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Abstract: This paper aims to reveal the structure of idempotents in neutrosophic rings and
neutrosophic quadruple rings. First, all idempotents in neutrosophic rings 〈R ∪ I〉 are given when
R is C,R,Q,Z or Zn. Secondly, the neutrosophic quadruple ring 〈R ∪ T ∪ I ∪ F〉 is introduced and
all idempotents in neutrosophic quadruple rings 〈C ∪ T ∪ I ∪ F〉, 〈R ∪ T ∪ I ∪ F〉, 〈Q ∪ T ∪ I ∪ F〉,
〈Z ∪ T ∪ I ∪ F〉 and 〈Zn ∪ T ∪ I ∪ F〉 are also given. Furthermore, the algorithms for solving the
idempotents in 〈Zn ∪ I〉 and 〈Zn ∪ T ∪ I ∪ F〉 for each nonnegative integer n are provided. Lastly,
as a general result, if all idempotents in any ring R are known, then the structure of idempotents in
neutrosophic ring 〈R ∪ I〉 and neutrosophic quadruple ring 〈R ∪ T ∪ I ∪ F〉 can be determined.

Keywords: neutrosophic rings; neutrosophic quadruple rings; idempotents; neutrosophic extended
triplet group; neutrosophic set

1. Introduction

The notions of neutrosophic set and neutrosophic logic were proposed by Smarandache [1].
In neutrosophic logic, every proposition is considered by the truth degree T, the indeterminacy
degree I, and the falsity degree F, where T, I and F are subsets of the nonstandard unit interval
]0−, 1+[= 0− ∪ [0, 1] ∪ 1+.

Using the idea of neutrosophic set, some related algebraic structures have been studied in recent
years. Among these algebraic structures, by extending classical groups, the neutrosophic triplet
group (NTG) and the neutrosophic extended triplet group (NETG) have been introduced in refs. [2–4].
As an example, paper [5] shows that (Zp1 p2···pt , ·) is not only a semigroup, but also a NETG, where
· the classical mod multiplication and p1, p2, · · · , pt are distinct primes. After the notions were
put forward, NTG and NETG have been carried out in-depth research. For example, the inclusion
relations of neutrosophic sets [6], neutrosophic triplet coset [7], neutrosophic duplet semi-groups [8],
AG-neutrosophic extended triplet loops [9,10], the neutrosophic set theory to pseudo-BCI algebras [11],
neutrosophic triplet ring and a neutrosophic triplet field [12,13], neutrosophic triplet normed space [14],
neutrosophic soft sets [15], neutrosophic vector spaces [16], and so on.

In contrast to the neutrosophic triplet ring, the neutrosophic ring 〈R∪ I〉, which is a ring generated
by the ring R and the indeterminate element I (I2 = I), was proposed by Vasantha and Smarandache
in [17]. The concept of neutrosophic ring was further developed and studied in [18–20].

As a special kind of element in an algebraic system, the idempotent element plays a major role
in describing the structure and properties of the algebra. For example, Boolean rings refer to rings
in which all elements are idempotent, clean rings [21] refer to rings in which each element is clean
(an element in a ring is clean, if it can be written as the sum of an idempotent element and an invertible
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element), and Albel ring is a ring if each element in the ring is central. From these we can see that some
rings can be characterized by idempotents. Thus, it is also quite meaningful to find all idempotents in
a ring. In this paper, the idempotents in neutrosophic rings and neutrosophic quadruple rings will
be studied in depth, and all idempotents in them can be obtained if the idempotents in R are known.
In addition, the relationship between idempotents and neutral elements will be given. The elements
of each NETG can be partitioned by neutrals [10]. Therefore, as an application, if R = F, where F
is any field, we can divide the elements of 〈R ∪ I〉 (or 〈R ∪ T ∪ I ∪ F〉) by idempotents. As another
application, in paper [22], the authors explore the idempotents and semi-idempotents in neutrosophic
ring 〈Zn ∪ I〉 and some open problems and conjectures are given. In this paper, we will answer partial
open problems and conjectures in paper [22] and some further studies are discussed.

The outline of this paper is organized as follows. Section 2 gives the basic concepts. In Section
3, the idempotents in neutrosophic ring 〈R ∪ I〉 will be explored. For neutrosophic rings 〈Zn ∪ I〉,
〈C∪ I〉, 〈R∪ I〉, 〈Q∪ I〉 and 〈Z∪ I〉, all idempotents will be given. Moreover, the open problem and
conjectures proposed in paper [22] about idempotents in neutrosophic ring 〈Zn ∪ I〉 will be solved.
In Section 4, the neutrosophic quadruple ring 〈R ∪ T ∪ I ∪ F〉 is introduced and all idempotents in
neutrosophic quadruple rings 〈C ∪ T ∪ I ∪ F〉, 〈R ∪ T ∪ I ∪ F〉, 〈Q ∪ T ∪ I ∪ F〉, 〈Z ∪ T ∪ I ∪ F〉 and
〈Zn ∪ T ∪ I ∪ F〉 will be given. Finally, the summary and future work is presented in Section 5.

2. Basic Concepts

In this section, the related basic definitions and properties of neutrosophic ring 〈R ∪ I〉 and NETG
are provided, the details can be seen in [3,4,17,18].

Definition 1. ([17,18]) Let (R,+, ·) be any ring. The set

〈R ∪ I〉 = {a + bI : a, b ∈ R}

is called a neutrosophic ring generated by R and I. Let a1 + b1 I, a2 + b2 I ∈ 〈R ∪ I〉, The operators ⊕ and ⊗ on
〈R ∪ I〉 are defined as follows:

(a1 + b1 I)⊕ (a2 + b2 I) = (a1 + a2) + (b1 + b2)I,

(a1 + b1 I)⊗ (a2 + b2 I) = (a1 · a2) + (a1 · b2 + b1 · a2 + b1 · b2)I.

Remark 1. It is easy to verify that (〈R ∪ I〉,⊕,⊗) is a ring, so 〈R ∪ I〉 is named by a neutrosophic ring
is reasonable.

Remark 2. It should be noted that the operators +, · are defined on ring R and⊕,⊗ are defined on neutrosophic
ring 〈R ∪ I〉. For simplicity of notation, we also use +, · to replace ⊕,⊗ on ring 〈R ∪ I〉. That is a + b also
means a⊕ b if a, b ∈ 〈R ∪ I〉. a · b also means a⊗ b if a, b ∈ 〈R ∪ I〉. For short a · b denoted by ab and a · a
denoted by a2.

Example 1. 〈Z∪ I〉, 〈Q∪ I〉, 〈R∪ I〉 and 〈C∪ I〉 are neutrosophic rings of integer, rational, real and complex
numbers, respectively. 〈Zn ∪ I〉 is neutrosophic ring of modulo integers. Of course, Z,Q,R,C and Zn are
neutrosophic rings when b = 0.

Definition 2. ([17,18]) Let 〈R ∪ I〉 be a neutrosophic ring. 〈R ∪ I〉 is said to be commutative if

ab = ba, ∀a, b ∈ 〈R ∪ I〉.

In addition, if there exists 1 ∈ 〈R ∪ I〉 such that 1 · a = a · 1 = a for all a ∈ 〈R ∪ I〉 then we call 〈R ∪ I〉 a
commutative neutrosophic ring with unity.
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Definition 3. ([17,18]) An element a in a neutrosophic ring 〈R ∪ I〉 is called an idempotent element if a2 = a.

Definition 4. ([3,4]) Let N be a non-empty set together with a binary operation ∗. Then, N is called a
neutrosophic extended triplet set if for any a ∈ N, there exists a neutral of “a” (denote by neut(a)), and an
opposite of “a”(denote by anti(a)), such that neut(a) ∈ N, anti(a) ∈ N and:

a ∗ neut(a) = neut(a) ∗ a = a, a ∗ anti(a) = anti(a) ∗ a = neut(a).

The triplet (a, neut(a), anti(a)) is called a neutrosophic extended triplet.

Definition 5. ([3,4]) Let (N, ∗) be a neutrosophic extended triplet set. Then, N is called a neutrosophic
extended triplet group (NETG), if the following conditions are satisfied:
(1) (N, ∗) is well-defined, i.e., for any a, b ∈ N, one has a ∗ b ∈ N.
(2) (N, ∗) is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ N.

A NETG N is called a commutative NETG if for all a, b ∈ N, a ∗ b = b ∗ a.

Proposition 1. ([4]) (N, ∗) be a NETG. We have:
(1) neut(a) is unique for any a ∈ N.
(2) neut(a) ∗ neut(a) = neut(a) for any a ∈ N.
(3) neut(neut(a)) = neut(a) for any a ∈ N.

Proposition 2. ([10]) Let (N, ∗) is a NETG, denote the set of all different neutral element in N by E(N).
For any e ∈ E(N), denote N(e) = {x|neut(x) = e, x ∈ N}. Then:
(1) N(e) is a classical group, and the unit element is e.
(2) For any e1, e2 ∈ E(N), e1 6= e2 ⇒ N(e1) ∩ N(e2) = ∅.
(3) N =

⋃
e∈E(N) N(e). i.e.,

⋃
e∈E(N) N(e) is a partition of N.

3. The Idempotents in Neutrosophic Rings

In this section, we will explore the idempotents in neutrosophic rings 〈R ∪ I〉. If R is Z,Q,R,C
or Zn, all idempotents in neutrosophic rings 〈Zn ∪ I〉, 〈C∪ I〉, 〈R∪ I〉, 〈Q∪ I〉 or 〈Z∪ I〉 will be given.
Moreover, we can also obtain all idempotents in neutrosophic ring 〈R ∪ I〉 if all idempotents in any
ring R are known. As an application, the open problem and conjectures about the idempotents of
neutrosophic ring 〈Zn ∪ I〉 in paper [22] will be solved. Moreover, an example is given to show how to
use the idempotents to get a partition for a neutrosophic ring. The following proposition reveal the
relation of a neutral element and an idempotent element.

Proposition 3. Let G be a non-empty set, ∗ is a binary operation on G. For each a ∈ G, a is idempotent iff it is
a neutral element.

Proof. Necessity: If a is idempotent, i.e., a ∗ a = a, from Definition 4, which shows that a has neutral
element a and opposite element a, so a is a neutral element.

Sufficiency: If a is a neutral element, from Proposition 1(2), we have a ∗ a = a, thus a
is idempotent.

Theorem 1. The set of all idempotents in neutrosophic ring 〈C ∪ I〉, 〈R ∪ I〉, 〈Q ∪ I〉 or 〈Z ∪ I〉 is
{0, 1, I, 1− I}.

Proof. We just give the proof for 〈R ∪ I〉, and the same result can be obtained for 〈C ∪ I〉, 〈Q ∪ I〉
or 〈Z∪ I〉.

Let a + bI ∈ 〈R∪ I〉. If a + bI is idempotent, so (a + bI)2 = a + bI, which means
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{
a2 = a
2ab + b2 = b

(1)

From a2 = a, we can get a = 0 or a = 1. When a = 0, from 2ab + b2 = b, we can get b = 0 or
b = 1. That is 0 and I are idempotents. When a = 1, from 2ab + b2 = b, we can get b = 0 or b = −1.
That is 1 and 1− I are idempotents. Thus, the set of all idempotents of neutrosophic ring 〈R ∪ I〉 is
{0, 1, I, 1− I}.

The above theorem reveals that the set of all idempotents in neutrosophic ring 〈R ∪ I〉 is
{0, 1, I, 1− I} when R is C,R,Q or Z. For any ring R, we have the following results.

Proposition 4. If a is idempotent in any ring R, then aI is also idempotent in neutrosophic ring 〈R ∪ I〉.

Proof. If a ∈ R is idempotent, i.e., a2 = a, so (aI)2 = (0 + aI)(0 + aI) = a2 I = aI, thus, aI is also
idempotent in neutrosophic ring 〈R ∪ I〉.

Proposition 5. In neutrosophic ring 〈R ∪ I〉, then a− aI is idempotent iff a is idempotent.

Proof. Necessity: If a− aI is idempotent, i.e., (a− aI)2 = a− aI, so (a− aI)2 = (a− aI)(a− aI) =
a2 − 2aI + a2 I = a2 + (a2 − 2a)I = a− aI, which means a2 = a and a2 − 2a = −a. Thus, we have
a2 = a, so a is idempotent.

Sufficiency: If a is idempotent, so (a − aI)2 = a2 + (a2 − 2a)I = a − aI, thus a − aI
is idempotent.

Theorem 2. In neutrosophic ring 〈R ∪ I〉, let a + bI ∈ 〈R ∪ I〉, then a + bI is idempotent iff a is idempotent
in R and b = c− a, where c is any idempotent element in R.

Proof. Necessity: If a + bI is idempotent, i.e., (a + bI)2 = a + bI, so (a + bI)2 = a2 + (2ab + b2) =

a + bI, which means a2 = a and 2ab + b2 = b. From a2 = a, we can get a is idempotent. From
2ab + b2 = b and a2 = a, we can get (b + a)2 = b2 + 2ab + a2 = b + a, so b + a is also idempotent in R,
denoted by c, so b = c− a.

Sufficiency: If a and c are any idempotents in R, let b = c− a, so (a + bI)2 = (a + (c− a)I)2 =

a2 + (2a(c− a) + (c− a)2)I = a2 + (2ac− 2a2 + c2 − 2ac + a2) = a + (c− a)I = a + bI, thus a + bI
is idempotent.

Theorem 3. If the number of different idempotents in ring R is t, then the number of different idempotents in
the neutrosophic ring 〈R ∪ I〉 is t2.

Proof. If the number of idempotents in R is t and let a+ bI ∈ 〈R∪ I〉 is idempotent, so from Theorem 2,
we can infer that a is idempotent in R, i.e., a has t different selections. When a is fixed, set b = c− a,
where c is any idempotent in R and c also has t different selections, which means b has t different
selections. Thus, a + bI has t · t = t2 different selections, i.e., the number of all idempotents in 〈R ∪ I〉
is t2.

From the above analysis, for any ring R, all idempotents in 〈R ∪ I〉 can be determined if all
idempotents in R are known. In the following, we will explore all idempotents in neutrosophic ring
〈Zn ∪ I〉, i.e., when R = Zn.

Theorem 4. ([5]) In the algebra system (Zn, ·) (see Appendix A), · is the classical mod multiplication, for each
a ∈ Zn, a has neut(a) and anti(a) iff gcd(gcd(a, n), n/gcd(a, n)) = 1.
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Theorem 5. ([5]) For an algebra system (Zn, ·) and n = pk1
1 pk2

2 · · · p
kt
t , where each pi(i = 1, 2, · · · , t) is a

prime, then the number of different neutral elements in Zn is 2t.

Remark 3. From Proposition 3 and Theorem 5, we can infer that the number of all idempotents in Z
p

k1
1 pk2

2 ···p
kt
t

is also 2t.

Example 2. For (Z36, ·), n = 36 = 2232. From Theorem 5, the number of different neutral elements in Z36 is
22 = 4. They are:

(1) [0] has the neutral element [0].
(2) [1], [5], [7], [11], [13], [17], [19], [23], [25], [29], [31] and [35] have the same neutral element [1].
(3) [9] and [27] have the same neutral element [9] being gcd(9, 36) = gcd(27, 36) = 9.
(4) [4] and [8] have the same neutral element being gcd(4, 36) = gcd(8, 36) = 4. In fact,

[4], [8], [16], [20], [28] and [32] have the same neutral element, which is [28].

From Remark 3, the number of idempotents in Z36 is also 4, which are [0], [1], [9] and [28].

From Theorems 2 and 3 and Remark 3, it follows easily that:

Corollary 1. In neutrosophic ring 〈Zn ∪ I〉, let a + bI ∈ 〈Zn ∪ I〉, then a + bI is idempotent iff a2 = a and
b = c− a, where c is any idempotent element in Zn.

Corollary 2. For an algebra system (Zn, ·) and n = pk1
1 pk2

2 · · · p
kt
t , where each p1, p2, · · · , and pk are distinct

primes. Then the number of different idempotents in 〈Zn ∪ I〉 is 22t.

The solving process for 〈Zn ∪ I〉 is given by Algorithm 1. Just only input n, then we can get all
idempotents in 〈Zn ∪ I〉. The MATLAB code is provided in the Appendix B.

Example 3. Solve all idempotents in 〈Z600 ∪ I〉.
Since n = 600 = 23 · 3 · 52, from Theorem 5, we can get the different neutral elements in Z600 are

neut(1), neut(23), neut(3), neut(52), neut(23 · 3), neut(23 · 52), neut(3 · 52) and neut(0), i.e., the different
idempotents in Z600 are 1, 376, 201, 25, 576, 400, 225, 0. From Corollary 2, the number of different idempotents
in neutrosophic ring 〈Z600 ∪ I〉 is 22·3 = 64.

From Algorithm 1, the set of all 64 idempotents in 〈Z600 ∪ I〉 is: {0, I, 25I, 201I, 225I, 376I, 400I, 576I, 1+
599I, 1, 1 + 24I, 1 + 200I, 1 + 224I, 1 + 375I, 1 + 399I, 1 + 575I, 25 + 575I, 25 + 576I, 25, 25 + 176I, 25 +
200I, 25+ 351I, 25+ 375I, 25+ 551I, 201+ 399I, 201+ 400I, 201+ 424I, 201, 201+ 24I, 201+ 175I, 201+
199I, 201 + 375I, 225 + 375I, 225 + 376I, 225 + 400I, 225 + 576I, 225, 225 + 151I, 225 + 175I, 225 +

351I, 376 + 224I, 376 + 225I, 376 + 249I, 376 + 425I, 376 + 449I, 376, 376 + 24I, 376 + 200I, 400 +

200I, 400 + 201I, 400 + 225I, 400 + 401I, 400 + 425I, 400 + 576I, 400, 400 + 176I, 576 + 24I, 576 +

25I, 576 + 49I, 576 + 225I, 576 + 249I, 576 + 400I, 576 + 424I, 576}.
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Algorithm 1: Solving the different idempotents in 〈Zn ∪ I〉
Input: n
1: Factorization of integer n, we can get n = pk1

1 pk2
2 · · · p

kt
t .

2: Computing the neutral element of 1, pk1
1 , pk2

2 , · · · , pkt
t , pk1

1 pk2
2 , · · · pk1

1 pkt
t , · · · , pk2

2 pk3
3 · · · p

kt
t

and pk1
1 pk2

2 · · · p
kt
t . So, we can get all idempotents in Zn , denoted by a1, a2, · · · , a2t .

3: Let ID=[];
4: for i = 1 : 2t

5: a = ai
6: for j = 1 : 2t

7: b = mod(aj − a, n);
8: ID = [ID; [a, b]];
9: end
10: end
Output: ID: all the idempotents in 〈Zn ∪ I〉

In paper [22], the authors studied the idempotents and semi-idempotents in 〈Zn ∪ I〉 and proposed
some open problems and conjectures. We list partial open problems and conjectures about idempotents
in 〈Zn ∪ I〉 as follows and answer them.

Problem 1. ([22]) Let S = 〈Zpq,+, ·〉, where p and q are two distinct primes, be the neutrosophic ring. Can S
have non-trivial idempotents other than the ones mentioned in (b) of the Theorem 6?

Conjecture 1. ([22]) Let S = 〈Zn,+, ·〉 be the neutrosophic ring n = pqr, where p, q and r are three
distinct primes.

1. Zn = Zpqr has only six non-trivial idempotents associated with it.
2. If m1, m2, m3, m4, m5 and m6 are the idempotents, then, associated with each real idempotent mi, we have

seven non-trivial neutrosophic idempotents associated with it, i.e., {mi + nj I, j = 1, 2, · · · , 7}, such that
mi + nj ≡ t, where tj takes the seven distinct values from the set {0, 1, mk, k 6= i; k = 1, 2, 3, · · · , 6}.i =
1, 2, · · · , 6.

Conjecture 2. ([22]) Given 〈Zn ∪ I〉, where n = p1 p2 · pt; t > 2 and pis are all distinct primes, find:

1. the number of idempotents in Zn;
2. the number of idempotents in 〈Zn ∪ I〉\Zn;

Conjecture 3. ([22]) Prove if 〈Zn ∪ I〉 and 〈Zm ∪ I〉 are two neutrosophic rings where n > m and n = ptq
(t > 2, and p and q two distinct primes) and m = p1 p2 · · · ps where pis are distinct primes. 1 ≤ i ≤ s, then

1. prove Zn has a greater number of idempotents than Zm; and
2. prove 〈Zn ∪ I〉 has a greater number of idempotents than 〈Zn ∪ I〉.

Theorem 6. ([22]) Let S = 〈Zpq,+, ·〉 where p and q are two distinct primes:

(a) There are two idempotents in Zpq say r and s.
(b) {r, s, rI, sI, I, r + tI, s + tI|t ∈ {Zpq\0}} such that r + t = s, 1 or 0 and s + t = 0, 1 or r is the partial

collection of idempotents of S.

For Problem 1, from Remark 3, there are four idempotents in Zpq, which are
{1, neut(p), neut(q), neut(pq) = 0}. Let r = neut(p), s = neut(q), so there are two non-trivial
idempotents r, s in Zpq. From Corollary 1 and 2, the number of all idempotents in 〈Zpq ∪ I〉 is
24 = 16, they are {0+ (0− 0)I = 0, 0+ (1− 0)I = I, 0+ (r− 0)I = rI, 0+ (s− 0)I = sI, 1+ (0− 1)I =
1 + (n− 1)I, 1 + (1− 1)I = 1, 1 + (r− 1)I, 1 + (s− 1)I, r + (0− r)I = r + (n− r)I, r + (1− r)I = r +
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(n+ 1− r)I, r + (r− r)I = r, r + (s− r)I, s+ (0− s)I = s+ (n− r)s, s+ (1− s)I = s+ (n+ 1− s)I, s+
(r− s)I, s+(s− s)I = s}. So there are 14 non-trivial idempotents in 〈Zpq ∪ I〉, but there are only include
11 non-trivial idempotents in (b) of the Theorem 6, missing {1 + (n− 1)I, 1 + (r− 1)I, 1 + (s− 1)I}.

For Conjecture 1, from Corollary 1 and 2, there are eight idempotents in Zpqr, which are
{1 = m0, neut(p) = m1, neut(q) = m2, neut(r) = m3, neut(pq) = m4, neut(pr) = m5, neut(qr) =

m6, neut(pqr) = 0 = m7}. There are six non-trivial idempotents in Zpqr. In 〈Zn ∪ I〉, all idempotents
are {mi + (mj −mi)I|i, j = 0, 1, 2, · · · , 7}.

For Conjecture 2, from Remark 3, the number of idempotents in Zp1 p2···pt is 2t, and the number of
idempotents in 〈Zp1 p2···pt ∪ I〉\Zp1 p2···pt is 22t − 2t.

For Conjecture 3, from Remark 3, the number of idempotents in Zn is 22, and the number of
idempotents in Zm is 2s, where n = ptq, m = p1 p2 · ps. So, if s > 2, Zm is characterized by a larger
number of idempotents than Zn. In similarly way, the number of idempotents in 〈Zn ∪ I〉 is 24, and the
number of idempotents in 〈Zm ∪ I〉 is 22s. So, if s > 2, we can infer that 〈Zm ∪ I〉 is characterized by a
larger number of idempotents than 〈Zn ∪ I〉.

As another application, we will use the idempotents to divide the elements of the neutrosophic
rings 〈R ∪ I〉 when R = F.

For each NETG (N, ∗), a ∈ N, from Proposition 1, the neutral element of a is uniquely determined.
From Proposition 2,

⋃
e∈E(N) N(e) is a partition of N. Since the idempotents and neutral elements

are same, we can use the idempotents to get a partition of N. Let us illustrate these with the
following example.

Example 4. Let R = Z3, which is a field. Since n = 3, from Theorem 5, we can get the different neutral elements
in Z3 are neut(1) and neut(0), i.e., the different idempotents in Z3 are 1, 0. From Corollary 2, the number of
different idempotents in neutrosophic ring 〈Z3 ∪ I〉 is 22·1 = 4.

From Algorithm 1, the set of all 4 idempotents in 〈Z3 ∪ I〉 is: {0, 1, I, 1 + 2I}. We have
E(0) = {0}, E(1) = {1, 2, 1 + I, 2 + 2I}, E(I) = {I, 2I}, E(1 + 2I) = {1 + 2I, 2 + I}. So 〈Z3 ∪ I〉 =
E(0) ∪ E(1) ∪ E(I) ∪ E(1 + 2I).

4. The Idempotents in Neutrosophic Quadruple Rings

In the above section, we explored the idempotents in 〈R ∪ I〉. In neutrosophic logic,
each proposition is approximated to represent respectively the truth (T), the falsehood (F), and the
indeterminacy (I). In this section, according the idea of neutrosophic ring 〈R ∪ I〉, the neutrosophic
quadruple ring 〈R ∪ T ∪ I ∪ F〉 is proposed and the idempotents are given in this section.

Definition 6. Let (R,+, ·) be any ring. The set

〈R ∪ T ∪ I ∪ F〉 = {a1 + a2T + a3 I + a4F : a1, a2, a3, a4 ∈ R} (2)

is called a neutrosophic quadruple ring generated by R and T, I, F. Consider the order T ≺ I ≺ F. Let a =

a1 + a2T + a3 I + a4F, b = b1 + b2T + b3 I + b4F ∈ 〈R ∪ T ∪ I ∪ F〉, the operators ⊕,⊗ on 〈R ∪ T ∪ I ∪ F〉
are defined as follows:

a⊕ b = (a1 + a2T + a3 I + a4F)⊕ (b1 + b2T + b3 I + b4F)
= a1 + b1 + (a2 + b2)T + (a3 + b3)I + (a4 + b4)F.

(3)

a ∗ b = (a1 + a2T + a3 I + a4F) ∗ (b1, b2T, b3 I, b4F)
= a1b1 + (a1b2 + a2b1 + a2b2)T + (a1b3 + a2b3 + a3b1 + a3b2 + a3b3)I
+(a1b4 + a2b4 + a3b4 + a4b1 + a4b2 + a4b3 + a4b4)F.

(4)
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Remark 4. It is easy to verify that (〈R ∪ T ∪ I ∪ F〉,⊕, ∗) is a ring, moreover, it also has the same algebra
structure with neutrosophic quadruple numbers (see [23–25]), so the we call 〈R ∪ T ∪ I ∪ F〉 is a neutrosophic
quadruple ring is reasonable.

Remark 5. Similarly with Remark 2, for simplicity of notation, we use +, · to replace ⊕, ∗ on neutrosophic
quadruple ring 〈R ∪ T ∪ I ∪ F〉. That is a + b also means a⊕ b if a, b ∈ 〈R ∪ T ∪ I ∪ F〉. and a · b also means
a ∗ b if a, b ∈ 〈R ∪ T ∪ I ∪ F〉. For short a · b denoted by ab and a · a denoted by a2.

Example 5. 〈Z∪T∪ I ∪ F〉, 〈Q∪T∪ I ∪ F〉, 〈R∪T∪ I ∪ F〉 and 〈C∪T∪ I ∪ F〉 are neutrosophic quadruple
rings of integer, rational, real and complex numbers, respectively. 〈Zn ∪ T ∪ I ∪ F〉 is neutrosophic quadruple
ring of modulo integers. Of course, Z,Q,R,C and Zn are neutrosophic quadruple rings when coefficients of T, I
and F equal zero.

Definition 7. Let 〈R ∪ T ∪ I ∪ F〉 be a neutrosophic quadruple ring. 〈R ∪ T ∪ I ∪ F〉 is commutative if

ab = ba, ∀a, b ∈ 〈R ∪ T ∪ I ∪ F〉.

In addition, if there exists 1 ∈ 〈R ∪ T ∪ I ∪ F〉, such that 1 · a = a · 1 = a for all a ∈ 〈R ∪ T ∪ I ∪ F〉, then
〈R ∪ T ∪ I ∪ F〉 is called a commutative neutrosophic quadruple ring with unity.

Definition 8. An element a in a neutrosophic quadruple ring 〈R ∪ T ∪ I ∪ F〉 is called an idempotent element
if a2 = a.

Theorem 7. The set of all idempotents of neutrosophic quadruple rings 〈C∪ T ∪ I ∪ F〉, 〈R∪ T ∪ I ∪ F〉, 〈Q∪
T ∪ I ∪ F〉 and 〈Z∪ T ∪ I ∪ F〉 is

{(1, 0, 0, 0), (0, 0, 0, F), (0, 0, I,−F), (0, 0, I, 0), (0, T,−I, 0), (0, T,−I, F), (0, T, 0,−F), (0, T, 0, 0),

(1,−T, 0, 0), (1,−T, 0, F), (1,−T, I,−F), (1,−T, I, 0), (1, 0,−I, 0), (1, 0,−I, F), (1, 0, 0,−F), (1, 0, 0, 0)}.

Proof. We only give the proof for 〈R ∪ T ∪ I ∪ F〉, and the same result can be obtained for
〈C∪ T ∪ I ∪ F〉, 〈Q∪ T ∪ I ∪ F〉 or 〈Z∪ T ∪ I ∪ F〉.

Let a = a1 + a2T + a3 I + a4F, if a is idempotent in 〈R ∪ T ∪ I ∪ F〉, so a2 = a, i.e., (a1 + a2T +

a3 I + a4F)2 = (a1 + a2T + a3 I + a4F), which means
a2

1 = a1,
2a1a2 + a2

2 = a2,
2(a1 + a2)a3 + a2

3 = a3,
2(a1 + a2 + a3)a4 + a2

4 = a4.

Since a1 ∈ R, so from a2
1 = a1, we can get a1 = 0 or a1 = 1.

Case A: if a1 = 0, then from 2a1a2 + a2
2 = a2, we can infer a2

2 = a2, so a2 = 0 or a2 = 1.
Case A1: if a1 = 0 and a2 = 0, so from 2(a1 + a2)a3 + a2

3 = a3, we can infer a2
3 = a3, so a3 = 0 or

a3 = 1.
Case A11: if a1 = 0, a2 = 0 and a3 = 0, so from 2(a1 + a2 + a3)a4 + a2

4 = a4, we can infer a2
4 = a4,

so a4 = 0 or a4 = 1.
Case A111: if a1 = a2 = a3 = a4 = 0, i.e., (0, 0, 0, 0) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case A112: if a1 = a2 = a3 = 0 and a4 = 1, i.e., (0, 0, 0, F) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case A12: if a1 = a2 = 0 and a3 = 1, so from 2(a1 + a2 + a3)a4 + a2

4 = a4, we can infer
2a4 + a2

4 = a4, so a4 = 0 or a4 = −1.
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Case A121: if a1 = a2 = 0, a3 = 1 and a4 = 0, i.e., (0, 0, I, 0) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case A122: if a1 = a2 = 0, a3 = 1 and a4 = −1, i.e., (0, 0, I,−F) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case A2: if a1 = 0 and a2 = 1, so from 2(a1 + a2)a3 + a2

3 = a3, we can infer 2a3 + a2
3 = a3, so

a3 = 0 or a3 = −1.
Case A21: if a1 = 0, a2 = 1, and a3 = 0, so from 2(a1 + a2 + a3)a4 + a2

4 = a4, we can infer
2a4 + a2

4 = a4, so a4 = 0 or a4 = −1.
Case A121: if a1 = 0, a2 = 1, a3 = 0 and a4 = 0, i.e., (0, T, 0, 0) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case A112: if a1 = 0, a2 = 1, a3 = 0 and a4 = −1, i.e., (0, T, 0,−F) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case A22: if a1 = 0, a2 = 1 and a3 = −1, so from 2(a1 + a2 + a3)a4 + a2

4 = a4, we can infer a2
4 = a4,

so a4 = 0 or a4 = 1.
Case A121: if a1 = 0, a2 = 1, a3 = −1 and a4 = 0, i.e., (0, T,−I, 0) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case A112: if a1 = 0, a2 = 1, a3 = −1 and a4 = 1, i.e., (0, T,−I, F) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case B: if a1 = 1, then from 2a1a2 + a2

2 = a2, we can infer 2a2 + a2
2 = a2, so a2 = 0 or a2 = −1.

Case B1: if a1 = 1 and a2 = 0, so from 2(a1 + a2)a3 + a2
3 = a3, we can infer 2a3 + a2

3 = a3, so
a3 = 0 or a3 = −1.

Case B11: if a1 = 1, a2 = 0 and a3 = 0, so from 2(a1 + a2 + a3)a4 + a2
4 = a4, we can infer

2a4 + a2
4 = a4, so a4 = 0 or a4 = −1.

Case B111: if a1 = 1, a2 = 0, a3 = 0 and a4 = 0, i.e., (1, 0, 0, 0) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case B112: if a1 = 1, a2 = 0, a3 = 0 and a4 = −1, i.e., (1, 0, 0,−F) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case B12: if a1 = 1, a2 = 0 and a3 = −1, so from 2(a1 + a2 + a3)a4 + a2

4 = a4, we can infer a2
4 = a4,

so a4 = 0 or a4 = 1.
Case B121: if a1 = 1, a2 = 0, a3 = −1 and a4 = 0, i.e., (1, 0,−I, 0) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case B122: if a1 = 1, a2 = 0, a3 = −1 and a4 = 1, i.e., (1, 0,−I, F) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case B2: if a1 = 1 and a2 = −1, so from 2(a1 + a2)a3 + a2

3 = a3, we can infer a2
3 = a3, so a3 = 0 or

a3 = 1.
Case B21: if a1 = 1, a2 = −1, and a3 = 0, so from 2(a1 + a2 + a3)a4 + a2

4 = a4, we can infer a2
4 = a4,

so a4 = 0 or a4 = 1.
Case B121: if a1 = 1, a2 = −1, a3 = 0 and a4 = 0, i.e., (1,−T, 0, 0) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case B112: if a1 = 1, a2 = −1, a3 = 0 and a4 = 1, i.e., (1,−T, 0, F) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case B22: if a1 = 1, a2 = −1 and a3 = 1, so from 2(a1 + a2 + a3)a4 + a2

4 = a4, we can infer
2a4 + a2

4 = a4, so a4 = 0 or a4 = −1.
Case B121: if a1 = 1, a2 = −1, a3 = 1 and a4 = 0, i.e., (1,−T, I, 0) is idempotent in 〈R∪ T ∪ I ∪ F〉.
Case B112: if a1 = 1, a2 = −1, a3 = 1 and a4 = −1, i.e., (1,−T, I,−F) is idempotent in

〈R∪ T ∪ I ∪ F〉.
From the above analysis, we can get the set of all idempotents in neutrosophic quadruple ring

〈R∪ T ∪ I ∪ F〉 are {(1, 0, 0, 0), (0, 0, 0, F), (0, 0, I,−F), (0, 0, I, 0), (0, T,−I, 0), (0, T,−I, F), (0, T, 0,−F),
(0, T, 0, 0), (1,−T, 0, 0), (1,−T, 0, F), (1,−T, I,−F), (1,−T, I, 0), (1, 0,−I, 0), (1, 0,−I, F), (1, 0, 0,−F),
(1, 0, 0, 0)}.

The above theorem reveals that the idempotents in neutrosophic quadruple ring 〈R ∪ T ∪ I ∪ F〉
is fixed when R is C,R,Q or Z. For any ring R, we have the following results.

Theorem 8. For neutrosophic quadruple ring 〈R ∪ T ∪ I ∪ F〉, a = a1 + a2T + a3 I + a4F is idempotent in
neutrosophic quadruple ring 〈R ∪ T ∪ I ∪ F〉 iff a1 is idempotent in R, a2 = c− a1, a3 = d− (a1 + a2) and
a4 = e− (a1 + a2 + a3), where c, d and e are any idempotents in R.

Proof. Necessity: If a = a1 + a2T + a3 I + a4F is idempotent, i.e., (a1 + a2T + a3 I + a4F)2 = a1 + a2T +

a3 I + a4F, which means
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a2

1 = a1,
2a1a2 + a2

2 = a2,
2(a1 + a2)a3 + a2

3 = a3,
2(a1 + a2 + a3)a4 + a2

4 = a4.

Since a1 ∈ R, from a2
1 = a1, we can get a1 is idempotent in R.

From 2a1a2 + a2
2 = a2 and a2

1 = a1, we can get (a1 + a2)
2 = a2

1 + 2a1a2 + a2
2 = a1 + a2, so a1 + a2

is also idempotent in R, denoted by c, so a2 = c− a1.
From 2(a1 + a2)a3 + a2

3 = a3, and (a1 + a2)
2 = a1 + a2, we can get (a1 + a2 + a3)

2 = (a1 +

a2)
2 + 2(a1 + a2)a3 + a2

3 = a1 + a2 + a3, so a1 + a2 + a3 is also idempotent in R, denoted by d, so
a3 = d− a1 − a2.

From 2(a1 + a2 + a3)a4 + a2
4 = a4, and (a1 + a2 + a3)

2 = a1 + a2 + a3, we can get (a1 + a2 +

a3 + a4)
2 = (a1 + a2 + a3)

2 + 2(a1 + a2 + a3)a3 + a2
4 = a1 + a2 + a3 + a4, so a1 + a2 + a3 + a4 is also

idempotent in R, denoted by e, so a4 = e− a1 − a2 − a3.
Sufficiency: If a1, c, d and e are arbitrary idempotents in R, let a2 = c− a1, a3 = d− (a1 + a2)

and a4 = e − (a1 + a2 + a3). so (a1 + a2T + a3 I + a4F)2 = (a1 + (c − a1)T + (d − a1 − a2)I + (e −
a1 − a2 − a3)F)2 = a2

1 + (2(c − a1)a1 + (c − a1)
2)T + (2c(d − a1 − a2) + (d − a1 − a2)

2)I + (2d(e −
a1 − a2 − a3) + (e− a1 − a2 − a3)

2)F = a1 + (c− a1)T + (d− a1 − a2)I + (e− a1 − a2 − a3)F. Thus,
a = a1 + a2T + a3 I + a4F is idempotent.

Theorem 9. If the number of different idempotents in R is t, then the number of different idempotents in
neutrosophic quadruple ring 〈R ∪ T ∪ I ∪ F〉 is t4.

Proof. If the number of different idempotents in R is t, let a1 + a2T + a3 I + a4F ∈ 〈Zn ∪ T ∪ I ∪ F〉 is
idempotent, so a1 is idempotent in R, i.e., a1 has t different selections. When a1 is selected, a2 = c− a1,
where c is idempotent, which also has t different selections. When a1, a2 are selected, a3 = d− a1 − a2,
where d is idempotent, which also has t different selections. When a1, a2, a3 is selected, a4 = e− a1 −
a2 − a3, where e is idempotent, which also has t different selections. Thus, the number of all selections
is t · t · t · t = t4, i.e., the number of different idempotents in 〈R ∪ T ∪ I ∪ F〉 is t4.

From Theorems 8 and 9 and Remark 3, it follows easily that:

Corollary 3. In neutrosophic quadruple ring 〈Zn ∪ T ∪ I ∪ F〉, a = a1 + a2T + a3 I + a4F is idempotent in
neutrosophic quadruple ring 〈Zn ∪ T ∪ I ∪ F〉 iff a1 is idempotent in Zn, a2 = c− a1, a3 = d− (a1 + a2) and
a4 = e− (a1 + a2 + a3), where c, d and e are any idempotents in Zn.

Corollary 4. The number of different idempotents in neutrosophic quadruple ring 〈Zn ∪ T ∪ I ∪ F〉 is 24t.

The solving process for neutrosophic quadruple ring 〈Zn ∪ T ∪ I ∪ F〉 is given by Algorithm 2.
Just only input n, we can get all idempotents in 〈Zn ∪ T ∪ I ∪ F〉. The MATLAB code is provided in
the Appendix C.
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Algorithm 2: Solving the different idempotents in 〈Zn ∪ T ∪ I ∪ F〉
Input: n
1: Factorization of integer n, we can get n = pk1

1 pk2
2 · · · p

kt
t .

2: Computing the neutral element of 1, pk1
1 , pk2

2 , · · · , pkt
t , pk1

1 pk2
2 , · · · pk1

1 pkt
t , · · · , pk2

2 pk3
3 · · · p

kt
t

and pk1
1 pk2

2 · · · p
kt
t . So, we can get all idempotents in Zn , denoted by c1, c2, · · · , c2t .

3: Let ID=[];
4: for i = 1 : 2t

5: a1 = ci
6: for j = 1 : 2t

7: a2 = mod(cj − a1, n);
8: for m = 1 : 2t

9: a3 = mod(cm − a1 − a2, n);
10: for q = 1 : 2t

11: a4 = mod(cq − a1 − a2 − a3, n);
12: ID = [ID; [a1, a2, a3, a4]];
13: end
14: end
15: end
16: end
Output: ID: all the idempotents in 〈Zn ∪ T ∪ I ∪ F〉

Example 6. Solve all idempotents in 〈Z12 ∪ T ∪ I ∪ F〉.
Since n = 12 = 22 · 3, from Theorems 4 and 5, we can get the different neutral elements in Z12 are

neut(1), neut(22), neut(3), neut(23 · 3) and neut(0), i.e., the different idempotents in Z12 are 1, 4, 9, 0. From
Corollary 4, the number of different idempotents in neutrosophic quadruple ring 〈Z12 ∪ T ∪ I ∪ F〉 is 24·2 = 256.

From Algorithm 2, the set of all 256 idempotents in 〈Z12 ∪ T ∪ I ∪ F〉 is: {0, 1F, 4F, 9F, I + 11F, I, I +
3F, I + 8F, 4I + 8F, 4I + 9F, 4I, 4I + 5F, 9I + 3F, 9I + 4F, 9I + 7F, 9I, T + 11I, T + 11I + F, T + 11I +
4F, T + 11I + 9F, T + 11F, T, T + 3F, T + 8F, T + 3I + 8F, T + 3I + 9F, T + 3I, T + 3I + 5F, T + 8I +
3F, T + 8I + 4F, T + 8I + 7F, T + 8, 4T + 8I, 4T + 8I + F, 4T + 8I + 4F, 4T + 8I + 9F, 4T + 9I + 11F, 4T +

9I, 4T + 9I + 3F, 4T + 9I + 8F, 4T + 8F, 4T + 9F, 4T, 4T + 5F, 4T + 5I + 3F, 4T + 5I + 4F, 4T + 5I +
7F, 4T + 5I, 9T + 3I, 9T + 3I + F, 9T + 3I + 4F, 9T + 3I + 9F, 9T + 4I + 11F, 9T + 4I, 9T + 4I + 3F, 9T +

4I + 8F, 9T + 7I + 8F, 9T + 7I + 9F, 9T + 7I, 9T + 7I + 5F, 9T + 3F, 9T + 4F, 9T + 7F, 9T, 1 + 11T, 1 +
11T + F, 1 + 11T + 4F, 1 + 11T + 9F, 1 + 11T + I + 11F, 1 + 11T + I, 1 + 11T + I + 3F, 1 + 11T + I +
8F, 1 + 11T + 4I + 8F, 1 + 11T + 4I + 9F, 1 + 11T + 4I, 1 + 11T + 4I + 5F, 1 + 11T + 9I + 3F, 1 + 11T +

9I + 4F, 1 + 11T + 9I + 7F, 1 + 11T + 9I, 1 + 11I, 1 + 11I + F, 1 + 11I + 4F, 1 + 11I + 9F, 1 + 11F, 1, 1 +
3F, 1 + 8F, 1 + 3I + 8F, 1 + 3I + 9F, 1 + 3I, 1 + 3I + 5F, 1 + 8I + 3F, 1 + 8I + 4F, 1 + 8I + 7F, 1 + 8I, 1 +
3T + 8I, 1 + 3T + 8I + F, 1 + 3T + 8I + 4F, 1 + 3T + 8I + 9F, 1 + 3T + 9I + 11F, 1 + 3T + 9I, 1 + 3T +

9I + 3F, 1+ 3T + 9I + 8F, 1+ 3T + 8F, 1+ 3T + 9F, 1+ 3T, 1+ 3T + 5F, 1+ 3T + 5I + 3F, 1+ 3T + 5I +
4F, 1 + 3T + 5I + 7F, 1 + 3T + 5I, 1 + 8T + 3I, 1 + 8T + 3I + F, 1 + 8T + 3I + 4F, 1 + 8T + 3I + 9F, 1 +
8T + 4I + 11F, 1 + 8T + 4I, 1 + 8T + 4I + 3F, 1 + 8T + 4I + 8F, 1 + 8T + 7I + 8F, 1 + 8T + 7I + 9F, 1 +
8T + 7I, 1 + 8T + 7I + 5F, 1 + 8T + 3F, 1 + 8T + 4F, 1 + 8T + 7F, 1 + 8T, 4 + 8T, 4 + 8T + F, 4 + 8T +

4F, 4+ 8T + 9F, 4+ 8T + I + 11F, 4+ 8T + I, 4+ 8T + I + 3F, 4+ 8T + I + 8F, 4+ 8T + 4I + 8F, 4+ 8T +

4I + 9F, 4 + 8T + 4I, 4 + 8T + 4I + 5F, 4 + 8T + 9I + 3F, 4 + 8T + 9I + 4F, 4 + 8T + 9I + 7F, 4 + 8T +

9I, 4 + 9T + 11I, 4 + 9T + 11I + F, 4 + 9T + 11I + 4F, 4 + 9T + 11I + 9F, 4 + 9T + 11F, 4 + 9T, 4 + 9T +

3F, 4+ 9T + 8F, 4+ 9T + 3I + 8F, 4+ 9T + 3I + 9F, 4+ 9T + 3I, 4+ 9T + 3I + 5F, 4+ 9T + 8I + 3F, 4+
9T + 8I + 4F, 4+ 9T + 8I + 7F, 4+ 9T + 8I, 4+ 8I, 4+ 8I + F, 4+ 8I + 4F, 4+ 8I + 9F, 4+ 9I + 11F, 4+
9I, 4+ 9I + 3F, 4+ 9I + 8F, 4+ 8F, 4+ 9F, 4, 4+ 5F, 4+ 5I + 3F, 4+ 5I + 4F, 4+ 5I + 7F, 4+ 5I, 4+ 5T +

3I, 4 + 5T + 3I + F, 4 + 5T + 3I + 4F, 4 + 5T + 3I + 9F, 4 + 5T + 4I + 11F, 4 + 5T + 4I, 4 + 5T + 4I +
3F, 4+ 5T + 4I + 8F, 4+ 5T + 7I + 8F, 4+ 5T + 7I + 9F, 4+ 5T + 7I, 4+ 5T + 7I + 5F, 4+ 5T + 3F, 4+
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5T + 4F, 4 + 5T + 7F, 4 + 5T, 9 + 3T, 9 + 3T + F, 9 + 3T + 4F, 9 + 3T + 9F, 9 + 3T + I + 11F, 9 + 3T +

I, 9+ 3T + I + 3F, 9+ 3T + I + 8F, 9+ 3T + 4I + 8F, 9+ 3T + 4I + 9F, 9+ 3T + 4I, 9+ 3T + 4I + 5F, 9+
3T + 9I + 3F, 9 + 3T + 9I + 4F, 9 + 3T + 9I + 7F, 9 + 3T + 9I, 9 + 4T + 11I, 9 + 4T + 11I + F, 9 + 4T +

11I + 4F, 9 + 4T + 11I + 9F, 9 + 4T + 11F, 9 + 4T, 9 + 4T + 3F, 9 + 4T + 8F, 9 + 4T + 3I + 8F, 9 + 4T +

3I + 9F, 9 + 4T + 3I, 9 + 4T + 3I + 5F, 9 + 4T + 8I + 3F, 9 + 4T + 8I + 4F, 9 + 4T + 8I + 7F, 9 + 4T +

8I, 9 + 7T + 8I, 9 + 7T + 8I + F, 9 + 7T + 8I + 4F, 9 + 7T + 8I + 9F, 9 + 7T + 9I + 11F, 9 + 7T + 9I, 9 +
7T + 9I + 3F, 9 + 7T + 9I + 8F, 9 + 7T + 8F, 9 + 7T + 9F, 9 + 7T, 9 + 7T + 5F, 9 + 7T + 5I + 3F, 9 +

7T + 5I + 4F, 9+ 7T + 5I + 7F, 9+ 7T + 5I, 9+ 3I, 9+ 3I + F, 9+ 3I + 4F, 9+ 3I + 9F, 9+ 4I + 11F, 9+
4I, 9 + 4I + 3F, 9 + 4I + 8F, 9 + 7I + 8F, 9 + 7I + 9F, 9 + 7I, 9 + 7I + 5F, 9 + 3F, 9 + 4F, 9 + 7F, 9.}

Similarly, we will use the idempotents to divide the elements of the neutrosophic rings 〈R ∪ T ∪
I ∪ F〉 when R = F. Let us illustrate these with the following example.

Example 7. Let R = Z3, which is a field. From Example 4, the different idempotents in Z3 are 1, 0. From
Corollary 4, the number of different idempotents in neutrosophic quadruple ring 〈Z3 ∪ T ∪ I ∪ F〉 is 24· = 16.

From Algorithm 2, the set of all 16 idempotents in 〈Z3 ∪ I〉 is: E = {0, F, I + 2F, I, T + 2I, T + 2I +
F, T + 2F, T, 1 + 2T, 1 + 2T + F, 1 + 2T + I + 2F, 1 + 2T + I, 1 + 2I, 1 + 2I + F, 1 + 2F, 1}. We have
E(0) = {0}, E(F) = {F, 2F}, E(I + 2F) = {I + 2F, 2I + F}, E(I) = {I, I + F, 2I, 2I + 2F}, E(T + 2I) =
{T + 2I, 2T + I}, E(T + 2I + F) = {T + 2I + F, T + 2I + 2F, 2T + I + F, 2T + I + 2F}, E(T + 2F) =

{T + 2F, T + I + F, 2T + F, 2T + 2I + 2F}, E(T) = {T + F, T, T + I, T + I + 2F, 2T, 2T + 2F, 2T +

2I, 2T + 2I + F}, E(1 + 2T) = {1 + 2T, 2 + T}, E(1 + 2T + F) = {1 + 2T + F, 1 + 2T + 2F, 2 + T +

F, 2+ T + 2F}, E(1+ 2T + I + 2F) = {1+ 2T + I + 2F, 1+ 2T + 2I + F, 2+ T + I + 2F, 2+ T + 2I + F},
E(1+ 2T + I) = {1+ 2T + I, 1+ 2T + I + F, 1+ 2T + 2I, 1+ 2T + 2I + 2F, 2+ T + I, 2+ T + I + F, 2+
T + 2I, 2+ T + 2I + 2F}, E(1+ 2I) = {1+ 2I, 1+ T + I, 2+ I, 2+ 2T + 2I}, E(1+ 2I + F) = {1+ 2I +
F, 1 + 2I + 2F, 1 + T + I + F, 1 + T + I + 2F, 2 + I + F, 2 + I + 2F, 2 + 2T + 2I + F, 2 + 2T + 2I + 2F},
E(1 + 2F) = {1 + 2F, 1 + I + F, 1 + T + F, 1 + T + 2I + 2F, 2 + F, 2 + 2I + 2F, 2 + 2T + 2F, 2 + 2T +

I + F}, E(1) = {1, 1 + F, 1 + I, 1 + I + 2F, 1 + T, 1 + T + 2F, 1 + T + 2I, 1 + T + 2I + F, 2, 2 + 2F, 2 +

2I, 2 + 2I + F, 2 + 2T, 2 + 2T + F, 2 + 2T + I, 2 + 2T + I + 2F}. So 〈Z3 ∪ T ∪ I ∪ F〉 = ⋃
e∈E E(e).

5. Conclusions

In this paper, we study the idempotents in neutrosophic ring 〈R ∪ I〉 and neutrosophic quadruple
ring 〈R ∪ T ∪ I ∪ F〉. We not only solve the open problem and conjectures in paper [22] about
idempotents in neutrosophic ring 〈Zn ∪ I〉, but also give algorithms to obtain all idempotents in 〈Zn ∪ I〉
and 〈Zn ∪ T ∪ I ∪ F〉 for each n. Furthermore, if R = F, then the neutrosophic rings (neutrosophic
quadruple rings) can be viewed as a partition divided by the idempotents. As a general result, if all
idempotents in ring R are known, then all idempotents in 〈R ∪ I〉 and 〈R ∪ T ∪ I ∪ F〉 can be obtained
too. Moreover, if the number of all idempotents in ring R is t, then the numbers of all idempotents in
〈R∪ I〉 and 〈R∪ T ∪ I ∪ F〉 are t2 and t4 respectively. In the following, on the one hand, we will explore
semi-idempotents in neutrosophic rings, on the other hand, we will study the algebra properties of
neutrosophic rings and neutrosophic quadruple rings.
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Appendix A. The MATLAB code for solving the idempotents in (Zn, ·)

function neut = solve_neut ( n )

% n : n o n n e g a t i v e i n t e g e r
% neut : a l l i d e m p o t e n t s in Z_n

B = [ ] ;
d i g i t s ( 3 2 ) ;
for i =1 :n

for j =1 :n
A1( i , j )=mod( ( i −1)*( j −1) ,n ) ;

end
end
a1= f a c t o r ( n ) ;
a2=unique ( a1 ) ;
for i =1 : length ( a2 )

b=length ( find ( a1==a2 ( i ) ) ) ;
B ( i )= a2 ( i )^b ;

end
D= [ 1 ] ;
for i =1 : length ( a2 )

C=combnk ( B , i ) ;
A=prod (C , 2 ) ;
D=[D;A] ;

end
D=mod(D, n ) ;
for i =1 : length (D)

i f D( i )==1
neut ( i ) = 1 ;

e l s e i f D( i )==0
neut ( i ) = 0 ;

e lse
for j =1 :n

i f mod(D( i ) * j , n)==D( i )
for k =1:n

i f mod(D( i ) * k , n)== j
neut ( i )= j ;
break

end
end

end
end

end
end
neut= s o r t ( neut ) ;

Appendix B. The MATLAB code for solving the idempotents in 〈Zn ∪ I〉

function ID = Idempotents_ZR ( n )
% n : n o n n e g a t i v e i n t e g e r
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% ID : a l l i d e m p o t e n t s in in n e u t r o s o p h i c r i n g <Z_n \cup I >

neut = solve_neut ( n ) ;

n e u t a l l = [ ] ;
for i =1 : length ( neut )

for j =1 : length ( neut )
c1=mod( neut ( j )−neut ( i ) , n ) ;
n e u t a l l =[ n e u t a l l ; [ neut ( i ) , c1 ] ] ;

end
end

ID=sortrows ( neu ta l l ’ , 1 ) ’ ;

Appendix C. The MATLAB code for solving the idempotents in 〈Zn ∪ T ∪ I ∪ F〉

function ID = Idempotents_ZRTIF ( n )
% n : n o n n e g a t i v e i n t e g e r
% ID : a l l i d e m p o t e n t s in in n e u t r o s o p h i c q u a d r u p l e r i n g <Z_n\cup T\cup I \cup F>

neut = solve_neut ( n ) ;
n e u t a l l = [ ] ;
for i =1 : length ( neut )

a1=neut ( i ) ;
for j =1 : length ( neut )

a2=mod( neut ( j )−a1 , n ) ;
for m=1: length ( neut )

a3=mod( neut (m)−a1−a2 , n ) ;
for q =1: length ( neut )

a4=mod( neut ( q)−a1−a2−a3 , n ) ;
n e u t a l l =[ n e u t a l l ; [ a1 a2 a3 a4 ] ] ;

end
end

end
end

ID=sortrows ( neu ta l l ’ , 1 ) ’ ;
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