = 3,
as a function of the N = mk, with k = {10, 12, 13}. The IDOS corresponding to N = 310 is the largest
of all. When N increases, the IDOS tends to zero, IDOS→ 0.

3.1.3. Incommensurate Sequences

The aperiodic incommensurate systems are generated by two superimposed periodic structures
with incommensurate periods. The origin of incommensurability may be structural or dynamic. In the
first case, two or more superimposed periodic structures with incommensurate periods exist, and in
the second case one periodicity is related to the crystalline structure and the other to the behavior of
elementary excitations that propagate through the crystal. Two of the most studied incommensurate
models are the Aubry–André model and the Soukoulis–Economou model.

In the one-dimensional tight-binding quantum model, the site energies εn have been distributed
according to the Aubry–André model that is

εn = ε0 + b cos (2πβn) (60)

where ε0 is the single-site energy of the unperturbed periodic lattice, b is the amplitude and β is an
irrational number, usually β = 0.5

(√
5− 1

)
(the inverse of the Fibonacci golden mean). For b = 2.0, a

phase transition from extended to localized states appears [36,69,70,72].
In classical electric transmission lines, the Aubry–André model has been used to distribute the

inductances Ln in two different cases: (a) direct TL with constant capacitances Cn = C0 ∀n (diagonal
disorder) [86] and (b) mixed transmission lines with disorder only in the q inductances of the dual cells,
keeping constant the value of all the other electrical components of the direct and dual cells [87]. In
this case, the disorder appears in the diagonal and the off-diagonal terms of the generic Equation (3).
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In case a), the inductances Ln of the direct transmission line are distributed according to the
Aubry–André sequence:

Ln = L0 + b cos (2πβn) (61a)

where L0 = const. and b < L0. In this case, the aperiodic incommensurate disorder only appears in
the diagonal term of the generic Equation (3). The localization behavior of this classic electric model
can be visualized in Figure 10 where the map (b, ω) is shown for L0 = 4.0 and N = 7× 105. Each dot
on the map indicates the existence of an extended state, because the normalized localization length
fulfills condition Λ (ω) ≥ 1.0. For b → 0, the frequency spectrum shows a single band of extended
states that corresponds to the periodic case. For increasing values of b, i.e., for b ≤ 1.9, the map (b, ω)

shows three global sub-bands of extended states (with localized states and gaps) separated by two
large gaps. After that, for b > 1.9, only two global sub-bands of extended states survive, which also
contain localized states and gaps. Finally, for b close to b = L0, there is only a small sub-band where
almost all states are extended states, namely 0 ≤ ω ≤ 0.45.

0.0 0.7 1.4 2.1 2.8 3.5 4.2
0.0

0.3

0.6

0.9

1.2 (b, ) > 1

b

Figure 10. Map (b, ω) for the Aubry–André distribution of inductances with L0 = 4.0. Each point of
the map indicates an extended state, because Λ (ω) ≥ 1.0. For increasing values of the amplitude b,
the number of sub-bands of extended states diminishes, and for b close to b = L0, there is only a small
sub-band where almost all states are extended states, namely 0 ≤ ω ≤ 0.45.

Figure 11 shows (a) the λ (ω) Lyapunov exponent versus ω for two values of the b amplitude
b = {1.5, 3.99} and b the spectrum of the extended states, Λ (ω) ≥ 1 versus ω for fixed b = 1.5.
Figure 11a shows that for b = 3.99 ≈ L0 (thick red line), only one band of extended states (λ (ω)→ 0)
can be observed for ω ≤ 0.45. Conversely, for ω > 0.45, only gaps and localized states can be found for
this value of b. This result coincides with the result indicated by the map shown in Figure 10. On the
other hand, in the same Figure 11a we draw λ (ω) versus ω for a smaller value of b, namely b = 1.5
(thin black line). There we can see several sub-bands of extended states (λ (ω)→ 0) separated by gaps.
Within these sub-bands, we can find more localized states and gaps, which are not perceived in this
picture. On the contrary, these gaps can be seen in Figure 11b, where a detail of the map Figure 10 is
shown for b = 1.5, for fixed N = 106. In this figure, each short vertical bar indicates an extended state,
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because Λ (ω) ≥ 1.0. The vertical dashed arrows that cross both figures (for the case b = 1.5) indicate
the edge of the gaps, i.e., the frequencies for which phase transitions occur.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0
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0.4

0.4 0.5 0.6 0.7 0.8 0.9 1.0

-1.5

0.0

1.5

3.0

4.5

a)  b=1.5,  b=3.99

=0.45

b)

 ( ) > 1; b=1.5 0.97
0.940.770.620.52

b

Figure 11. (a) Lyapunov exponent λ (ω) versus ω for two values of the b amplitude b = {1.5, 3.99}.
For b = 3.99 ≈ L0 (thick red line), only one band of extended states (λ (ω)→ 0) can be observed for
ω ≤ 0.45. Conversely, for b = 1.5 (thin black line), we can see several sub-bands of extended states
(λ (ω)→ 0) separated by gaps. Within these sub-bands, we can find more localized states and gaps. (b)
The spectrum of the extended states, Λ (ω) ≥ 1 versus ω for fixed b = 1.5 and N = 106. The vertical
dashed arrows that cross both images indicate the edge of the gaps, in which phase transitions occur.

To see in more detail the phase transition from extended to localized states, in Figure 12a we
show the Lyapunov exponent λ (ω) versus ω for the cases b = 2.0 and N = 2× 105. The vertical
arrows indicate the frequencies ω1 = 0.5006231, ω2 = 0.6336884, and ω3 = 0.7577136, to be studied in
Figure 12b–d, respectively. In these last three images, we show the scaling behavior of the average
overlap amplitude (NCω) for three values of N, namely N = {8, 12, 16} × 104. For each frequency
ω1, ω2 and ω3, we find a phase transition from extended states to localized states at the critical value
bc = 2.0. To the left of the critical point bc for almost every amplitude b, all (NCω) values coalesce into
a single one, i.e., (NCω)→ const > 0, indicating an extended behavior. On the contrary, to the right of
the critical point (b > bc), (NCω) grows as system size N grows, indicating a localized behavior.
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Figure 12. (a) Lyapunov exponent λ (ω) versus ω for the case b = 2.0 and N = 2× 105. The vertical
arrows indicate the frequencies ω1 = 0.5006231, ω2 = 0.6336884, and ω3 = 0.7577136, to be studied in
(b–d). In these last three images, we show the scaling behavior of (NCω) for three values of N, namely
N = {8, 12, 16} × 104. For each frequency ω1, ω2 and ω3, we can see a phase transition from extended
states to localized states at the critical value bc = 2.0. For b ≤ bc we find only extended states, because
for almost every amplitude b, all (NCω) values coalesce into a single one, i.e., (NCω) → const. > 0.
On the contrary, for b > bc, (NCω) grows as system size N grows, indicating a localized behavior.

These results coincide with those in Figures 4–6 of Ref. [86], where this same problem was studied.
In [86], a phase transition from the extended to the localized state is found depending on amplitude
parameter b. This result was found for different frequency values, by studying transmission coefficient
T (ω) and the scaling behavior of the average overlap amplitude (NCω).

In case (b), for mixed transmission lines (with p direct cells and q dual cells), the inductances
Ln of the q dual cells were distributed according to the Aubry–André sequence [87], namely Ln,y =

L0,y + b cos cos (2πβn) with b < L0,y. All other electric components are kept constant, i.e., for direct
cells Ln,x = L0,x, Cn,x = C0,x and for dual cells Cn,y = C0,y. In Ref. [87], three different cases were
studied: (a) p = 2, q = 1, (b) p = 1, q = 4 and (c) p = 4, q = 1. In all cases, the frequency spectrum is
completely contained within the d = (p + q) bands generated by the mixed TL. For fixed b, in each of
the d bands, it is always possible to find sub-bands of extended states in addition to localized states and
gaps. These results were obtained by studying the transmission coefficient T (ω) and the scaling of the
average overlap amplitude (NCω) (see Figures 7–9 of Ref. [87]). To see the influence of the b amplitude
in the localization behavior, in Figure 13 we show the transmission coefficient T (ω) for four values
of b, namely b = {0.3, 0.7, 1.1, 1.5} for the case p = 2, q = 1. We use the same values of the electric
components used in Ref. [87]. In particular, L0,y = 1.6. For b = 0.3 we find d = 3 bands containing
extended states, localized states and gaps (similar to Figure 7a of Ref. [87]). However, for increasing
values of b, the number of extended states within each band decreases, and as a consequence both
lateral bands begin to disappear. In this way, for b = 1.1, the leftmost band has already disappeared,
and for b = 1.5, the rightmost band is about to disappear.
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Figure 13. Transmission coefficient T (ω) versus ω, for mixed transmission line with p = 2, q = 1,
for (a) b = 0.3, (b) b = 0.7, (c) b = 1.1 and (d) b = 1.5. For (a) b = 0.3 we find d = (p + q) = 3
bands containing extended states, localized states and gaps. For increasing values of b, the number of
extended states within each band decreases. Therefore, for (c) b = 1.1, the leftmost band has already
disappeared, and for (d) b = 1.5, the rightmost band is about to disappear.

3.2. Long-Range Correlated Disorder

For one-dimensional disordered systems without any correlation in the disorder (white noise),
all states are localized states in the thermodynamic limit. However, the introduction of correlation in
the disorder can trigger the appearance of a discrete set of extended states (short-range correlation)
or bands of extended states (long-range correlation). The correlated disorder has been introduced in
quantum tight-binding systems [2–29] and in classical systems such as harmonic chains [96–99], and
electrical transmission lines [76,77,79,80,88].

The quantum tight-binding Equation (5) and the generic Equation (3) describing transmission lines
are similar. Transformations (6) and (7) permit the correspondence between both models. However,
unlike the quantum case, in transmission lines it is impossible to study the pure off-diagonal case,
because the disorder contained in the vertical impedances (the coupling between neighboring electric
cells) appears in the off-diagonal coefficients Bn−1 and Bn of the generic Equation (3) and in the
diagonal coefficient Dn = (Bn−1 + Bn − An) too.

To analyze the main differences in the localization behavior with the one-dimensional quantum
case, the dual, direct and mixed disordered transmission lines have been studied recently. These studies
include long-range correlated disorder and diluted disordered TL. In addition to continuous sequences,
the long-range correlation has been used to generate discrete sequences (binary and ternary).

3.2.1. Discrete Sequences

To generate long-range correlated sequences {xn} we use the Fourier filtering method (FFM).
Let us consider initially a set of uncorrelated random numbers {un} with a Gaussian distribution.
Then we take the fast Fourier transform (FFT) of the random sequence {un} and we obtain a new
sequence {uk} . The long-range correlation is introduced in the sequence {uk} doing the following
transformation xk = ukk−

1
2 (2α−1). Calculating the inverse FFT of the new sequence {xk} , we obtain

the long-range correlated sequence {xn} which is spatially correlated with the S (k) spectral density
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S (k) ∝ k−(2α−1). Here the exponent α of the transformation is known as the correlation exponent and
fulfills the condition α ≥ 0.5. For α = 0.5, we regain the uncorrelated random sequence (white noise).
Correlation exponent α quantifies the degree of long-range correlation imposed in the original random
sequence {un}. Finally, we normalize the correlated sequence {xn} to obtain zero average, 〈xn〉 = 0,
and the variance is set to unity.

From the long-range correlated sequence {xn (α > 0.5)} , we can generate the asymmetric ternary
sequence {vn (b1, b2)} formed with three letters, A, B and C,

vn =


A if xn < b1

C if b1 ≤ xn ≤ b2

B if xn > b2

(62)

with b2 ≥ b1. The symmetric ternary map is obtained when b2 = −b1 = b. If b1 = b2 = b we obtain the
asymmetric binary sequence {A, B}. For b→ 0 we regain the symmetric binary sequence. Please note
that the long-range correlation of the ternary sequence {vn (b1, b2)} is not exactly quantified by the
correlation exponent α, because the map (62) changes the long-range correlation. In one-dimensional
tight-binding systems, the symmetric binary and ternary model has been studied [8,24,25,28]. In
these models, a metal-insulator transition has been reported as a function of the correlation degree α

and size b of the window. In addition, the asymmetric ternary map (62) was studied using electrical
dual transmission lines [76] considering three values of capacitances Cn = {CA, CB, CC} , maintaining
constant the inductances Ln = L0 ∀n. This case contains only diagonal disorder. The long-range
correlation in the distribution of capacitances was generated through the FFM. For TL with a finite
number of cells, it is possible to find bands of extended states whose size increases for increasing
values of correlation exponent α. For the asymmetrical model, the normalized localization length
Λ (ω, α, b1, b2, N) is a complicated function of the parameters ω, α, b1, b2, and N, but for fixed frequency
ω, for N → ∞, it is always possible to find a transition from localized electric current functions to
extended current functions for some specific values of the parameters. For the symmetrical ternary
map b2 = −b1 = b, a phase diagram (α, b) separating localized states from extended states has been
found for fixed frequency performing finite-size scaling of the normalized localization length Λ (ω) .
This result is similar to the phase diagram found in the tight-binding case.

Moreover, the same ternary dual TL was studied, but using the Ornstein–Uhlenbeck method to
generate the long-range correlation [77]. In this method, the degree of long-range correlation depends
on two independent parameters, i.e., the viscosity coefficient γ and the diffusion coefficient C. Studying
the scaling behavior of Λ (ω) , we obtain two-phase diagrams for the symmetrical map when C and γ

are independent parameters, namely (C, b) for fixed γ and (γ, b) for fixed C. In addition, we study the
phase diagrams when C and γ are dependent parameters, i.e., C = γ2. In all cases, we find a transition
from localized to extended states. Also, the harmonic symmetric ternary chain was studied in Ref. [99]
using the Ornstein–Uhlenbeck method for the case C = γ2. Instead of the transition from localized
to extended behavior, they found a disorder-order transition for b > 4, because the disorder degree
practically disappears at this limit.

This same kind of disorder-order transition has been found by studying localization properties
of direct TL with diluted and non-diluted asymmetric dichotomous noise (binary sequences of
inductances LA and LB with Cn = C0 ∀n) [82]. The asymmetric dichotomous sequence {ζ (t)} is
generated by a variable ζ (t) which switches in time in a random way between two given values a and
(−b) with transition rates µa and µb, respectively (dichotomous noise). Considering ζ (t) as a stationary
process, the dichotomous noise has zero mean and is exponentially correlated. The τ correlation time
of the dichotomous noise is defined as τ−1 = (µa + µb) . In addition, from the zero-average condition
〈ζ (t)〉 = 0, we obtain the following relationship between a, b, µa and µb, namely β = a

b = µa
µb

, where
parameter β measures the degree of asymmetry of the dichotomous noise. For µa > µb we have
β > 1 and for µa < µb we have β < 1. The symmetric sequence µa = µb is obtained for the case
β = 1. Consequently, the dichotomous noise is characterized by three independent parameters: τ,
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a and b. However, setting the value of one of the parameters, for example, b = 1, we can study
the localization behavior generated by this kind of exponentially correlated noise using only two
independent parameters, i.e., τ and β. In the diagonal disordered direct TL, the inductances LA and
LB are distributed according to the asymmetric dichotomous noise, keeping the capacitances constant
Cn = C0 ∀n [82]. For τ < τc and for β < βc (τc, βc are critical values) the electric current function I (ω)

shows a localized behavior, but for τ > τc and for β > βc, the D (ω, τ, β) participation number scales as
D (ω) ∝ Nm(ω,τ,β), where m (ω, τ, β) < 1 is the slope of the linear relationship between ln (D (ω, τ, β))

and ln (N) , for fixed ω, β, and τ. Only in the limit τ → ∞ (for fixed ω and β) and β→ ∞ (for fixed ω

and τ), we obtain the exact linear behavior, i.e., limτ→∞ m (ω, τ, β) = 1.0 and limβ→∞ m (ω, τ, β) = 1.0.
However, in both limits, τ → ∞ or β→ ∞, the asymmetric dichotomous sequence becomes a periodic
sequence. Thus, we only can observe a disorder-order transition, which in turn indicates that all states
are localized states in the thermodynamic limit for classical electric TL. This result coincides with the
one obtained for the one-dimensional tight-binding quantum model with symmetric dichotomous
noise, in which the metal-insulator transition is absent [56,100].

3.2.2. Continuous Sequences

In addition to discrete sequences, continuous long-range correlated sequences have been
used to study the localization behavior of direct, dual and even mixed electrical transmission
lines [79,80,88]. In general, in classical electric transmission lines, the long-range correlated disorder
in capacitances and inductances has been used in the following form:Cn (α) = C0 + b f (xn (α)) and
Ln (β) = L0 + b f (yn (β)) , where f (u) is an harmonic function. {xn (α)} and {yn (β)} are two
independent long-range correlated sequences generated by the FFM and α and β are the corresponding
correlation exponents that determine the correlation degree. b is the amplitude of the fluctuation of Cn

and Ln around C0 and L0, respectively. The diagonal and off-diagonal disordered dual transmission
line, considering only one type of correlated sequence {xn (α)} has been studied recently [79]. In this
case, Cn and Ln vary in phase, i.e.,

Cn = C0 + b sin (2πxn (α)) (63)

Ln = L0 + b sin (2πxn (α))

Here, b < min (C0, L0) to avoid negative values of the electrical components. For this kind
of disorder, it is always possible to find extended states for different frequencies, and for each
specific frequency a phase diagram (b, α), which separates extended states from localized states
in the thermodynamic limit can be found.

To obtain the critical correlation exponent αc separating localized states from extended states, we
analyze the scaling behavior of (a) the participation number D (ω) (37), (b) the relative fluctuation
ηD (ω, b, α, N) of the participation number D (ω) and (c) the Binder cumulant BD (ω, b, α, N) of the
participation number D (ω) . These quantities are defined as

ηD (ω, b, α, N) =

√√√√( 〈D2〉
〈D〉2

− 1

)
(64)

and

BD (ω, b, α, N) =

(
1−

〈
D4〉

3 〈D2〉2

)
(65)

where 〈..〉means an average over long-range correlated sequences.
For increasing system size N, the relative fluctuation ηD goes to zero for extended states and

grows converging to a finite value for localized states. Consequently, for N → ∞, ηD tends toward a
step function and a discontinuity appears that separates extended states from localized states. This
scaling behavior can be used to determine the critical correlation exponent αc for fixed values of ω
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and b, because the curves ηD (α) with different N values will cross in a single point (the critical point
αc). Also, the scaling behavior of the Binder cumulant BD (α) indicates that for N → ∞, BD (α) jumps
abruptly from a constant value (BD = 0.667) for extended states to zero (BD (α) = 0) for localized
states. Consequently, for fixed values of ω and b, the curves BD (α) with different N values will cross in
a single point (critical point αc). On the other hand, the critical value of the fluctuation amplitude bc can
be obtained studying the scaling behavior of the normalized localization length Λ (b) (35). For fixed
ω and α ≥ αc, in the transition point from localized to extended states, Λ (b) varies from Λ (b) > 1
to Λ (b)→ 0. Finally, in the thermodynamic limit, for fixed frequency ω, the phase diagram (b, α) is
formed by two independent straight lines, so that extended states only appear when condition α ≥ αc

is met for any b ≤ bc. Specifically, in Ref. [79] the following values were used: C0 = 0.5, L0 = 1.0.
For the fixed frequency ω = 3.6, the critical values are bc = 0.43 and αc = 1.51 (see phase diagram
in Figure 9 of Ref. [79]). In Figure 14 we show, in a schematic way, the phase diagram for a fixed
frequency ω, when Cn and Ln vary in phase (63) in dual TL. This map is conceptually different to the
map in Figure 15b), when Cn and Ln vary out of phase (in the study of mixed TL).

0.0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

b

Extended States

bc

Cn= C0+ b sin(2  xn( ))
Ln= L0+ b sin(2 xn( ))

c

Figure 14. Schematic phase diagram (b, α) , for a fixed frequency ω, when Cn and Ln vary in phase in
dual transmission lines. For this transmission line with long-range correlated distribution of Cn and Ln,
extended states can only be found for α ≥ αc and b ≤ bc.

In Ref. [88], this model was generalized in two ways: (a) studying mixed transmission lines
instead of dual TL, and (b) the capacitances Cn,y and inductances Ln,y of the dual cells of mixed TL
are distributed out of phase, using two independent long-range correlated sequences xn (α) 6= yn (β) .
Specifically,

Cn,y = C0,y + b cos (2πxn (α)) (66)

Ln,y = L0,y + b cos (2πyn (β))

where {xn (α)} and {yn (β)} are two independent long-range correlated sequences, even in the case
α = β, because each correlated sequence is initiated using two independent uncorrelated random
sequences according to the FFM. The localization behavior of this mixed TL was studied in Ref. [88] for
the case p = 2, q = 3. The frequency spectrum of this case shows d = (p + q) = 5 bands. Additionally,
in the thermodynamic limit, for fixed p, q and b, it is always possible to find an asymmetric phase
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diagram (α, β) for each frequency ω, corresponding to an extended state. In the case studied in Ref. [88],
for ω = 1.986591 and b = 0.1, the correlation exponents α and β fulfill the following condition: α ≥ αc

and β ≥ βc, with the asymmetric condition αc ≥ βc. This behavior can be observed in Figures 8
and 9 of Ref. [88]. There we can see the phase diagram (α, β) that separates localized states from
extended states, and the localization behavior of Λ (ω) versus α (for fixed β), and Λ (ω) versus β (for
fixed α). The asymmetric condition αc ≥ βc can be explained through the following arguments. In
relationships (66), the fluctuation ∆Cn,y of the capacitances around C0,y is the same as the fluctuation
of inductances ∆Ln,y around L0,y, namely ∆Cn,y = ∆Ln,y = 2b. However, in every kind of transmission
line, capacitances only appear in the form C−1

n,y . Accordingly, the fluctuation of this term is given by

∆C−1
n,y =

(
2b
g

)
, where g =

(
C2

0,y − b2
)

. For g < 1 we have ∆C−1
n,y > ∆Ln,y, which means that the term

C−1
n,y introduces a greater disorder into the generic Equation (3) than the disorder introduced by Ln,y.

This fact can induce a decrease in the degree of correlation of the sequence {Cn (α)} . To compensate
this decrease, correlation exponent α must be greater than correlation exponent β of Ln,y (β) to generate
extended states. Consequently, the critical correlation exponents fulfill the condition αc ≥ βc, as long
as condition

(
C2

0,y − b2
)
< 1 is valid. Also, for fixed ω, and for given correlation exponents α and β, it

is possible to find a critical value of amplitude b of the fluctuation, in such a way that for b ≥ bc all
states are localized states (see Figures 10 and 11 of Ref. [88]).
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Figure 15. (a) Λ (ω) versus ω, for mixed TL with p = 1 and q = 3, for b = 0.1. We consider two
fixed values of the correlation exponents, α = 2.3 and β = 2.5. Only three bands are visible, because
Λ (ω)→ 0 for the leftmost band (localized states). (b) Phase diagram (α, β) for ω = 1.462121 (indicated
by the vertical arrow in (a)). Only for α ≥ αc = 1.81 and β ≥ βc = 1.68, with αc > βc is it possible to
find extended states.

The localization behavior of mixed transmission lines with long-range correlated disorder given
by (66) can be summarized in Figures 15 and 16, where we studied mixed TL with p = 1 and q = 3.
This case has d = 4 bands. Figure 15a shows Λ (ω) versus ω for b = 0.1, for two fixed values of the
correlation exponents, namely α = 2.3 and β = 2.5. Only three bands are visible, because Λ (ω)→ 0 for
the leftmost band (localized states). The vertical arrow indicates the specific frequency ω = 1.462121
studied in Figures 15b and 16. For this frequency, Figure 15b shows the phase diagram (α, β) . This
image indicates that only for α ≥ αc and β ≥ βc, with αc > βc it is possible to find extended states.
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Also, for ω = 1.462121, the critical correlation exponents are αc = 1.81 and βc = 1.68. Please note that
the asymmetric condition αc > βc is fulfilled. Figure 16 shows the scaling behavior of the average
overlap amplitude ln (Cω) versus ln (N) for the frequency ω = 1.462121 indicated by vertical arrows
in Figure 15a. For fixed β = 3.6 we obtain the critical value αc of the correlation exponent, namely
αc = 1.81 (see Figure 16a). For α < αc all states are localized states because we cannot obtain a linear
relationship between ln (Cω) and ln (N). However, for α ≥ αc we only find straight lines with the
same slope m = −1.0 (R = 1.0). This behavior indicates that (NCω) is constant for increasing values
of N. This is exactly the scaling behavior of the average overlap amplitude for extended states. For
fixed α = 2.0, Figure 16b shows the same kind of scaling behavior, obtaining βc = 1.68.
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Figure 16. Scaling behavior of ln (Cω) versus ln (N) for mixed TL with p = 1, q = 3, ω = 1.462121,
and b = 0.1. (a) For fixed β = 3.6, only for α ≥ αc = 1.81, we find straight lines with the same
slope m = −1.0 (R = 1.0), which indicates an extended behavior. (b) For fixed α = 2.0, only for
β ≥ βc = 1.68, we can obtain linear relationships with m = −1.0.

3.3. Diluted Disordered Systems

Hilke [101] introduced the diluted Anderson model, which considers two interpenetrating lattices,
i.e., a pure lattice (ε j = ε0), while an Anderson lattice (ε jP is a random number) is periodically
distributed with period P ≥ 1. This means (P− 1) diluting elements exist between two Anderson
sites. For P = 1 we regain the usual Anderson model [1]. This model was generalized [11,12] so that
the (P− 1) diluting elements are distributed according to a function with certain specific symmetry
conditions (see Ref. [11]). The case ε j = ε0 is the most symmetrical of all, and coincides with the results
from previous works [101–103]. Depending on the type of symmetry, the dilution process can generate
a maximum of up to (P− 1) extended states, which are exactly located on some of the edges of the
gaps. For constant off-diagonal term, the position of these resonances depends only on the period P
and the values of ε j of the diluting elements. At the same time, resonances are independent of the type
of disorder, as well as the degree of correlation in the disordered lattice. In addition, in the resonance,
the extended wave function behaves like an intermediate extended function, because its amplitude is
zero at each disordered site. The localization behavior of the diluted systems have been studied in the
tight-binding quantum case, and in classic systems, like harmonic chains and electric transmission
lines [11,12,15,23,80–82,84,96,101–103].
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Let us consider the localization behavior of diluted direct transmission lines, with constant
capacitances, i.e., Cn = C0 ∀n. The inductances Ln, corresponding to disordered sites, have been
distributed in different forms. Between two disordered inductances, Ln and Ln+P, we put (P− 1)
identical inductances L0 = const., where Ln 6= L0. Consequently, the inductances are distributed in the
following schematic way ... Lx L0 L0 L0 Lx L0 L0 L0 Lx ..., where P = 4. Because of the full symmetry of
the diluting elements, we find exactly (P− 1) resonances and (P− 1) gaps [11]. For direct transmission
lines, resonance frequencies are obtained analytically [80–82]:

P = 2, ω =
√

2ω0

P = 3, ω =
√

2± 1ω0 (67)

P = 4, ω =

{√
2,
√

2±
√

2
}

ω0

where ω0 = (L0C0)
− 1

2 and L0 6= Ln.
In Ref. [80] the inductances Ln were distributed in (a) a random way, and (b) considering

long-range correlated disorder (Fourier Filtering method and Ornstein–Uhlenbeck process). In both
cases a continuous distribution of Ln values was used. In addition, in Ref. [81] the inductances Ln were
distributed by means of an aperiodic binary sequence of Galois [67], and in Ref. [82] the inductances Ln

were distributed considering an asymmetric dichotomous sequence. In all cases studied, the existence
of (P− 1) intermediate extended states has been demonstrated. Also, the position of the resonance
frequencies coincides with theoretical predictions.

On the other hand, the localization behavior of the diluted aperiodic m−tupling distribution
of inductances was studied in Ref. [84]. The case m = 3 was considered, with (P− 1) = 4 diluting
elements L0. For numerical calculation, the following data were used: Cn = C0 = 0.5 ∀n, LA = 1.6,
LB = 1.5 and L0 = 1.8. Figure 6 of Ref. [84] shows (a) the overlap amplitude (NCω) , and (b) the
normalized participation number ξ (ω). In that picture we can see four gaps and four resonances,
which are indicated by vertical dashed lines. Notice that resonances are placed at the left edge of
each gap. This result coincides with the theoretical predictions. In Figure 17, we show the average
overlap amplitude (NCω) for the same case studied in Figure 6 of Ref. [84], but now we study the
Thue–Morse sequence, i.e., m = 2. Here, we consider four values of P, namely P = {1, 2, 3, 4} . The
case P = 1 corresponds to the usual Thue–Morse sequence without dilution. According to (67), for
each P ≥ 2, the frequency of the resonances are: P = 2, ω = {1.491} ; P = 3, ω = {1.054, 1.826} , and
P = 4, ω = {0.807, 1.491, 1.948} . These theoretical values coincide with the numerical results shown
in Figure 17. The same localization behavior of this diluted aperiodic system can be seen in Figure 18
studying the density of states DOS (ω) versus ω. There we can see that to the left of each gap, the
density of states does not fluctuate, which is an indication of the extended nature of the resonance
located there. This does not happen on the right side of each gap.
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Figure 17. (NCω) versus ω, for the Thue–Morse distribution of inductances, with LA = 1.6, LB = 1.5.
Four values of the period P are considered, namely P = {1, 2, 3, 4} . The case P = 1 corresponds to the
usual Thue–Morse sequence without dilution. For P ≥ 2, the sequences are diluted with L0 = 1.8, with
fixed Cn = 0.5. The resonances coincide with the left edge of each of the (P− 1) gaps generated by the
dilution process.
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Figure 18. Density of states DOS (ω) versus ω. To the left of each gap, the density of states does not
fluctuate, which is an indication of the extended nature of the resonance located there. The same does
not happen on the right side of each gap. In addition, we can see that the localization behavior of the
DOS (ω), is identical to the localization behavior shown by (NCω) in Figure 17.



Symmetry 2019, 11, 1257 31 of 36

4. Summary and Conclusions

We have presented the results of the study of the localization properties of disordered electrical
transmission lines. This study considered three types of TL: dual, direct and mixed. The electrical
components of the (capacitances and inductances) were distributed in different non-periodic forms:
(a) aperiodic, which included self-similar sequences (Fibonacci and m−tupling Thue–Morse), (b)
incommensurate sequences (Aubry–André and Soukoulis–Economou), and (c) long-range correlated
sequences (binary discrete and continuous). The localization properties of these classical systems were
measured using the typical tools used in quantum mechanics to characterize the localization behavior
of disordered systems. Specifically, we used the normalized localization length Λ (ω), the inverse
participation ratio IPR (ω), the transmission coefficient T (ω), the global density of states DOS (ω) ,
the average overlap amplitude Cω, and others. Our studies indicate that the localization behavior
of classic electric transmission lines is quite similar to the one-dimensional tight-binding quantum
model, but at the same time it is possible to observe some significant differences; therefore, it is worth
continuing to investigate this type of classical disordered systems.

As a possible application of the study of the localization properties of disordered electric
transmission lines, we can consider the neuronal axons that connect two or more neurons through
electrical impulses. The axon, which usually is covered by a myelin sheath, can be considered to be a
transmission line formed by Schwann cells connected by nodes of Ranvier. It has been established that
there exist certain specific genes responsible for stabilizing the internal neuronal structure, which in turn
allows the proper transport of the electrical impulse within the axon. The electrical communication
between neurons fails if axons are damaged or broken. This can happen in the earliest stages of
neurodegenerative diseases or for other reasons. Based on the localization properties of electrical
transmission lines studied in this review, it is possible to conclude that electrical communication
between neurons prevails, if Schwann cells and Ranvier nodes are distributed in a periodic way or
in a very specific aperiodic way. On the contrary, any non-correlated disorder in the axon structure
will stop the electrical impulses and the neurons will remain without communication. Consequently,
to restore electrical communication between neurons, I can conjecture that the genes responsible for
stabilizing the internal neuronal structure have the specific mission of restoring periodicity in the
distribution of Schwann cells and Ranvier’s nodes.

Up to that point, we have only considered ideal transmission lines, i.e., transmission lines without
dissipation (resistance R = 0). When we introduced gain (Rn = −R, n odd) and loss (Rn = +R, n
even) balanced pairwise, a PT -symmetric resistive configuration is obtained. For this dissipative
system, we can find a critical resistance Rc such that for R < Rc the frequency spectrum is completely
real, but for R > Rc the frequency spectrum contains real and complex frequencies. This phenomenon
is called a PT -symmetric transition phase, because the TL goes from an unbroken (R < Rc) to a
broken PT -symmetric phase as a function of resistance R. In addition, we have demonstrated that
in the unbroken PT -symmetric phase, the electric current function In (ω) is a symmetric extended
function. Conversely, in the broken phase, In (ω) is an antisymmetric localized function. This phase
transition was recently found for TL with a very small number of cells considering fixed boundary
conditions [89].

In addition to this research, we are currently studying two different lines of research, (a) the
influence of non-linear inductances or capacitances in the stability and amplitude of the allowed
conducting bands of the unbroken PT -symmetric phase, and (b) the localization behavior of
some models of structured transmission lines, in the spirit of the structured systems proposed by
Chakrabarti [29]. Specifically, we analyzed TL with a finite number of hanging cells (direct or dual) in
random positions in TL. The electric components (capacitances or inductances) of each hanging cell,
can contain aperiodic disorder or long-range correlated disorder.
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