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Abstract: SG-Bézier curves have become a useful tool for shape design and geometric representation
in computer aided design (CAD), owed to their good geometric properties, e.g., symmetry and
convex hull property. Aiming at the problem of approximate degree reduction of SG-Bézier curves,
a method is proposed to reduce the n-th SG-Bézier curves to m-th (m < n) SG-Bézier curves. Starting
from the idea of grey wolf optimizer (GWO) and combining the geometric properties of SG-Bézier
curves, this method converts the problem of multi-degree reduction of SG-Bézier curves into solving
an optimization problem. By choosing the fitness function, the approximate multi-degree reduction
of SG-Bézier curves with adjustable shape parameters is realized under unrestricted and corner
interpolation constraints. At the same time, some concrete examples of degree reduction and its errors
are given. The results show that this method not only achieves good degree reduction effect, but is
also easy to implement and has high accuracy.
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1. Introduction

Parametric curves are not only an important research deimension in the fields of CAD/CAM, but
they also play a crucial role in the shape design and geometric representation of various products.
The simple, intuitive structure and many excellent properties of the traditional Bézier curve means that
it has become one of the important methods of representing curves in CAD/CAM systems. However,
the shape of Bézier curves is uniquely determined by the control points, which is not convenient for
engineering application and design. In response to this shortcoming, the scholars proposed rational
Bézier curves by introducing a weight factor, adjusting or modifying the shape of the curves without
changing the control points. However, the introduction to rational fractions will lead to many problems,
such as computational complexity, inconvenient integration, repeated derivation, and so on [1,2].

To maintain the advantages of the Bézier method and increase the ability to adjust its shape,
as well as to improve its approximation to real curves, scholars have constructed many non-rational
Bézier curves with shape parameters [3–19]. Based on a new set of generalized Bernstein basis functions
of explicit expressions, Hu et al. [20] proposed a generalized Bézier (SG-Bézier) curve with various
shape parameters. This curve not only inherits many excellent characteristics of Bézier curves, but also
has flexible shape adjustability. It can adjust the shape of the curves by changing the global and local
shape parameters to construct more complex curves with degrees of freedom. According to the basis
functions and endpoint property of SG-Bézier curves, Hu and Bo gave the continuity conditions of G1

and G2 between two adjacent SG-Bézier curves, and studied the smooth joining steps of SG-Bézier
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curves and the influence of shape parameters on complex curves [21]. At present, there is no report on
the degree reduction of SG-Bézier curves.

Based on the different requirements for the degree of curves in different CAD/CAM systems,
the degree reduction of the curves can better realize the data conversion and transmission between
different systems. There are three main types methods of degree reduction of curves: one is based on
the geometric properties of the control points. Some scholars use the geometric properties of the curves
itself and combine the generalized inverse matrix and the least square theory to achieve the degree
reduction of the curves [22–24]. Based on the least squares rule, Gospodarczyk [25] achieved the degree
reduction of Bézier curves by strengthening the constraints of the control points region. One kind of
algebraic method is based on basis transformation. Ahn [26] proposed an approximate degree reduction
algorithm based on constrained Jacobi polynomial that maintains the curves reach Ck,k continuity at
the endpoints. Lee et al. [27] gave a multi-degree reduction algorithm by using the transformation
between Bernstein basis and Legendre basis. In 2006, Rabah et al. [28] gave a multi-degree reduction
algorithm for Bézier curves with endpoints constraints by using the transformation matrix between
Bernstein basis and Chebyshev basis and the elevation matrix of Chebyshev polynomial. One method
is to transform the problem of degree reduction into solving the optimization of objective function
by using intelligent optimization algorithm; Ahn et al. [29] showed that the constrained polynomial
degree reduction in the L2-norm equals best weighted Euclidean approximation of Bézier coefficients.
In 2016, Ait-Haddou and Bartoň [30] illustrated that a weighted least squares approximation of Bézier
coefficients with factored Hahn weights provides the best constrained polynomial degree reduction
with respect to the Jacobi L2-norm. Lu and Qin [31] proposed a method for the degree reduction of S-λ
curves using a GSA algorithm. Based on the theory of grey wolf optimizer (GWO) algorithm [32–35],
this paper considers the degree reduction of SG-Bézier curves under unrestricted condition and
constraint condition of C0 and C1. The numerical examples show that the algorithm can find the global
optimal SG-Bézier curve more quickly and accurately.

The remainder of this paper is as follows. The SG-Bézier curves and GWO algorithm are described
in Sections 2 and 3, respectively. In Section 4, we propose the multi-degree reduction of SG-Bézier
curves using GWO algorithm. Some applications are given in Section 5. Finally, a brief conclusion is
given in Section 6.

2. The Definition of SG-Bézier Curves

Let B j,n(t) =

(
n
j

)
(1− t)n− jt j, t ∈ [0, 1] is the jth Bernstein basis function of degree n,

and
[

n
2

]
= [n/2] =

n/2, if n is even

(n− 1)/2, if n is odd
.

Definition 1. For any t ∈ [0, 1], n ≥ 2, n ∈ N+, We call the following polynomial of t a nth-degree
shape-adjustable generalized Bernstein basis function (or SG-Bernstein, for short) [20]:
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where j = 0, 1, . . . , [n/2]; 0 ≤ ω ≤ 1 and λ0 = µ0 = 0 are shape control parameters, here, 0 ≤ λ j,

µ j ≤

(
n + 1

j

)
, ( j = 1, 2, . . . , [n/2] + 1) and

(
n
j

)
= n!

j!(n− j)! .

Remark 1. The values of the shape parameters λ j and µ j in Equation (1) should also satisfy the following
constraints [20]:
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(a) When n is even:

λ[n/2]+1 =

(
n + 1
[n/2]

)
− µ[n/2],

µ[n/2]+1 =

(
n + 1
[n/2]

)
− λ[n/2],

(2)

(b) When n is odd:

µ[n/2]+1 =

(
n + 1

[n/2] + 1

)
− µ[n/2]+1. (3)

Remark 2. SG-Bernstein basis functions defined by Equation (1) contain n + 1 basis functions, and each basis
function is an (n + 1) th-degree polynomial.

Remark 3. SG-Bernstein basis functions Equation (1) have n + 1 different shape parameters. In particular,
when n is even or odd, its n + 1 shape parameters are shown in Table 1:

Table 1. Parameter representation.

n Parameters

even ω, λ1,λ2, · · · ,λ[n/2], µ1,µ2, · · · ,µ[n/2]
odd ω, λ1,λ2, · · · ,λ[n/2],λ[n/2]+1, µ1,µ2, · · · ,µ[n/2]

Definition 2. Given a set of control points P j ∈ Rd(d = 2, 3; j = 0, 1, . . . , n), a family of parametric curves{∏̂
t,n

}
can be defined as follows [20]:

{∏̂
t,n

}
: Ln(t ;λ j,µ j,ω) =

n∑
j=0

P jl j,n(t),(t ∈ [0, 1]), (4)

where 0 ≤ ω ≤ 1 and 0 ≤ λ j, µ j ≤

(
n + 1

j

)
( j = 0, 1, . . . , [n/2] + 1) are the global and local shape parameters

of
{∏̂

t,n

}
, respectively.

{
l j,n(t)

}n

j=0
is the SG-Bernstein basis functions of degree n.

Here, the polynomial curves defined by Equation (4) are called the shape-adjustable nth-degree
generalized Bézier (or SG-Bézier, for short) curves.

3. Grey Wolf Optimizer (GWO) Algorithm

3.1. The Basic Principles of Grey Wolf Optimizer

The grey wolf optimizer algorithm is a new group intelligent optimizer algorithm proposed
by Mirjalil et al. [32] in 2014. The algorithm is a meta-heuristic algorithm originated from the
hierarchical leadership mechanism and group hunting behavior of the simulated grey wolf population,
and achieves iterative optimization through the process of wolf group tracking, encircling and
attacking prey. Researches show that the grey wolf optimizer algorithm has the characteristics of
simple implementation, strong global search ability and fast convergence. Since it was proposed,
it has been used widely in functional optimization [33], multi-layer sensor training [34], economic
dispatch assignment problem [35], and other fields. The basic bionics principle of the grey wolf
optimizer algorithm is as follows.
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3.1.1. Social Hierarchy

Grey wolves are top-class carnivores dominated by colonies, and their populations have a strict
social hierarchy. The grey wolf optimizer algorithm divides the grey wolf population into four levels,
α, β, δ, and ω, from high to low, as shown in Figure 1. Hunting (optimization) is mainly guided by α, β,
and δ wolves. The remaining ω wolves follow the first three to track and round up. The solutions of
the corresponding positions of α, β, and δ wolves are the optimal solution, the sub-optimal solution,
and the third optimal solution.
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Figure 1. Social hierarchy of grey wolves.

3.1.2. Encircling Prey

In the process of optimization, the grey wolf population finds the best path for hunting by
encircling the prey, and defines the distance vector D of the position of the prey and the grey wolf for
the mathematical model involved:

D =
∣∣∣C ·Xp(t) = X(t)

∣∣∣, (5)

X(t + 1) = Xp(t) −A ·D, (6)

a(t) = 2(1− t/M), (7)

C = 2r2, (8)

A = 2a · r1 − a. (9)

among them Xp(t) and X(t) indicate the position of the prey after the t-th iteration and the position
of the grey wolf individual, respectively; A and C represent coefficient vectors; r1 and r2 are random
numbers between [0, 1]; and a linearly decrements from 2 to 0 as the number of iterations increases
during the iteration.

3.1.3. Attack Prey

The grey wolf has the ability to identify the position of the prey and attack the prey. The hunting
process is completed by the α, β, and δ wolves guiding the wolves to move. α, β, and δ wolves then
choose whether to update their positions through feedback from ω wolf. Their location updating
formulas are as follows: 

Dα =
∣∣∣C1 ·Xα(t) = Xω(t)

∣∣∣,
Dβ =

∣∣∣C2 ·Xβ(t) = Xω(t)
∣∣∣,

Dδ =
∣∣∣C3 ·Xδ(t) = Xω(t)

∣∣∣. (10)


X1 = Xα −A1 ·Dα,
X2 = Xβ −A2 ·Dβ,
X3 = Xδ −A3 ·Dδ.

(11)
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Xω(t + 1) = (X1 + X2 + X3)/3. (12)

among them: Dα, Dβ, and Dδ respectively represent the distance between the search individual (ωwolf)
and the α, β and δ wolves; X1, X2, and X3 indicate, respectively, that α, β, and δ wolves guide the
direction of individual (ω wolf) movement; Xω(t + 1) indicates the position of the grey wolf individual
after updating.

Figure 2 illustrates the above mode formula by giving an illustration of the position at which
candidate solution or search individual (ω wolf) updates its position under the guidance of α, β, and δ
wolves in a two-dimensional search space. As shown in Figure 2, the random circle range defined by α,
β, and δ wolves is the last position of the solution to be selected. That is to say, other wolves choose to
update their positions around the prey after the α, β, and δ wolves estimate the position of the prey.
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Figure 2. Update position of the grey wolf.

3.2. Algorithmic Flow of Grey Wolf Optimizer

The steps of the grey wolf optimizer algorithm are as follows, and the flow chart of the algorithm
is shown in Figure 3.

(1) Initialize the algorithm parameters, set the maximum number of iterations M, and generate
parameters such as a, C, and A, and generate the S initial wolf group: Xi (i = 0, 1, . . . , m).

(2) Record the optimal, the sub-optimal, and the third optimal objective function values
corresponding to the positions of the grey wolf individuals, respectively assigned to Xα, Xβ, and Xδ.

(3) Calculate the distance between the search individuals (ω wolf) and the α, β and δ wolves
according to Equation (10). Adjust the direction in which the search individuals (ω wolf) move
according to Equation (11). The updated position of the grey wolf individuals is calculated according
to Equation (12).

(4) Update parameters A, C according to Equations (7)–(9).
(5) Calculate the objective function values of all grey wolf individuals after being updated, and

re-determine Xα, Xβ, and Xδ.
(6) Iterate according to t = t + 1, if t < M, then jump to step 4); if t = M, the iteration is terminated,

output the optimal solution Xα, and the algorithm ends.
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4. Degree Reduction of SG-Bézier Curves with the Grey Wolf Optimizer

4.1. The Basic Idea of SG-Bézier Curve Degree Reduction

Let
{
P j

}n

j=0
be a given series of real numbers, thereby determining the SG-Bézier curve of degree n:

P(t) =
n∑

j=0

P jl j,n(t), (13)
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the so-called degree reduction refers to seeking the real numbers
{
Q j

}m

j=0
, so that its corresponding

low-mth-degree SG-Bézier curve:

Q(t) =
m∑

j=0

Q jl j,m(t), (14)

meets the condition:
max
0≤t≤1

d(P(t), Q(t)) = max
0≤t≤1

‖P(t) −Q(t)‖2 = min. (15)

The degree reduction problems can be transformed into the following parameter constrained
optimization problems:

f
(
P, Q, t;ω,λ j,µ j

)
= minmax

0≤t≤1
d(P(t), Q(t))

s.t. P, Q ∈ Rd,0 ≤ ω ≤ 1,λ0 = µ0 = 0,0 ≤ λ j,

µ j ≤

(
n + 1

j

)
( j = 1, 2, . . . , [n/2] + 1),t ∈ [0, 1]

(16)

where P, Q are the control point vectors of the curve before and after the degree reduction, ω is the
global shape parameter, and λ and µ are the local shape control parameters.

4.2. Initialization of the Grey Wolf Population

The population of this paper is consisted of feasible solutions to control points of SG-Bézier curves
after degree reduction. To initialize the population, first generate a random number αj ∈ [0, 1] (j = 0, 1,
. . . , m), and then use the following equation to find the control points on the interval [Pmin, Pmax]:

Qj = Pmin + αj(Pmax − Pmin), j = 0, 1, ..., m, (17)

where Qj is the initial control points of the degree-reduced SG-Bézier curves Q(t), Pmin = (xmin, ymin),
Pmax = (xmax, ymax). When the endpoints satisfy the C0 constraint, taking Q0 = P0 and Qm = Pn to
ensure the endpoints interpolation; when the endpoints satisfy the C1 constraint, we have:

Q0 = P0,Qm = Pn,
Q1 = P0 +

n+ω−ωλ1
m+ω−ωλ1

(P1 − P0),Qm−1 = Pn −
n+ω−ωµ1
m+ω−ωµ1

(Pn − Pn−1).
(18)

4.3. Selection of Fitness Function

Each individual of the population has an adaptation value. The better the individual’s nature, the
greater the fitness value, and the greater the possibility of breeding the next generation. In order to
satisfy the approximate conditions of the SG-Bézier curves, the fitness function is selected as:

f (t) = max‖P(t) −Q(t)‖ =

 s∑
j=0

d
(
P
(
t j
)
−Q

(
t j
))2


1/2

, (19)

where d(P(tj),Q(tj)) is Euclidean distance, P(tj) and Q(tj)(j = 0, 1, . . . , s) are the different points on the
SG-Bézier curves before and after degree reduction, respectively.

4.4. The Algorithm Description for Degree Reduction of SG-Bézier Curves

In this paper, the control points of the degree reduction curves are used as the position information
of the grey wolves. When the grey wolves constantly update their position after judging the position
of the prey, it is equivalent to continuously updating the control points of the degree reduction curves.
Based on the introduction of the GWO algorithm in Section 3, the specific implementation steps
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for applying the GWO algorithm to degree reduction of SG-Bézier curves are given in Algorithm 1,
and Algorithm 2 is the corresponding pseudo code.

Algorithm 1 Grey wolf optimizer algorithm: Steps to the degree reduction of SG-Bézier curves.

Step 1 Input the degree and control points sequence of SG-Bézier curves before degree reduction {P0, P1,
. . . , Pn}.

Step 2 Draw SG-Bézier curve before degree reduction and its control polygon.
Step 3 Initialize the parameters, set the population size and the maximum number of iterations MaxIter,

determine the number of points on the curve selected in the error analysis before and after the
reduction, and give the upper and lower bounds of the search individual information dimension
and the search individual information dimension.

Step 4 According to Equation (17), generate the initial population Qj(j = 0, 1, . . . , m).
Step 5 According to Equation (19), calculate the fitness value of the grey wolf individual, rank all the

fitness values, and record the position Qα, Qβ, Qδ of the optimal grey wolf α, the sub-optimal grey
wolf β and the third optimal grey wolf ω.

Step 6 According to Equation (12), update the position of the current grey wolf.
Step 7 Update parameters a, A and C by Equations (7)–(9).
Step 8 Calculate the fitness values of all grey wolves after being updated, and determine the new Qα, Qβ

and Qδ.
Step 9 To determine whether the maximum number of iterations is reached, yes, execute Step 10; No,

repeat Step 5–Step 9.
Step 10 Output optimization parameter result Qα.
Step 11 Draw SG-Bézier curve and its control polygon after degree reduction.

Algorithm 2 The pseudo-code of the GWO algorithm: Degree reduction of SG-Bézier curve

Input Parameters: s: Population size;
d: Dimensions of searching individuals;
lb: The lower bound of searching individual dimension;
ub: The upper bound of searching individual dimension;
N: The number of points on the curve selected during error analysis before and after the reduction;
m: Maximum number of iterations;

01 wolf population Q j( j = 1, 2, . . . , m)← initialization(wolf_size);
02 fitness← evaluate(wolf population); /*Calculating individual fitness of grey wolf*/
03 while (evaluation_number<max_evaluation_number) do/*Termination condition*/
04 Qα, Qβ, Qδ ← select the first best three wolves(wolf population); /*Select the optimal, sub-optimal,

and second optimal wolf*/
05 while (i < m) do
06 new position of the wolf← update(the current wolf); /*Update the location of the current search

individuals*/
07 evaluation_number + 1;
08 end
09 update(a,A,C)
10 fitness← evaluate(new position of the wolf);
11 evaluation_number + 1;
12 end
13 Qα ← select the best wolf(the entire wolves);
14 output Qα

5. Examples of Degree Reduction Approximation Curves

In this paper, a large number of numerical studies are carried out to verify the correctness of
the algorithm. The experimental environment is MATLAB language (MATLAB R2011a, MathWokrs
Corporation, Natick, MA, USA), the operating system is Windows 7 (Windows 7, Microsoft Corporation,
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Redmond, WA, USA), with an E5400 2.7 Ghz CPU, and 4 GB RAM. Here we take the population size of
grey wolves as 20 and the maximum number of iterations as 300. The following examples of applying
GWO algorithm to SG-Bézier curves. The error formula of degree reduction is as follows:

ε = d(P(t), Q(t)) =

√∫ 1

0
‖P(t) −Q(t)‖22dt. (20)

Example 1. Given shape parameters and control point coordinates:

ω∗ = 0;λ∗1 = 3,λ∗2 = 3;λ∗3 = 3;µ∗1 = 3,µ∗2 = 3;µ∗3 = 3;{
P∗0 = (0.1, 0), P∗1 = (0, 0.1), P∗2 = (0.05, 0.2), P∗3 = (0.3, 0.3),
P∗4 = (0.55, 0.2), P∗5 = (0.6, 0.1), P∗6 = (0.5, 0)

}
,

construct SG-Bézier curves (blue solid line) of degree 6, and its degree reduced SG-Bézier curves of degree 4 (red dot
line) under unconstrained and constrained conditions of C0 and C1. Under each kind of constraints, two different
situations are given: changing global shape parameters (Figures 4–6) and changing local shape parameters
(Figures 7–9). The errors of the curves after the degree reduction are shown in Tables 2 and 3, respectively.
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Figure 4. Degree reduction of SG-Bézier curves of degree 6 under unrestricted condition in Example
5.1; changing global shape parameter. (a) {λ1 = 3, λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3, µ3 = 3; ω = 0}; (b) {λ1 = 3,
λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3, µ3 = 3; ω = 0.2}; (c) {λ1 = 3, λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3, µ3 = 3; ω = 0.3};
(d) {λ1 = 3, λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3, µ3 = 3; ω = 0.5}.
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Figure 5. Degree reduction of SG-Bézier curve of degree 6 under C0 constraint condition in Example
5.1; changing global shape parameter. (a) {λ1 = 3, λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3, µ3 = 3; ω = 0}; (b) {λ1 = 3,
λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3, µ3 = 3; ω = 0.2}; (c) {λ1 = 3, λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3, µ3 = 3; ω = 0.3};
(d) {λ1 = 3, λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3, µ3 = 3; ω = 0.5}.
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Figure 6. Degree reduction of SG-Bézier curve of degree 6 under C1 constraint condition in Example
5.1; changing global shape parameter. (a) {λ1 = 3, λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3, µ3 = 3; ω = 0}; (b) {λ1 = 3,
λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3, µ3 = 3; ω = 0.2}; (c) {λ1 = 3, λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3, µ3 = 3; ω = 0.3};
(d) {λ1 = 3, λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3, µ3 = 3; ω = 0.5}.
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Figure 7. Degree reduction of SG-Bézier curve of degree 6 under unrestricted condition in Example 5.1;
changing local shape parameters. (a) {ω = 0, λ2 = 3, µ1 = 3, µ2 = 3; λ1 = 2}; (b) {ω = 0, λ1 = 3, µ1 = 3,
µ2 = 3; λ2 = 4}; (c) {ω = 0, λ1 = 3, λ2 = 3, µ2 = 3; µ1 = 2}; (d) {ω = 0, λ2 = 3, µ1 = 3; λ1 = 2, µ2 = 2}.
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Figure 8. Degree reduction of SG-Bézier curve of degree 6 under C0 constraint condition in Example
5.1; changing local shape parameters. (a) {ω = 0, λ2 = 3, µ1 = 3, µ2 = 3; λ1 = 2}; (b) {ω = 0, λ1 = 3, µ1 = 3,
µ2 = 3; λ2 = 4}; (c) {ω = 0, λ1 = 3, λ2 = 3, µ2 = 3; µ1 = 2}; (d) {ω = 0, λ2 = 3, µ1 = 3; λ1 = 2, µ2 = 2}.
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Table 2. Error for an approximate SG-Bézier curve of degree 6 to degree 4; changing global shape 
parameters. 

Constraint Condition ω = 0 ω = 0.2 ω = 0.3 ω = 0.5 
Unrestricted 4.9914 × 10−3 8.6669 × 10−3 7.4429 × 10−3 9.5617 × 10−3 
C0 constraint 4.1972 × 10−3 2.7182 × 10−3 3.1251 × 10−3 2.6399 × 10−3
C1 constraint 9.1096 × 10−3 9.1890 × 10−3 9.1935 × 10−3 9.1096 × 10−3

Table 3. Error for an approximate SG-Bézier curve of degree 6 to degree 4; changing local shape 
parameters. 

Shape Parameters Unrestricted C0 Constraint C1 Constraint 
ω = 0, λ2 = 3, μ1 = 3, μ2 = 3; λ1 = 2 1.0108 × 10−2 2.6558 × 10−3 9.1097 × 10−3
ω = 0, λ1 = 3, μ1 = 3, μ2 = 3; λ2 = 4 4.4997 × 10−3 2.6803 × 10−3 9.1097 × 10−3
ω = 0, λ1 = 3, λ2 = 3, μ2 = 3; μ1 = 2 4.0165 × 10−3 1.0576 × 10−2 9.1097 × 10−3
ω = 0, λ2 = 3, μ1 = 3; λ1 = 2, μ2 = 2 7.3299 × 10−3 1.0956 × 10−2 9.1097 × 10−3

Example 2. Given shape parameters and control point coordinates: 
* * * * * * * * * *

1 2 3 4 5 1 2 3 40; 3, 3; 3; 3; 3; 3, 3; 3; 3;ω λ λ λ λ λ μ μ μ μ= = = = = = = = = =  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

* * * * *
0 1 2 3 4
* * * *
5 6 7 8

0.5,0 , 0.8,0.3 , 0.65,0.7 , 0.1,1 , 0.6,1.1 ,

1.3,1 , 1.85,0.7 , 2,0.3 , 1.7,0

 = = − = − = − = 
 

= = = =  

P P P P P

P P P P
 

 

construct SG-Bézier curves (blue solid line) of degree 8, and its degree reduce SG-Bézier curves of degree 5 (red dot 
line) under unconstrained and constrained conditions of C0 and C1. Under each kind of constraints, two different 
situations are given: changing global shape parameters (Figures 10–12) and changing local shape parameters 
(Figures 13–15). The errors of the curves after the degree reduction are shown in Tables 4 and 5, respectively. 
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Figure 9. Degree reduction of SG-Bézier curve of degree 6 under C1 constraint condition in Example
5.1; changing local shape parameters. (a) {ω = 0, λ2 = 3, µ1 = 3, µ2 = 3; λ1 = 2}; (b) {ω = 0, λ1 = 3, µ1 = 3,
µ2 = 3; λ2 = 4}; (c) {ω = 0, λ1 = 3, λ2 = 3, µ2 = 3; µ1 = 2}; (d) {ω = 0, λ2 = 3, µ1 = 3; λ1 = 2, µ2 = 2}.

Table 2. Error for an approximate SG-Bézier curve of degree 6 to degree 4; changing global shape parameters.

Constraint Condition ω = 0 ω = 0.2 ω = 0.3 ω = 0.5

Unrestricted 4.9914 × 10−3 8.6669 × 10−3 7.4429 × 10−3 9.5617 × 10−3

C0 constraint 4.1972 × 10−3 2.7182 × 10−3 3.1251 × 10−3 2.6399 × 10−3

C1 constraint 9.1096 × 10−3 9.1890 × 10−3 9.1935 × 10−3 9.1096 × 10−3

Table 3. Error for an approximate SG-Bézier curve of degree 6 to degree 4; changing local shape parameters.

Shape Parameters Unrestricted C0 Constraint C1 Constraint

ω = 0, λ2 = 3, µ1 = 3, µ2 = 3; λ1 = 2 1.0108 × 10−2 2.6558 × 10−3 9.1097 × 10−3

ω = 0, λ1 = 3, µ1 = 3, µ2 = 3; λ2 = 4 4.4997 × 10−3 2.6803 × 10−3 9.1097 × 10−3

ω = 0, λ1 = 3, λ2 = 3, µ2 = 3; µ1 = 2 4.0165 × 10−3 1.0576 × 10−2 9.1097 × 10−3

ω = 0, λ2 = 3, µ1 = 3; λ1 = 2, µ2 = 2 7.3299 × 10−3 1.0956 × 10−2 9.1097 × 10−3

Example 2. Given shape parameters and control point coordinates:

ω∗ = 0;λ∗1 = 3,λ∗2 = 3;λ∗3 = 3;λ∗4 = 3;λ∗5 = 3;µ∗1 = 3,µ∗2 = 3;µ∗3 = 3;µ∗4 = 3;{
P∗0 = (0.5, 0), P∗1 = (−0.8, 0.3), P∗2 = (−0.65, 0.7), P∗3 = (−0.1, 1), P∗4 = (0.6, 1.1),
P∗5 = (1.3, 1), P∗6 = (1.85, 0.7), P∗7 = (2, 0.3), P∗8 = (1.7, 0)

}
construct SG-Bézier curves (blue solid line) of degree 8, and its degree reduce SG-Bézier curves of degree 5
(red dot line) under unconstrained and constrained conditions of C0 and C1. Under each kind of constraints,
two different situations are given: changing global shape parameters (Figures 10–12) and changing local
shape parameters (Figures 13–15). The errors of the curves after the degree reduction are shown in Tables 4
and 5, respectively.
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λ3 = 3, μ1 = 3, μ2 = 3; ω = 0.2};(c) {λ1 = 3, λ2 = 3, λ3 = 3, μ1 = 3, μ2 = 3; ω = 0.3};(d) {λ1 = 3, λ2 = 3, λ3 = 3, μ1 = 
3, μ2 = 3; ω = 0.5}. 
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Figure 10. Degree reduction of SG-Bézier curve of degree 8 under unrestricted condition in Example 5.2;
changing global shape parameter. (a) {λ1 = 3, λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3; ω = 0}; (b) {λ1 = 3, λ2 = 3,
λ3 = 3, µ1 = 3, µ2 = 3; ω = 0.2};(c) {λ1 = 3, λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3; ω = 0.3}; (d) {λ1 = 3, λ2 = 3,
λ3 = 3, µ1 = 3, µ2 = 3; ω = 0.5}.
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Figure 11. Degree reduction of SG-Bézier curve of degree 8 under C0 constraint condition in Example
5.2; changing global shape parameter. (a) {λ1 = 3, λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3; ω = 0}; (b) {λ1 = 3,
λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3; ω = 0.2};(c) {λ1 = 3, λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3; ω = 0.3}; (d) {λ1 = 3,
λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3; ω = 0.5}.
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Figure 13. Degree reduction of SG-Bézier curve of degree 8 under unrestricted condition in Example 
5.2; changing local shape parameters. (a) {λ2 = 3, λ3 = 3, μ1 = 3, μ2 = 3, ω = 0; λ1 = 2}; (b) {λ3 = 3, μ1 = 3, μ2 
= 3, ω = 0; λ1 = 2, λ2 = 4};(c) {λ3 = 3, μ2 = 3, ω = 0; λ1 = 2, λ2 = 4, μ1 = 2};(d) {λ1 = 3, λ2 = 3, μ1 = 3, ω = 0; λ3 = 
2, μ2 = 2}. 

-1 -0.5 0 0.5 1 1.5 2 2.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4Q

1P  

0Q 0P

2P

3P  4P
5P  

6P

1Q

3Q

5Q

7P

8P  

2Q

-1 -0.5 0 0.5 1 1.5 2 2.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1P  
1Q 4Q

0Q 0P

2P

3P  
4P

5P  

6P

3Q

5Q

7P

8P  

2Q

-1 -0.5 0 0.5 1 1.5 2 2.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1P  

1Q 4Q

0Q 0P

2P

3P  4P
5P  

6P

3Q

5Q

7P

8P  

2Q

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

2P

1P  

1Q 4Q

0Q 0P

3P  
4P 5P  

6P

3Q

5Q

7P

8P  

2Q

-1 -0.5 0 0.5 1 1.5 2 2.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1P  

1Q

4Q0Q 0P

2P

3P  4P
5P  

6P

3Q

5Q
7P

8P  

2Q

-1 -0.5 0 0.5 1 1.5 2 2.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1P  1Q

4Q

0Q 0P

2P

3P  4P

5P  

6P

3Q

5Q
7P

8P  

2Q

-1 -0.5 0 0.5 1 1.5 2 2.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1P  
1Q

5Q0Q 0P

2P

3P  4P
5P  

6P

3Q

7P

8P  

2Q

4Q

-1 -0.5 0 0.5 1 1.5 2 2.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1P  
1Q

4Q

0Q 0P

2P

3P  4P
5P  

6P

3Q

5Q

7P

8P  

2Q

Figure 12. Degree reduction of SG-Bézier curve of degree 8 under C1 constraint condition in Example 5.2;
changing global shape parameter. (a) {λ1 = 3, λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3; ω = 0}; (b) {λ1 = 3, λ2 = 3,
λ3 = 3, µ1 = 3, µ2 = 3; ω = 0.2}; (c) {λ1 = 3, λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3; ω = 0.3}; (d) {λ1 = 3, λ2 = 3,
λ3 = 3, µ1 = 3, µ2 = 3; ω = 0.5}.
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Figure 13. Degree reduction of SG-Bézier curve of degree 8 under unrestricted condition in Example 5.2;
changing local shape parameters. (a) {λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3, ω = 0; λ1 = 2}; (b) {λ3 = 3, µ1 = 3,
µ2 = 3, ω = 0; λ1 = 2, λ2 = 4}; (c) {λ3 = 3, µ2 = 3, ω = 0; λ1 = 2, λ2 = 4, µ1 = 2};(d) {λ1 = 3, λ2 = 3, µ1 = 3,
ω = 0; λ3 = 2, µ2 = 2}.
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Figure 14. Degree reduction of SG-Bézier curve of degree eight under C0 constraint condition in
Example 5.2; changing local shape parameters. (a) {λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3, ω = 0; λ1 = 2};
(b) {λ3 = 3, µ1 = 3, µ2 = 3, ω = 0; λ1 = 2, λ2 = 4}; (c) {λ3 = 3, µ2 = 3, ω = 0; λ1 = 2, λ2 = 4, µ1 = 2};
(d) {λ1 = 3, λ2 = 3, µ1 = 3, ω = 0; λ3 = 2, µ2 = 2}.
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Figure 15. Degree reduction of SG-Bézier curve of degree eight under C1 constraint condition in
Example 5.2; changing local shape parameters. (a) {λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3, ω = 0; λ1 = 2};
(b) {λ3 = 3, µ1 = 3, µ2 = 3, ω = 0; λ1 = 2, λ2 = 4};(c) {λ3 = 3, µ2 = 3, ω = 0; λ1 = 2, λ2 = 4, µ1 = 2};
(d) {λ1 = 3, λ2 = 3, µ1 = 3, ω = 0; λ3 = 2, µ2 = 2}.
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Table 4. Error for an approximate SG-Bézier curve of degree 8 to degree 5; changing global shape parameters.

Constraint Condition ω = 0 ω = 0.2 ω = 0.3 ω = 0.5

Unrestricted 2.5164 × 10−2 1.9874 × 10−2 9.4116 × 10−3 2.2389 × 10−2

C0 constraint 4.9315 × 10−3 1.2441 × 10−2 8.8423 × 10−3 7.3303 × 10−3

C1 constraint 2.9630 × 10−3 2.7537 × 10−3 3.9361 × 10−3 6.7623 × 10−3

Table 5. Error for an approximate SG-Bézier curve of degree 8 to degree 5; changing local shape parameters.

Shape Parameters Unrestricted C0 Constraint C1 Constraint

ω = 0, λ2 = 3, λ3 = 3, µ1 = 3, µ2 = 3; λ1 = 2 3.3712 × 10−2 1.8863 × 10−2 2.7072 × 10−3

ω = 0, λ3 = 3, µ1 = 3, µ2 = 3; λ1 = 2, λ2 = 4 2.6413 × 10−2 1.7231 × 10−2 1.6661 × 10−3

ω = 0, λ3 = 3, µ2 = 3; λ1 = 2, λ2 = 4, µ1 = 2 3.0435 × 10−2 1.4649 × 10−2 2.0349 × 10−2

ω = 0, λ1 = 3, λ2 = 3, µ1 = 3; λ3 = 2, µ2 = 2 1.3253 × 10−2 5.2874 × 10−3 1.4618 × 10−3

Example 3. For the degree reduction of traditional Bézier curves, scholars have done a lot of related researches;
see [22–30]. Nevertheless, up to now, the related work about degree reduction of SG-Bézier curves has not been
studied. Owing to the complexity of SG-Bézier curves, the degree reduction method of traditional SG-Bézier
curves isn’t able to solve its problem of approximate degree reduction. On this account, in this paper, we study
the approximate degree reduction of SG-Bézier curves using the grey wolf optimizer algorithm. In order to
verify the degree reduction effect of the proposed method, in Example 3, we gave a comparison between the
proposed method (or GWO method, for short) and GA method. Here, the GA method refers to SG-Bézier curves
degree reduction based on the genetic algorithm, that is, the genetic algorithm in [36] is used to solve the degree
reduction model of SG-Bézier curves in Equation (16). The initial parameters of genetic algorithm are set as
follows: the initial population size is 100, the number of iterations is 200, the crossover probability is 0.5 and the
mutation probability is 0.1. Figure 16 shows the comparison of degree reduction effects between GWO method
and GA method under different constraints. In Figure 16, the curve before degree reduction is an 8-th SG-Bézier
curve whose control points and shape parameters are the same as those in Example 2; the curve after degree
reduction is a 4-th SG-Bézier curve. Table 6 shows the error comparison of the two degree reduction methods in
Figure 16. Obviously, as can be seen from Figure 16 and Table 6, the GWO method is better than the GA method,
which further demonstrates the effectiveness of the proposed method.

Table 6. Error comparisons of degree reduction between the proposed algorithm and GA method.

Method Unrestricted C0 Constraint C1 Constraint

GWO method 6.1586 × 10−3 4.7146 × 10−3 7.4163 × 10−3

GA method 1.3546 × 10−1 1.0971 × 10−1 2.4860 × 10−2

Symmetry 2019, 11, 1242 17 of 20 

 

Table 4. Error for an approximate SG-Bézier curve of degree 8 to degree 5; changing global shape 
parameters. 

Constraint Condition ω = 0 ω = 0.2 ω = 0.3 ω = 0.5 
Unrestricted 2.5164 × 10−2 1.9874 × 10−2 9.4116 × 10−3 2.2389 × 10−2 
C0 constraint 4.9315 × 10−3 1.2441 × 10−2 8.8423 × 10−3 7.3303 × 10−3 
C1 constraint 2.9630 × 10−3 2.7537 × 10−3 3.9361 × 10−3 6.7623 × 10−3 

Table 5. Error for an approximate SG-Bézier curve of degree 8 to degree 5; changing local shape 
parameters. 

Shape Parameters Unrestricted C0 Constraint C1 Constraint 
ω = 0, λ2 = 3, λ3 = 3, μ1 = 3, μ2 = 3; λ1 = 2 3.3712 × 10−2 1.8863 × 10−2 2.7072 × 10−3 
ω = 0, λ3 = 3, μ1 = 3, μ2 = 3; λ1 = 2, λ2 = 4 2.6413 × 10−2 1.7231 × 10−2 1.6661 × 10−3 
ω = 0, λ3 = 3, μ2 = 3; λ1 = 2, λ2 = 4, μ1 = 2 3.0435 × 10−2 1.4649 × 10−2 2.0349 × 10−2 
ω = 0, λ1 = 3, λ2 = 3, μ1 = 3; λ3 = 2, μ2 = 2 1.3253 × 10−2 5.2874 × 10−3 1.4618 × 10−3 

Example 3. For the degree reduction of traditional Bézier curves, scholars have done a lot of related researches; 
see [22–30]. Nevertheless, up to now, the related work about degree reduction of SG-Bézier curves has not been 
studied. Owing to the complexity of SG-Bézier curves, the degree reduction method of traditional SG-Bézier 
curves isn’t able to solve its problem of approximate degree reduction. On this account, in this paper, we 
study the approximate degree reduction of SG-Bézier curves using the grey wolf optimizer algorithm. In 
order to verify the degree reduction effect of the proposed method, in Example 3, we gave a comparison 
between the proposed method (or GWO method, for short) and GA method. Here, the GA method refers to 
SG-Bézier curves degree reduction based on the genetic algorithm, that is, the genetic algorithm in [36] is used 
to solve the degree reduction model of SG-Bézier curves in Equation (16). The initial parameters of genetic 
algorithm are set as follows: the initial population size is 100, the number of iterations is 200, the crossover 
probability is 0.5 and the mutation probability is 0.1. Figure 16 shows the comparison of degree reduction effects 
between GWO method and GA method under different constraints. In Figure 16, the curve before degree 
reduction is an 8-th SG-Bézier curve whose control points and shape parameters are the same as those in 
Example 2; the curve after degree reduction is a 4-th SG-Bézier curve. Table 6 shows the error comparison of 
the two degree reduction methods in Figure 16. Obviously, as can be seen from Figure 16 and Table 6, the GWO 
method is better than the GA method, which further demonstrates the effectiveness of the proposed method. 

  
(a) (b) 

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 

 
  

 
 

 
 

  

 

 

 

-1 0 1 2 3 4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 
 

 

 
 

 

   
 

 

 
 

 

Figure 16. Cont.



Symmetry 2019, 11, 1242 17 of 19Symmetry 2019, 11, 1242 18 of 20 

 

  
(c) (d) 

  
(e) (f) 

Figure 16. Comparisons between the proposed method and GA method; under different constraints. 
(a) {under unrestricted condition; grey wolf optimizer algorithm}; (b) {under unrestricted condition; 
genetic algorithm}; (c) {under C0 constraint condition; grey wolf optimizer algorithm}; (d) {under C0 
constraint condition; genetic algorithm}; (e) {under C1 constraint condition; grey wolf optimizer 
algorithm}; (f) {under C1 constraint condition; genetic algorithm}. 

Table 6. Error comparisons of degree reduction between the proposed algorithm and GA method. 

Method Unrestricted C0 Constraint C1 Constraint 
GWO method 6.1586 × 10−3 4.7146 × 10−3 7.4163 × 10−3 

GA method 1.3546 × 10−1 1.0971 × 10−1 2.4860 × 10−2 

6. Conclusions 

Combining the geometric properties of SG-Bézier curves with the grey wolf optimizer algorithm, 
this paper studied degree reduction of SG-Bézier curves under unrestricted condition and constraint 
condition of C0 and C1. These examples fully demonstrate the characteristics of the global 
optimization of the grey wolf optimizer algorithm in the process of degree reduction. That is to say 
this method is applicable for CAD/CAM modeling systems. The research on how to utilize the GWO 
algorithm [32–35] or genetic algorithm [36] to solve the model of curve shape optimization, which 
takes the shape parameters as the optimization variables, will be addressed in our future work. 
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Figure 16. Comparisons between the proposed method and GA method; under different constraints.
(a) {under unrestricted condition; grey wolf optimizer algorithm}; (b) {under unrestricted condition;
genetic algorithm}; (c) {under C0 constraint condition; grey wolf optimizer algorithm}; (d) {under
C0 constraint condition; genetic algorithm}; (e) {under C1 constraint condition; grey wolf optimizer
algorithm}; (f) {under C1 constraint condition; genetic algorithm}.

6. Conclusions

Combining the geometric properties of SG-Bézier curves with the grey wolf optimizer algorithm,
this paper studied degree reduction of SG-Bézier curves under unrestricted condition and constraint
condition of C0 and C1. These examples fully demonstrate the characteristics of the global optimization
of the grey wolf optimizer algorithm in the process of degree reduction. That is to say this method is
applicable for CAD/CAM modeling systems. The research on how to utilize the GWO algorithm [32–35]
or genetic algorithm [36] to solve the model of curve shape optimization, which takes the shape
parameters as the optimization variables, will be addressed in our future work.
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