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Abstract: Recently, video frame interpolation research developed with a convolutional neural network
has shown remarkable results. However, these methods demand huge amounts of memory and
run time for high-resolution videos, and are unable to process a 4K frame in a single pass. In this
paper, we propose a fast 4K video frame interpolation method, based upon a multi-scale optical flow
reconstruction scheme. The proposed method predicts low resolution bi-directional optical flow,
and reconstructs it into high resolution. We also proposed consistency and multi-scale smoothness
loss to enhance the quality of the predicted optical flow. Furthermore, we use adversarial loss to
make the interpolated frame more seamless and natural. We demonstrated that the proposed method
outperforms the existing state-of-the-art methods in quantitative evaluation, while it runs up to 4.39×
faster than those methods for 4K videos.

Keywords: video processing; frame interpolation; high-resolution image processing; coarse-to-fine
optical flow; 4K image

1. Introduction

Video frame interpolation is one of the computer vision techniques that synthesizes single or
multiple intermediate frames between two temporally adjacent frames. It is also known as high frame
rate conversion, and aims to make videos to be more seamless and visually appealing. Conventional
video frame interpolation methods [1–3] are typically pixel blending fashion, and use motion estimation
mainly based on optical flow estimation. As reported in these researches, obtaining high quality optical
flow is crucial in generating good interpolation results.

Recently, applying a deep convolutional neural network to video frame interpolation has been
multifariously examined in many researches [4–6], since it has shown considerable performance
over various computer vision problems. Liu et al. [4] proposed a network to generate intermediate
frames by warping the input frames using estimated optical flow. To train the network, they
introduced self-supervised learning, which implicitly affects the network to produce better optical flow.
Their method shows better results compared to those models trained in a supervised fashion. However,
their method often yields critical artifacts, such as halo and ghost, for occlusion or large motion, which
makes optical flow estimation frequently fail. Liu et al. [7] proposed cycle consistency loss which
affects the trained model to produce better optical flow by enforcing the similarity between the input
frames and the mapped-back frames. They also introduced the motion linearity and edge-guided
training to handle the large motion and rich texture problem. Nevertheless, the method yet shows
poor results for complex motion and occlusion.
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There have been various approaches to handle such occlusion problems. Tianfan et al. [8] designed
a network composed of three sub-networks whose objective is different. The first and second network
both estimate optical flow and occlusion mask from input frames. The last network synthesizes
intermediate frame with estimated optical flow and occlusion mask. Jiang et al. [5] proposed a visibility
map for occlusion reasoning. The visibility map allows the blending process to exclude the contribution
of occluded pixels to the interpolated frame. For the same reasoning, Bao et al. [9] proposed a network
exploiting depth information. The network predicts not only optical flow, but also depth map, which
explicitly detects the occlusion. They also proposed depth-aware flow projection layers that generate
intermediate optical flow, which preferably samples closer objects than farther ones. For occlusion,
these methods show overwhelmingly better results compared to the state-of-the-art methods. However,
these methods yield poor interpolation results for high resolution video frames such as 4K images,
which contains wider and larger motion.

Niklaus et al. [10] proposed a context-aware network that utilizes both optical flow and contextual
information. Unlike most video interpolation methods, the network architecture is based upon
GridNet [11], which combines warping and pixel blending into a single step. Their work achieved
state-of-the-art performance. However, this method is still unable to perform on high resolution
video frames, due to its complex network structure, which requires a huge amount of memory.
Meyer et al. [12] exploited a convolutional neural network to directly estimate the phase decomposition
of the intermediate frame. Their method seems to work better for large motion, but it is inferior to the
existing methods for rich texture. Niklaus et al. [6] proposed a pixel-wise frame interpolation network
that predicts N × N spatially adaptive kernels. The kernels contain the combination of optical flow
and pixel warping information between input frames. Their method obtains high quality interpolation
results. However, this method demands higher computational power and more memory in order to
perform on high resolution video frames. Niklaus et al. [13], for memory efficiency, proposed a method
that approximates a 2D interpolation kernel with two separable 1D kernels. Yet their method suffers
from high computation cost, and is unable to perform on 4K video frames.

In recent researches, some approaches have been proposed to process high resolution video
interpolation. Amersfoort et al. [14] proposed a residual learning method with a multi-scale generative
adversarial network. The network reconstructs the high resolution intermediate frame in a coarse-to-fine
fashion. Their method runs 47× faster than the existing methods on 360 × 640 image resolution,
while producing comparable visual quality. Peleg et al. [15] proposed an interpolated motion based
the high resolution video frame interpolation method. Similar to the work of Amersfoort, they first
predict each vertical and horizontal motion in low resolution, as well as an occlusion map. Then, a
high resolution intermediate frame is constructed in a block-wise manner. Their method, on the
Caffe [16] platform, runs significantly faster than the existing methods on high resolution videos, while
maintaining quantitative quality. Ahn et al. [17] proposed a hybrid task-based network composed
of two sub-networks which each have different objectives. Each first and second network conducts
temporal and spatial interpolation, respectively. They achieved the state-of-the-art performance in
both quantitative evaluation and running time on 4K videos.

In this paper, we propose a novel fast 4K video frame interpolation method using a multi-scale
motion reconstruction network. The proposed network is composed of three sub-networks: An
optical flow estimation (OFE) network and two multi-scale optical flow reconstruction (OFR) networks.
The OFE network predicts bi-directional optical flow in quarter resolution of input frames. The OFR
networks reconstruct the intermediate optical flow into half and original resolution, respectively. This
structure allows the network to stably reconstruct high resolution optical flow by applying multi-scale
losses. Furthermore, we propose consistency and adversarial loss terms. The consistency loss explicitly
enforces the trained network to avoid blur artifact and produce better results. The adversarial loss
intuitively helps the model to generate seamless and natural results. Figure 1 shows the interpolation
examples for the existing state-of-the-art methods for 4K frames. Compared to these methods, the
proposed method is able to handle large motion and complex structural changes.
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Figure 1. Interpolation example of 4K frames. (From left to right: Ground-truth; SepConv-l f [13];
SuperSloMo [5]; Ahn et al. [17]; and Ours).

2. Proposed Method

Figure 2 shows the architecture of the proposed video frame interpolation network. Our method
produces the interpolated frame in a pixel blending manner with warped frames using an optical flow
map. The entire network is composed of an optical flow estimation (OFE) network and two multi-scale
optical flow reconstruction (OFR) networks. We use three-level pyramidal image representation for
multi-scale inputs, which means each network takes different levels of input. Given two input frames I1

and I2, we make three-level pyramidal images Ik
1 and Ik

2, k ∈ {1,2,3}. The first level of pyramidal frames
I1
1 and I1

2 are identical to I1 and I2. The second level frames I2
1 and I2

2 are obtained by downscaling the
I1
1 and I1

2, respectively. The same process is conducted to generate the third level frames, I3
1 and I3

2.
The OFE network predicts the optical flow map in low resolution, and OFR networks reconstruct the
map in a higher resolution which is the original size of the input frames.

1 
 

 
Figure 2. The architecture of the proposed video frame interpolation network.

2.1. Optical Flow Estimation

The proposed OFE network aims to predict high quality optical flow in a computationally efficient
way. To obtain high quality optical flow, as studied in Jiang’s work [5], it is necessary that the receptive
field of the convolutional filter is large enough to capture large motions. However, one can argue
about the optimal size of the receptive field due to the trade-off between the slowness of convolutional
operation and the quality of the produced optical flow. Thus, instead of increasing the size of the
receptive field, we use downscaled input frames to predict the optical flow. We found this approach
allows the network to handle large motions well, without having the heavy computational cost
associated with increasing the size of the receptive field.
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The OFE network takes the third level of pyramidal input frames I3
1 and I3

2, and predicts the
bi-directional optical flow maps F3′

t1 and F3′
t2 in a quarter of the resolution of the original input frames.

That is, I3
k ∈ R3 × H

4 ×
W
4 and F3′

tk ∈ R2 × H
4 ×

W
4 , k ∈ {1, 2}, where H and W are the height and width of the

original input frames. The intermediate frames I3′
t1 and I3′

t2 are obtained as below.

I3′
t1 = fb

(
I3
1, F3′

t1

)
I3′
t2 = fb

(
I3
2, F3′

t2

) (1)

where, fb(·, ·) denotes a back-warp warping function. The intermediate frames I3′
t1 , I3′

t2 and the predicted
optical flow maps F3′

t1 and F3′
t2 are upscaled into I2

1t, I2
2t and F2

t1, F2
t2, and then they are fed into the first

OFR network with the second level of pyramidal input frames I2
1 and I2

2. That is, the input of the first

OFR network X1 satisfies as follows: X1 =
{
I2
1, I2

2, F2
t1, F2

t2, I2
1t, I2

2t

}
, X1 ∈ R16 × H

2 ×
W
2 . In this paper,

we used bilinear interpolation for the upscaling operation. The optical flow reconstruction process is
described in Section 2.2.

The proposed OFE network is built based upon U-Net [18]. It is composed of an encoder, a
decoder and two additional convolutional layers, followed by a leaky rectified linear unit (Leaky
ReLU) [19] at the front of the network. We set the receptive field filter size to 7 for the first two
convolutional layers and to 3 for the rest of the convolutional layers. The encoder has five hierarchical
layers, and each hierarchical layer is composed of one average pooling layer and two convolutional
layers, followed by a Leaky ReLU. The decoder also has five hierarchical layers with the same structure
as the hierarchical layers of encoder, except the decoder has an upscaling layer instead of an average
pooling layer before the convolutional layers. There are five skip connections from the encoder to the
decoder. The last convolutional layer of each hierarchical layer in the decoder concatenates the last
layer of each hierarchical layer in the encoder with its previous layer.

2.2. Optical Flow Reconstruction

The proposed OFR networks aim to reconstruct the optical flow in the original resolution from
the predicted low resolution optical flow. This coarse-to-fine approach is often used in previous
studies [14,17] in order for computational efficiency. However, this approach tends to yield blurry
results because it directly reconstructs pixel information. In order to avoid this problem, the proposed
approach reconstructs optical flow information instead of pixel information. We also developed the
OFR networks with a multi-scale reconstruction scheme. This affects the networks to stably reconstruct
a high resolution optical flow. The first OFR network takes X1 =

{
I2
1, I2

2, F2
t1, F2

t2, I2
1t, I2

2t

}
as its input,

and then produces the optical flow maps F2′
t1 and F2′

t2 in half of the resolution of the original input

frames, which means F2′
tk ∈ R2 × H

2 ×
W
2 , where k ∈ {1, 2}. Similar to the process of the OFE network, the

intermediate frames I2′
t1 and I2′

t2 are obtained as follows.

I2′
t1 = fb

(
I2
1, F2′

t1

)
I2′
t2 = fb

(
I2
2, F2′

t2

) (2)

The intermediate frames I2′
t1 , I2′

t2 and the predicted optical flow maps F2′
t1, F2′

t2 are used for the

second OFR network. The input of the second OFR network X2 satisfies: X2 =
{
I2′
t1 , I2′

t2 , F2′
t1, F2′

t2

}
,

X2 ∈ R10 × H
2 ×

W
2 . Note that X2 still has half the resolution of the original input frames. Finally, the

second OFR network produces the original resolution optical flow maps F1′
t1 and F1′

t2 as well as the
parameters for the adaptive pixel blending map B. The final intermediate frame I′t is obtained as below.

I1′
t1 = fb

(
I1
1, F1′

t1

)
I1′
t2 = fb

(
I1
2, F1′

t2

)
I′t = B ∗ I1′

t1 + (1− B) ∗ I1′
t2

(3)
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Here, ∗ denotes element-wise multiplication. The adaptive pixel blending map B controls the
contribution of the input frames. For example, when the pixel p exists in both frame I1 and I2, B is set to
0.5, and when the p exists in frame I1 only, then B is set to 1. We implemented this by using a sigmoid
activation function which maps the resulting values in between 0 to 1. This approach is often studied
to handle the occlusion problem in the previous researches [5,15]. However, for some challenging
cases such as complex structural changes or large motion, their method often fails to determine the
contribution of the input frames. In this case, they tend to sample pixels equally from both frames, and
this yields a ghost artifact. To handle this problem, the proposed method predicts the adaptive pixel
blending map by adjusting the slope of our sigmoid function with a learnable parameter. The adaptive
pixel blending map B is obtained as below.

B =
1

1 + e−k1k2
(4)

where, k1 and k2 are the output of the second OFR network. First parameter k1 determines the slope
of this sigmoid activation function, and the second parameter k2 acts as input for the activation
function. This approach enforces the pixel blending map to sample pixels from the preferable frame
and thus to avoid that ghost artifact. The benefits of using the adaptive pixel blending map are studied
in Section 3.3.

The OFR networks have the similar architecture as the OFE network, but they differ in the number
of channels for input and output. The first and second OFR networks take 16-channel and 10-channel
inputs, respectively, while the OFE network has a 6-channel input. For output, the second OFR network
produces a 6-channel, while the OFE and the first OFR networks have a 4-channel output. The decoder
of the second OFR network has an additional hierarchical layer.

2.3. Loss Function

We use various loss terms to train the proposed network. Our loss l is defined as below.

l = λplp + λ f l f + λwlw + λclc + λsls + λala (5)

We first consider pixel-wise color loss lp, which measures the difference between the interpolated
frame I′t and its ground-truth It. The color loss lp is calculated as by Equation (6).

lp =
∣∣∣∣∣∣I′t − It

∣∣∣∣∣∣1 (6)

To preserve details of the interpolated frame, we use feature-based perceptual loss [20] l f
which is frequently used for generating visually seamless results in many video frame interpolation
methods [5,10,13,17]. The perceptual loss l f is defined as below.

l f =
∣∣∣∣∣∣∣∣ϕ(I′t)−ϕ(It)

∣∣∣∣∣∣∣∣
2

(7)

where ϕ denotes the output of conv4_3 layer in the VGG16 [21] network, trained using ImageNet [22].
We also use warping loss lw to measure the accuracy of the predicted optical flow in each level of

pyramidal image representation. Similar to Jiang et al. [5], the warping loss lw is defined as below.

lw =
3∑

k=1

|| fb
(
Ik
1, Fk′

t1

)
− Ik

t ||1 +
3∑

k=1

|| fb
(
Ik
2, Fk′

t2

)
− Ik

t ||1 (8)

Besides, we use consistency loss lc to prevent the trained network from producing overly smoothed
results. Similar to Liu et al. [7], the consistency loss measures the difference between the input frames
and mapped-back frames from the interpolated frame. The consistency loss lc is defined as below.
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lc =
∣∣∣∣∣∣∣∣ fb(It, F1′

1t

)
− I1

1

∣∣∣∣∣∣∣∣1+∣∣∣∣∣∣∣∣ fb(It, F1′
2t

)
− I1

2

∣∣∣∣∣∣∣∣1 (9)

Even though we use the consistency loss to handle the over-smoothed problem, the interpolated
frame still tends to be smoothed due to the OFR networks which often make drastic optical flow
changes. In order to suppress these drastic optical flow changes, we introduce a multi-scale smoothness
loss which measures the difference between the reconstructed optical flow map and its reference
optical flow map. We experimentally found that this affects the network to stably reconstruct our high
resolution optical flow map. The smoothness loss ls is defined as below.

ls =
2∑

k=1

|| fu
(
2 ∗ Fk+1′

t1

)
− Fk′

t1||1 +
2∑

k=1

|| fu
(
2 ∗ Fk+1′

t2

)
− Fk′

t2||1 (10)

where, fu and ∗denote a bilinear upsampling operation and element-wise multiplication. The advantage
of the proposed smoothness loss is studied in Section 3.2.

Finally, we propose the adversarial loss with the discriminator network in order to produce more
visually pleasing results. The adversarial loss la is defined as below.

la = min
G

max
D

EIt∼pdata(It)[log D(It)] + E(I1, I2)∼pi(I1, I2)[log(1−D(G(I1, I2)))] (11)

where, D and G denote the discriminator network and the proposed frame interpolation network,
respectively. The discriminator network takes either the interpolated frame or its ground truth.
While the proposed interpolation network attempts at fooling the discriminator network, the
discriminator network predicts whether the input is interpolated, or whether they are original
ones. The adversarial network has the similar architecture with the OFE network. It has a 3-channel
for the input and a 1-channel for the output. The weights of each loss terms are as follows: λp = 1.0,
λ f = 0.01, λw = 0.5, λc = 0.25, λs = 0.8, and λa = 0.001. We empirically determined these weights
through extensive experiments.

2.4. Training

We collected high-resolution videos with various frame rates from YouTube. Following
Ahn et al. [17], we downscaled the collected videos in order to reduce the degradation problem due to
video compression. To make triplet input samples, we crop 512 × 512 patches from temporally adjacent
frames. Since the proposed network is self-supervised, an additional label for the triplet dataset is
unnecessary. The total number of datasets is about 230,000 triplet samples. To train the proposed
interpolation network, we use Adam optimizer [23] with 800 epochs, an initial learning rate of 0.0001,
and a batch size of 12. The learning rate is decreased by a factor of 10 for every 300 epochs. We applied
various kinds of data augmentation, including random horizontal and vertical flips, frame order swap
and temporal gap adjustment. The temporal gap adjustment especially provides the network with rich
motion information.

3. Experimental Results

The public datasets often used for evaluation in many video-frame interpolation
researches [4,5,7,13,24] are the Middleburry optical flow benchmark [25] and UCF101 [26]. Since these
datasets have very limited low image resolution, they are not suitable for the proposed method which
handles high resolution video frames. There are some studies that provide the evaluation results
produced from high resolution video datasets. Niklaus et al. [13] and Bao et al. [9] conducted evaluation
on HD video, and Peleg et al. [15] upscaled the Vimeo dataset [27] into higher resolution (1344 × 768)
for performance comparison. Ahn et al. [17] compare and report the performance of their method on
Ultra Video [28] and SJTU Media [29] datasets whose image resolutions are 4K.
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To evaluate and compare the performance of the proposed method, we choose Ultra Video and
SJTU Media datasets, because they have 4K image resolution and are suitable for our target. In addition,
for various dataset comparisons to the state-of-art methods, we also consider the Vimeo dataset with
the same experimental condition introduced in [15].

For the algorithm, we choose SepConv-l f [13], SuperSloMo [5], and Ahn et al. [17], which are
available for evaluation and can interpolate a high-resolution video frame such as a 4K image. We
also consider IM-Net [15] for Vimeo dataset evaluation since they provide the evaluation results in
their research.

We report PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity) [30], which are
often used to evaluate the performance of video frame interpolation algorithms. We also compare the
inference time to show the effectiveness of the proposed method.

3.1. Quantitative Evaluation

Since the Ultra Video and SJTU Media datasets have the YCbCr color format, we converted them
into the red-green-blue (RGB) color format for evaluation. However, as Ahn et al. uses the YCbCr color
format, we converted their results to the RGB color format to compare the performance in the same
domain. The rest of the methods are conducted in the RGB color format. Table 1 shows the comparison
results to state-of-the-art methods that are operable for 4K videos. For the SJTU Media dataset, the
proposed method obtained the best results in PSNR of 31.84 dB. The performance gap to the second
best method was 0.09 dB. For the Ultra Video, the proposed method outperformed the state-of-the-art
methods in both the PSNR and SSIM evaluations. The proposed method achieved PSNR of 28.71 dB,
which is 0.23 dB greater than the result of SuperSloMo that showed the second best performance. The
proposed method showed a relatively wide performance gap compared to the performance gap for
SJTU Meida dataset, because the Ultra Video dataset tends to have more large motions and complex
structural changes.

Table 1. Comparison to state-of-the-art methods for the 4K datasets.

Ultra Video SJTU Media

PSNR SSIM PSNR SSIM

SepConv-l f 27.76 0.7495 31.75 0.8599
SuperSloMo 28.48 0.7789 31.24 0.8735
Ahn et al. 28.01 0.7865 30.97 0.8569

Ours 28.71 0.7926 31.84 0.8619

Although the proposed method aims to interpolate 4K video frames, for the more reliable
experiments, we considered the Vimeo dataset which contains real-life videos. The Vimeo dataset has
3782 triplet samples extracted from publicly available videos. The dataset has a relatively smaller
image size, which is 448 × 256. Thus, for consistency, we followed Peleg et al. and upscaled the
dataset into 1344 × 768, using Lastname et al. [31]. Although IM-Net is publicly unavailable, they
provide the quantitative evaluation results for the Vimeo dataset. Table 2 summarizes the PSNR and
SSM evaluation results for the Vimeo dataset. The proposed method achieved PSNR of 33.76 dB and
outperformed the state-of-the-art methods. The performance gap between the proposed method and
the second best method was 0.27 dB.
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Table 2. Comparison to state-of-the-art methods for the Vimeo dataset.

Vimeo (1344 × 768)

PSNR SSIM

SepConv-l f 31.81 0.9309
SuperSloMo 33.49 0.9522

Ahn et al. 32.03 0.9458
IM-Net 33.11 0.9436

Ours 33.76 0.9531

Finally, as shown in the Table 3, we demonstrated that the proposed method performs faster than
the existing methods that are operable for 4K videos, while maintaining comparable interpolation
quality. To evaluate run time comparison, we calculated the average inference time for interpolating
1000 video frames. Disk read time is excluded in inference time, which means we measure the elapsed
time between two points: The first point, which is right after the video frame, is obtained in the input
buffer, the second point is when the output buffer received the result from the network. We applied
this protocol both for the proposed method and the reference methods.

Table 3. Run time (ms) comparison to state-of-the-art methods for high-resolution video.

4K FHD

SepConv-l f 1670 500
SuperSloMo 1080 390

Ahn et al. 620 190
IM-Net - 55 1

Ours 380/210 2 115/48 2

1 This is implemented based on Caffe, 2 These are implemented based on CUDA and cuDNN.

The proposed method produced a 4K frame in 380 ms using a Titan Xp on a PyTorch [32]
platform. Under the same condition, SepConv, SuperSloMo and Ahn et el. took 1670, 1080 and 620 ms,
respectively. We also implemented the proposed method based on CUDA and cuDNN [33] to improve
the run time speed. With CUDA and cuDNN, the proposed method can interpolate a 4K frame in
210 ms. For FHD videos, on the PyTorch platform, the proposed method took 115 ms and 48 ms
using CUDA and cuDNN while IM-Net, which is implemented based on Caffe [16], took 4855 ms. In
conclusion, the proposed method runs up to 4.39× faster than the existing methods for 4K videos on
the same platform.

3.2. Visual Comparison

In this section, we investigate how the proposed method handles challenging cases for 4K
frames. Figure 3 demonstrates the visual comparison for each state-of-the-art method. The first and
second samples are examples of large motion. SepConv and Ahn et al., which are kernel-based
approaches, cannot handle large motion, because the motion is beyond their kernel size. SuperSloMo
also yields poor results in this case. As shown in Figure 3, the proposed method handles large motion
better than the existing methods and produces a more visually appealing result. We attribute this to
the proposed smoothness loss and OFR networks which utilize multi-scale coarse-to-fine fashion. As
the proposed network takes downscaled frames as input, the motion is also reduced, and the network
can avoid such challenging cases. Furthermore, the smoothness loss allows the OFR networks to stably
reconstruct a high resolution optical flow map, which directly affects the results. The third sample
is the doors of a racetrack. As the doors are opening, they make complex structural changes and
occlusion. The proposed method handles this problem better than the existing methods. Ahn et al.
shows comparable results because their method works well with samples which have strong edges,
since they use edge loss for training.
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Figure 3. Visual comparison for 4K frames. (From left to right: Ground-truth; SepConv-l f ; SuperSloMo;
Ahn et al.; and Ours).

3.3. Ablation Study

We report on the ablation study to examine how the different parts of the proposed method
effect the results. Table 4 summarizes the ablation study results for the proposed loss functions and
the architecture.
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Table 4. Ablation study results.

Ultra Video SJTU Media Vimeo

PSNR SSIM PSNR SSIM PSNR SSIM

Without OFR networks 27.63 0.7656 31.07 0.8133 33.32 0.9422
Without adaptive pixel

blending map 28.35 0.7764 31.23 0.8436 33.46 0.9463

Without consistency loss 28.19 0.7783 31.17 0.8360 33.38 0.9468
Without smoothness loss 27.83 0.7716 31.12 0.8274 33.30 0.9443
Without adversarial loss 28.45 0.7845 31.52 0.8561 33.65 0.9512

Full model 28.71 0.7926 31.84 0.8619 33.76 0.9531

We perform frame interpolation without the high resolution optical flow map produced by the
proposed optical flow reconstruction network. Instead of using the predicted high resolution optical
flow map, we simply upscaled the F3′

t1 and F3′
t2 which are outputs of the OFE network, using a bilinear

interpolation operation. Then the interpolated optical flow map is used for interpolation. That is, we
used the bilinear interpolated optical map instead of F1′

t1 and F1′
t2 in Equation (3). Table 4 shows that the

proposed OFR networks are the most significant and increase the quantitative accuracy with a large
gap compared to the ablation network. To examine the effectiveness of the adaptive pixel blending
map, we trained the proposed network without the first parameter in Equation (4). That is, we used
the sigmoid function with a fixed slope. As shown in Table 4, the network trained with the adaptive
pixel blending map is superior to its ablation network.

For the rest of the ablation study, we trained the proposed network with different loss terms
and examined the effectiveness of each proposed loss. Firstly, we trained the network without our
multi-scale smoothness loss. The network trained with the multi-scale smoothness loss was superior to
the ablation model. We found that multi-scale smoothness loss encourages the reconstructed flow map
to be more seamless and to suppress drastic flow changes. The consistency loss is the second most
significant of the proposed loss terms, and it increases the quantitative accuracy. Especially, for the
Vimeo dataset, the consistency loss achieved higher improvement compared to the OFR networks. We
also studied the proposed adversarial loss. Intuitively, using the adversarial loss enforces the network
to produce a more visually seamless result. Table 4 proves that the trained network benefits from the
adversarial loss in terms of PSNR and SSIM.

4. Conclusions

In this paper, we propose a fast 4K video frame interpolation method using a multi-scale
motion reconstruction network. We first predict bi-directional optical flow in quarter resolution
of input frames. We then reconstruct the predicted optical flow into original resolution with a
multi-scale reconstruction scheme which allows the network to stably reconstruct high optical
resolution. The proposed network is trained with various loss functions including the consistency,
multi-scale smoothness and adversarial loss. Ablation studies clearly show the benefits of the proposed
architecture and loss functions. Experimental results demonstrated that the proposed method is
superior to the existing state-of-the-art methods in quantitative evaluation. The proposed method
runs up to 4.39× faster than the state-of-the-art methods that are operable for 4K videos. Our work is
directly applicable for the video display services which process high-resolution videos or demand an
efficient algorithm for the restricted hard-ware systems. In the future, we plan to examine about the
redundancy of the each optical flow estimation and reconstruction network for efficiency. Processing
super-high-resolution videos, such as 8K or 16K frames, in a single pass without resetting the memory
will be the main focus of our future study.
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