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Abstract: In this paper, we establish several integral inequalities of Chebyshev type for bounded
continuous fields of Hermitian operators concerning Tracy-Singh products and weighted Pythagorean
means. The weighted Pythagorean means considered here are parametrization versions of three
symmetric means: the arithmetic mean, the geometric mean, and the harmonic mean. Every continuous
field considered here is parametrized by a locally compact Hausdorff space equipped with a finite
Radon measure. Tracy-Singh product versions of the Chebyshev-Grüss inequality via oscillations are
also obtained. Such integral inequalities reduce to discrete inequalities when the space is a finite space
equipped with the counting measure. Moreover, our results include Chebyshev-type inequalities for
tensor product of operators and Tracy-Singh/Kronecker products of matrices.

Keywords: Chebyshev inequality; Tracy-Singh product; continuous field of operators; Bochner integral;
weighted Pythagorean mean

1. Introduction

One of the fundamental inequalities in mathematics is the Chebyshev inequality, named after
P.L. Chebyshev, which states that
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(1)

for all real numbers ai, bi (1 6 i 6 n) such that a1 6 . . . 6 an and b1 6 . . . 6 bn, or a1 > . . . > an and
b1 > . . . > bn. This inequality can be generalized to
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where wi > 0 for all 1 = 1, . . . , n. A matrix version of (2) involving the Hadamard product was obtained in [1].
A continuous version of the Chebyshev inequality [2] says that if f , g : [a, b] → R are monotone

functions in the same sense and p : [a, b]→ [0, ∞) is an integrable function, then

∫ b

a
p(x)dx

∫ b

a
p(x) f (x)g(x)dx >

∫ b

a
p(x) f (x)dx ·

∫ b

a
p(x)g(x)dx. (3)
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If f and g are monotone in the opposite sense, the reverse inequality holds. In [3], Moslehian and
Bakherad extended this inequality to Hilbert space operators related with the Hadamard product by using
the notion of synchronous Hadamard property. They also presented integral Chebyshev inequalities
respecting operator means.

The Grüss inequality, first introduced by G. Grüss in 1935 [4], is a complement of the Chebyshev
inequality. This inequality gives a bound of the difference between the product of the integrals and the
integral of the product for two integrable functions. For each integral function f : [a, b]→ R, let us denote

I( f ) =
1

b− a

∫ b

a
f (x)dx.

The Grüss inequality states that if f , g : [a, b] → R are integrable functions and there exist real
constants k, K, l, L such that k 6 f (x) 6 K and l 6 g(x) 6 L for all x ∈ [a, b], then

|I( f g)− I( f )I(g)| 6 1
4
(K− k)(L− l). (4)

This inequality has been studied and generalized by several authors; see [5–7]. In [7], the term
Chebyshev-Grüss inequalities is used mentioning to Grüss inequalities for Chebyshev functions TI which
defined as

TI ( f , g) = I( f · g)− I( f ) · I(g).

A general form of Chebyshev-Grüss inequalities is given by

|TI ( f , g)| 6 E(I , f , g)

where E is an expression depending on the arithmetic integral mean I and oscillations of f and g.
Chebyshev-Grüss inequalities for some kind of operator via discrete oscillations is presented by Gonska,
Raça and Rusu [7].

On the other hand, the notion of tensor product of operators is a key concept in functional analysis
and its applications particularly in quantum mechanics. The theory of tensor product of operators has been
investigate in the literature; see, e.g., [8,9]. In [10,11], the authors extend the notion of tensor product to
the Tracy-Singh product for operators on a Hilbert space, and supply algebraic/order/analytic properties
of this product.

In this paper, we establish a number of integral inequalities of Chebyshev type for continuous fields
of Hermitian operators relating Tracy-singh products and weighted Pythagorean means. The Pythagorean
means considered here are three classical means -the geometric mean, the arithmetic mean, and the
harmonic mean. The continuous field considered here is parametrized by a locally compact Hausdorff
space Ω endowed with a finite Radon measure. In Section 2, we give basic results on Tracy-Singh
products for Hilbert space operators and Bochner integrability of continuous field of operators on a locally
compact Housdorff space. In Section 3, we provide Chebyshev type inequalities involving Tracy-Singh
products of operators under the assumption of synchronous Tracy-Singh property. In Section 4, we
establish Chebyshev integral inequalities concerning operator means and Tracy-Singh products under
the assumption of synchronous monotone property. Finally, we prove Chebyshev-Grüss inequalities
via oscillations for continuous fields of operators in Section 5. In the case that Ω is a finite space with
the counting measure, such integral inequalities reduce to discrete inequalities. Our results include
Chebyshev-type inequalities concerning tensor product of operators and Tracy-Singh/Kronecker products
of matrices.
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2. Preliminaries

In this paper, we consider complex Hilbert spaces H and K. The symbol B(X) stands to the Banach
space of bounded linear operators on a Hilbert space X. The cone of positive operators on X is denoted
by B(X)+. For Hermitian operators A and B in B(X), the situation A ≥ B means that A− B ∈ B(X)+.
Denote the set of all positive invertible operators on X by B(X)++.

We fix the following orthogonal decompositions:

H =
m⊕

i=1

Hi, K =
n⊕

k=1

Kk

where all Hi and Kj are Hilbert spaces. Such decompositions lead to a unique representation for each
operator A ∈ B(H) and B ∈ B(K) as a block-matrix form:

A =
[
Aij
]m,m

i,j=1 and B = [Bkl ]
n,n
k,l=1

where Aij ∈ B(Hj,Hi) and Bkl ∈ B(Kl ,Kk) for each i, j, k, l.

2.1. Tracy-Singh Product for Operators

Let A ∈ B(H) and B ∈ B(K). Recall that the tensor product of A and B, denoted by A⊗ B, is a unique
bounded linear operator on the tensor product space H⊗K such that

(A⊗ B)(x⊗ y) = Ax⊗ By, ∀x ∈ H, ∀y ∈ K.

When H = K = C, the tensor product of operators becomes the Kronecker product of matrices.

Definition 1. Let A = [Aij]
m,m
i,j=1 ∈ B(H) and B = [Bkl ]

n,n
k,l=1 ∈ B(K). The Tracy-Singh product of A and B is

defined to be in the form
A� B =

[[
Aij ⊗ Bkl

]
kl

]
ij

, (5)

which is a bounded linear operator from
m⊕

i=1

n⊕
k=1

Hi ⊗Kk into itself.

When m = n = 1, the Tracy-Singh product A� B is the tensor product A⊗ B. If Hi = Kj = C for all
i, j, the above definition becomes the usual Tracy-Singh product for complex matrices.

Lemma 1 ([10,11]). Let A, B, C, D be compatible operators. Then

1. (αA)� B = A� (αB) = α(A� B) for any α ∈ C.
2. (A + B)� (C + D) = A� C + A�D + B� C + B�D.
3. (A� B)(C�D) = (AC)� (BD).
4. If A and B are Hermitian, then so is A� B.
5. If A and B are positive and invertible, then (A� B)α = Aα � Bα for any α ∈ R.
6. If A > C > 0 and B > D > 0, then A� B > C�D > 0.

2.2. Bochner Integration

Let Ω be a locally compact Hausdorff (LCH) space equipped with a finite Radon measure µ. A family
A = (At)t∈Ω of operators in B(H) is said to be bounded if there is a constant M > 0 for which ‖At‖ 6 M
for all t ∈ Ω. The family A is said to be a continuous field if parametrization t 7→ At is norm-continuous
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on Ω. Every continuous field A = (At)t∈Ω can have the Bochner integral
∫

Ω Atdµ(t) if the norm function
t 7→ ‖At‖ possess the Lebesgue integrability. In this case, the resulting integral is a unique element in
B(H) such that

φ

( ∫
Ω

Atdµ(t)

)
=
∫

Ω
φ (At) dµ(t)

for every bounded linear functional φ on B(H).

Lemma 2 (e.g., [12]). Let (X, ‖ · ‖X) be a Banach space and (Γ, υ) a finite measure space. Then a measurable
function f : Γ→ X is Bochner integrable if and only if its norm function ‖ f ‖ is Lebesgue integrable.

Lemma 3 (e.g., [12]). Let f : Γ→ X be a Bochner integrable function. If ϕ : X→ Y is a bounded linear operator,
then the composition ϕ ◦ f is Bochner integrable and∫

Γ
(ϕ ◦ f )dυ = ϕ

∫
Γ

f dυ.

Proposition 1. Let (At)t∈Ω be a bounded continuous field of operators in B(H). Then for any X ∈ B(K),∫
Ω

Atdµ(t)� X =
∫

Ω
(At � X)dµ(t).

Proof. Since the map t 7→ At is continuous and bounded, it is Bochner integrable on Ω. Note that the
map T 7→ T� X is linear and bounded by Lemma 1. Now, Lemma 3 implies that the map t 7→ At � X is
Bochner integrable on Ω and ∫

Ω
Atdµ(t)� X =

∫
Ω
(At � X)dµ(t).

for all X ∈ B(K).

3. Chebyshev Type Inequalities Involving Tracy-Singh Products of Operators

From now on, let Ω be an LCH space equipped with a finite Radon measure µ. Let A = (At)t∈Ω,
B = (Bt)t∈Ω, C = (Ct)t∈Ω and D = (Dt)t∈Ω be continuous fields of Hilbert space operators.

Definition 2. The fields A and B are said to have the synchronous Tracy-Singh property if, for all s, t ∈ Ω,

(At − As)� (Bt − Bs) > 0. (6)

They are said to have the opposite-synchronous Tracy-Singh property if the reverse of (6) holds for all s, t ∈ Ω.

Theorem 1. Let A and B be bounded continuous fields of Hermitian operators in B(H) and B(K), respectively,
and let α : Ω→ [0, ∞) be a bounded measurable function.

1. If A and B have the synchronous Tracy-Singh property, then∫
Ω

α(s)dµ(s)
∫

Ω
α(t)(At � Bt)dµ(t) >

∫
Ω

α(t)Atdµ(t)�
∫

Ω
α(s)Bsdµ(s). (7)

2. If A and B have the opposite-synchronous Tracy-Singh property, then the reverse of (7) holds.
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Proof. By using Lemma 1, Proposition 1 and Fubini’s Theorem [13], we have∫
Ω

α(s)dµ(s)
∫

Ω
α(t)(At � Bt)dµ(t)−

∫
Ω

α(t)Atdµ(t)�
∫

Ω
α(s)Bsdµ(s)

=
∫∫

Ω2
α(s)α(t)(At � Bt)dµ(t)dµ(s)−

∫∫
Ω2

α(t)α(s)(At � Bs)dµ(t)dµ(s)

=
1
2

∫∫
Ω2

[α(s)α(t)(At � Bt)− α(t)α(s)(At � Bs)] dµ(t)dµ(s)

+
1
2

∫∫
Ω2

[α(t)α(s)(As � Bs)− α(s)α(t)(As � Bt)] dµ(s)dµ(t)

=
1
2

∫∫
Ω2

α(s)α(t) [(At − As)� (Bt − Bs)] dµ(t)dµ(s).

For the case 1, we have ∫∫
Ω2

α(s)α(t) [(At − As)� (Bt − Bs)] dµ(t)dµ(s) > 0 (8)

and thus (7) holds. For another case, we get the reverse of (8) and, thus, the reverse of (7) holds.

Remark 1. In Theorem 1 and other results in this paper, we may assume that Ω is a compact Hausdorff space.
In this case, every continuous field on Ω is automatically bounded.

The next corollary is a discrete version of Theorem 1.

Corollary 1. Let Ai, Bi be Hermitian operators and let ωi be nonnegative numbers for each i = 1, . . . , n. Let
A = (A1, . . . , An) and B = (B1, . . . , Bn).

1. If A and B have the synchronous Tracy-Singh property, then

n

∑
i=1

ωi

n

∑
i=1

ωi(Ai � Bi) >

(
n

∑
i=1

ωi Ai

)
�

(
n

∑
i=1

ωiBi

)
. (9)

2. If A and B have the opposite-synchronous Tracy-Singh property, then the reverse of (9) holds.

Proof. From the previous theorem, set Ω = {1, . . . , n} equipped with the counting measure and α(i) = ωi
for all i = 1, . . . , n.

4. Chebyshev Integral Inequalities Concerning Weighted Pythagorean Means of Operators

Throughout this section, the space Ω is equipped with a total ordering 4.

Definition 3. We say that a fieldA is increasing (decreasing, resp.) whenever s 4 t implies As 6 At (As > At, resp.).

Definition 4. Two ordered pairs (X1, X2) and (Y1, Y2) of Hermitian operators are said to have the synchronous
property if either

Xi 6 Yi for i = 1, 2, or Xi > Yi for i = 1, 2.

The pairs (X1, X2) and (Y1, Y2) are said to have the opposite-synchronous property if either

X1 6 Y1 and X2 > Y2, or X1 > Y1 and X2 6 Y2.
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Definition 5. Let A,B, C,D be continuous fields of Hermitian operators. Two ordered pairs (A,B) and (C,D)
are said to have the synchronous monotone property if (At, Bt) and (Ct, Dt) have the synchronous property for
all t ∈ Ω. They are said to have the opposite-synchronous monotone property if (At, Bt) and (Ct, Dt) have the
opposite-synchronous property for all t ∈ Ω.

Let us recall the notions of weighted classical Pythagorean means for operators. Indeed, they are
generalizations of three famous symmetric operator means as follows. For any w ∈ [0, 1], the w-weighted
arithmetic mean of A, B ∈ B(H) is defined by

AOw B = (1− w)A + wB.

The w-weighted geometric mean and w-weighted harmonic mean of A, B ∈ B(H)++ are defined
respectively by

A]wB = A
1
2 (A−

1
2 BA−

1
2 )w A

1
2 ,

A !w B =
[
(1− w)A−1 + wB−1

]−1
.

For any A, B ∈ B(H)+, we define the w-weighted geometric mean and w-weighted harmonic mean
of A and B to be

A]wB = lim
ε→0+

(A + εI)]w(B + εI).

A !w B = lim
ε→0+

(A + εI) !w (B + εI),

respectively. Here, the limits are taken in the strong-operator topology.

Lemma 4 (see e.g., [14]). The weighted geometric means, weighted arithmetic means and weighted harmonic
means for operators are monotone in the sense that if A1 6 A2 and B1 6 B2, then A1σB1 6 A2σB2 where σ is any
of Ow, !w, ]w.

Lemma 5 ([15]). Let A, B, C, D ∈ B(H)+ and w ∈ [0, 1]. Then

(A� B)]w(C�D) = (A]wC)� (B]wD).

Theorem 2. Let A,B, C,D be bounded continuous fields in B(H)+ and let α : Ω → [0, ∞) be a bounded
measurable function.

1. If A,B, C,D are either all increasing, or all decreasing then∫
Ω

α(s)dµ(s)
∫

Ω
α(t)[(At � Bt)]w(Ct �Dt)]dµ(t)

>
∫

Ω
α(t)(At]wCt)dµ(t)�

∫
Ω

α(s)(Bs]wDs)dµ(s).
(10)

2. The reverse of (10) holds if either

2.1 A, C are increasing and B,D are decreasing, or
2.2 A, C are decreasing and B,D are increasing.
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Proof. Let s, t ∈ Ω and assume without loss of generally that s 4 t. By applying Lemmas 1 and 5,
Proposition 1, and Fubini’s Theorem [13], we have∫

Ω
α(s)dµ(s)

∫
Ω

α(t)[(At � Bt)]w(Ct �Dt)]dµ(t)−
∫

Ω
α(t)(At]wCt)dµ(t)�

∫
Ω

α(s)(Bs]wDs)dµ(s)

=
∫∫

Ω2
α(s)α(t)[(At � Bt)]w(Ct �Dt)]dµ(t)dµ(s)

−
∫∫

Ω2
α(t)α(s)[(At]wCt)� (Bs]wDs)]dµ(t)dµ(s)

=
∫∫

Ω2
α(s)α(t)[(At]wCt)� (Bt]wDt)]dµ(t)dµ(s)

−
∫∫

Ω2
α(t)α(s)[(At]wCt)� (Bs]wDs)]dµ(t)dµ(s)

=
1
2

∫∫
Ω2

α(s)α(t)[(At]wCt)� (Bt]wDt)− (At]wCt)� (Bs]wDs)]dµ(t)dµ(s)

+
1
2

∫∫
Ω2

α(t)α(s)[(As]wCs)� (Bs]wDs)− (As]wCs)� (Bt]wDt)]dµ(s)dµ(t)

=
1
2

∫∫
Ω2

α(s)α(t)[At]wCt − As]wCs]� [Bt]wDt − Bs]wDs]dµ(t)dµ(s).

If A,B, C,D are all increasing, we have by Lemma 4 that At]wCt > As]wCs and Bt]wDt > Bs]wDs.
If A,B, C,D are all decreasing, we have At]wCt 6 As]wCs and Bt]wDt 6 Bs]wDs. Both cases lead to the
same conclusion that

(At]wCt − As]wCs)� (Bt]wDt − Bs]wDs) > 0,

and hence (10) holds. The cases 2.1 and 2.2 yield the same conclusion that

(At]wCt − As]wCs)� (Bt]wDt − Bs]wDs) 6 0.

and hence the reverse of (10) holds.

Lemma 6. Let A, B, C, D be Hermitian operators in B(H) and w ∈ [0, 1].

1. If (A, B) and (C, D) have the synchronous property, then

(A� B)Ow(C�D) > (AOwC)� (BOwD). (11)

2. If (A, B) and (C, D) have the opposite-synchronous property, then the reverse of (11) holds.

Proof. For the synchronous case, we have by using positivity of the Tracy-Singh product (Lemma 1) that
(A− C)� (B− D) > 0. Applying Lemma 1, we obtain

0 6 w(1− w) [(A1 − B1)� (A2 − B2)]

= w(1− w) [A1 � A2 − A1 � B2 − B1 � A2 + B1 � B2]

= [(1− w)(A1 � A2) + w(B1 � B2)]− [(1− w)A1 + wB1]� [(1− w)A2 + wB2]

= [(A1 � A2)Ow (B1 � B2)]− [(A1Ow B1)� (A2Ow B2)].

Thus (A1Ow B1)� (A2Ow B2) 6 (A1 � A2)Ow (B1 � B2).
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For the opposite-synchronous case, we have (A1 − B1)� (A2 − B2) 6 0 and hence the reverse of
inequality (11) holds.

Theorem 3. Let A,B, C,D be bounded continuous fields of operators in B(H)+, let α : Ω→ [0, ∞) be a bounded
measurable function.

1. If (A,B) and (C,D) have the synchronous monotone property and all of A,B, C,D are either increasing or
decreasing, then∫

Ω
α(s)dµ(s)

∫
Ω

α(t)[(At � Bt)Ow(Ct �Dt)]dµ(t)

>
∫

Ω
α(t)(AtOwCt)dµ(t)�

∫
Ω

α(s)(BsOwDs)dµ(s).
(12)

2. If (A,B) and (C,D) have the opposite-synchronous monotone property and if either

2.1 A, C are increasing and B,D are decreasing, or
2.2 A, C are decreasing and B,D are increasing,

then the reverse of (12) holds.

Proof. Let s, t ∈ Ω and assume without loss of generally that s 4 t. First, we consider the case 1. We have
by using Lemmas 1 and 6, proposition 1, and Fubini’s Theorem [13] that∫

Ω
α(s)dµ(s)

∫
Ω

α(t)[(At � Bt)Ow(Ct �Dt)]dµ(t)−
∫

Ω
α(t)(AtOwCt)dµ(t)�

∫
Ω

α(s)(BsOwDs)dµ(s)

=
∫∫

Ω2
α(s)α(t)[(At � Bt)Ow(Ct �Dt)]dµ(t)dµ(s)

−
∫∫

Ω2
α(t)α(s)[(AtOwCt)� (BsOwDs)]dµ(t)dµ(s)

>
∫∫

Ω2
α(s)α(t)[(AtOwCt)� (BtOwDt)]dµ(t)dµ(s)

−
∫∫

Ω2
α(t)α(s)[(AtOwCt)� (BsOwDs)]dµ(t)dµ(s)

=
∫∫

Ω2
α(s)α(t)[(AtOwCt)� (BtOwDt)− (AtOwCt)� (BsOwDs)]dµ(t)dµ(s)

=
1
2

∫∫
Ω2

α(s)α(t)[(AtOwCt)− (AsOwCs)]� [(BtOwDt)− (BsOwDs)]dµ(t)dµ(s).

Now, by Lemmas 1 and 4, we have

(AtOwCt − AsOwCs)� (BtOwDt − BsOwDs) > 0

and hence (12) holds. The case 2 can be similarly proven.

Lemma 7. Let A, B, C, D be positive operators in B(H) and w ∈ [0, 1].

1. If (A, B) and (C, D) are synchronous, then

(A� B) !w (C�D) 6 (A !w C)� (B !w D). (13)

2. If (A, B) and (C, D) are opposite-synchronous, then the reverse of (13) holds.
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Proof. Assume that (A, B) and (C, D) are synchronous. By continuity, we may assume that A, B, C, D > 0.
We have

(A−1 − C−1)� (B−1 − D−1) > 0. (14)

Using Lemma 1 and (14), we get

0 6 w(1− w)A−1 � B−1 + w(1− w)C−1 �D−1 − w(1− w)A−1 �D−1 − w(1− w)C−1 � B−1

=
[
(1− w)− (1− w)2

]
A−1 � B−1 + (w− w2)C−1 �D−1 − w(1− w)A−1 �D−1

− w(1− w)C−1 � B−1

=
(

A−1 � B−1
)
Ow

(
C−1 �D−1

)
−
(

A−1Ow C−1
)
�
(

B−1Ow D−1
)

.

This implies that (
A−1 � B−1

)
Ow

(
C−1 �D−1

)
>
(

A−1Ow C−1
)
�
(

B−1Ow D−1
)

.

Hence,

(A� B) !w (C�D) =
{
(A� B)−1Ow (C�D)−1

}−1

=
{(

A−1 � B−1
)
Ow

(
C−1 �D−1

)}−1

6
{(

A−1Ow C−1
)
�
(

B−1Ow D−1
)}−1

=
(

A−1Ow C−1
)−1
�
(

B−1Ow D−1
)−1

= (A !w C)� (B !w D).

For the opposite-synchronous case, we have

(A−1 − C−1)� (B−1 − D−1) 6 0

and hence the reverse of (13) holds.

Theorem 4. Let A,B, C,D be bounded continuous fields of operators in B(H)+ and α : Ω→ [0, ∞) be a bounded
measurable function.

1. If (A,B) and (C,D) have the opposite-synchronous monotone property and if all of A,B, C,D are either
increasing or decreasing, then∫

Ω
α(s)dµ(s)

∫
Ω

α(t)[(At � Bt) !w (Ct �Dt)]dµ(t)

>
∫

Ω
α(t)(At !w Ct)dµ(t)�

∫
Ω

α(s)(Bs !w Ds)dµ(s).
(15)

2. If (A,B) and (C,D) have synchronous monotone property and if either

2.1 A, C are both increasing, and B,D are both decreasing, or
2.2 A, C are both decreasing and B,D are both increasing,

then the reverse of (15) holds.
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Proof. Let s, t ∈ Ω with s 4 t. If the pairs (A,B) and (C,D) are opposite-synchronous, then we have by
applying Lemmas 1 and 7, Proposition 1, and Fubini’s Theorem [13] that∫

Ω
α(s)dµ(s)

∫
Ω

α(t)[(At � Bt) !w (Ct �Dt)]dµ(t)−
∫

Ω
α(t)(At !w Ct)dµ(t)�

∫
Ω

α(s)(Bs !w Ds)dµ(s)

=
∫∫

Ω2
α(s)α(t)[(At � Bt) !w (Ct �Dt)]dµ(t)dµ(s)

−
∫∫

Ω2
α(t)α(s)[(At !w Ct)� (Bs !w Ds)]dµ(t)dµ(s)

>
∫∫

Ω2
α(s)α(t)[(At !w Ct)� (Bt !w Dt)]dµ(t)dµ(s)

−
∫∫

Ω2
α(t)α(s)[(At !w Ct)� (Bs !w Ds)]dµ(t)dµ(s)

=
1
2

∫∫
Ω2

α(s)α(t)[At !w Ct − As !w Cs]� [Bt !w Dt − Bs !w Ds]dµ(t)dµ(s).

For the case 1, we have, by Lemmas 1 and 4,

(At !w Ct − As !w Cs)� (Bt !w Dt − Bs !w Ds) > 0

and hence (15) holds. Another assertion can be proved in a similar manner to that of the second assertion
in Theorem 3.

5. Chebyshev-Grüss Inequaities via Oscillations

Throughout this section, let Ω be an LCH space equipped with a probability Radon measure µ.
For any continuous field A = (At)t∈Ω in B(H) and B = (Bt)t∈Ω in B(K), we define

A� B = (At � Bt)t∈Ω, I(A) =
∫

Ω
Atdµ(t),

osc(A) = max{‖At − As‖ : (t, s) ∈ supp(µ× µ)}.

Here, we recall that the support of the product measure µ× µ is defined by

supp(µ× µ) = {(t, s) ∈ Ω2 : (µ× µ)(G) > 0 for all open sets G ⊆ Ω2 containing (t, s)}.

We call osc(A) the oscillation of the field A.

Theorem 5. Let A = (At)t∈Ω and B = (Bt)t∈Ω be continuous fields of Hermitian operators in B(H) and B(K),
respectively. Then

I(A� B)− I(A)� I(B) 6 1
2

osc(A) · osc(B)(µ× µ)(Ω2\∆)(IH � IK), (16)

where ∆ = {(t, t) : t ∈ Ω}.
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Proof. We have by using Lemma 1, Proposition 1 and Fubini’s Theorem [13] that

I(A� B)− I(A)� I(B) =
∫

Ω
dµ(s)

∫
Ω

At � Btdµ(t)−
∫

Ω
Atdµ(t)�

∫
Ω

Bsdµ(s)

=
∫∫

Ω2
At � Btdµ(t)dµ(s)−

∫∫
Ω2

At � Bsdµ(t)dµ(s)

=
1
2

∫∫
Ω2

(At � Bt − At � Bs + As � Bs − As � Bt)dµ(t)dµ(s)

=
1
2

∫∫
Ω2\∆

(At − As)� (Bt − Bs)dµ(t)dµ(s)

6
1
2

osc(A) · osc(B)(µ× µ)(Ω2\∆)(IH � IK).

Corollary 2. Let Ai ∈ B(H) and Bi ∈ B(K) be Hermitian operators for all i = 1, . . . , n. Then

n

∑
i=1

(Ai � Bi)−
(

n

∑
i=1

Ai

)
�

(
n

∑
i=1

Bi

)
6

n(n− 1)
2

max
16i,j6n

‖Ai − Aj‖ · max
16i,j6n

‖Bi − Bj‖(IH � IK).

Proof. Set Ω = {1, . . . , n} equipped with the counting measure. We have

(µ× µ)(Ω2\∆) = n(n− 1)
2

, supp(µ× µ) = Ω×Ω

and thus

osc(A1, . . . , An) = max
16i,j6n

‖Ai − Aj‖, osc(B1, . . . , Bn) = max
16i,j6n

‖Bi − Bj‖.

Example 1. Let Ω = [0, 1], w ∈ Ω and 0 < α 6 1. Consider the probability Radon measure µ = αλ + (1− α)δw,
where λ is Lebesgue measure on Ω and δw is the Dirac measure at w. Set

I(A) :=
∫ 1

0
Atdµ(t) = α

∫ 1

0
Atdλ(t) + (1− α)Aw.

We have

µ× µ = α2(λ× λ) + α(1− α) (λ× δw) + (1− α)α (δw × λ) + (1− α)2 (δw × δw) .

Then supp(µ× µ) = [0, 1]× [0, 1] and (µ× µ)
(
[0, 1]2\∆

)
= α(2− α). For any continuous fields A = (At)t∈Ω

and B = (Bt)t∈Ω of Hermitian operators, the inequality (16) becomes

I(A� B)− I(A)� I(B) 6 1
2

α(2− α) max
06s,t61

‖At − As‖ · max
06t,s61

‖Bt − Bs‖(IH � IK).

6. Conclusions

We establish several integral inequalities of Chebyshev type for continuous fields of Hermitian
operators which are parametrized by an LCH space equipped with a finite Radon measure. We also obtain
the Chebyshev-Grüss integral inequality via oscillations with respect to a probability Radon measure.
These inequalities involve Tracy-Singh products and weighted versions of famous symmetric means.
For a particular case that the LCH space is a finite space equipped with the counting measure, such integral
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inequalities reduce to discrete inequalities. Our results include Chebyshev-type inequalities for tensor
product of operators and Tracy-Singh/Kronecker products of matrices.
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