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Abstract: Face recognition using a near-infrared (NIR) sensor is widely applied to practical 
applications such as mobile unlocking or access control. However, unlike RGB sensors, few deep 
learning approaches have studied NIR face recognition. We conducted comparative experiments 
for the application of deep learning to NIR face recognition. To accomplish this, we gathered five 
public databases and trained two deep learning architectures. In our experiments, we found that 
simple architecture could have a competitive performance on the NIR face databases that are mostly 
composed of frontal face images. Furthermore, we propose a data augmentation method to train the 
architectures to improve recognition of users who wear glasses. With this augmented training set, 
the recognition rate for users who wear glasses increased by up to 16%. This result implies that the 
recognition of those who wear glasses can be overcome using this simple method without 
constructing an additional training set. Furthermore, the model that uses augmented data has 
symmetry with those trained with real glasses-wearing data regarding the recognition of people 
who wear glasses. 
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1. Introduction 

Recent studies in the field of computer vision have achieved many successes using deep learning. 
Deep-learning-based face recognition is one of the most actively researched domains. One 
representative method is DeepFace [1]. This approach estimates a 3D face model from images, and 
the estimated model helps the recognition. FaceNet [2] is another notable neural network for the task. 
FaceNet introduces a unified system which outputs an embedding that can be used in various 
applications, such as identification, verification, and clustering. Including the papers above, most of 
the research in deep-learning-based face recognition is concerned with visible light (RGB) images to 
demonstrate high performance under challenging conditions by making the architectures deeper. 

However, active near-infrared (NIR)-light-based recognition systems are superior to visible-
light-based systems in terms of reliability and security. 

In terms of reliability, illumination-invariant images can be acquired under external lighting 
environments (e.g., natural light, indoor lighting, or low lighting) without any efforts when an active 
NIR light system is used. A change in lighting conditions makes recognition tasks harder. This increases 
the complexity of algorithms in order to deal with all possible lighting conditions. Given that active 
light systems provide constant lighting conditions, a good basis for face recognition is constructed 
without additional complications [3]. This advantage is especially useful for authentication systems on 
mobile devices, which should provide a consistent user experience in any environment. 

Security is a more significant issue. An NIR face recognition system is an effective way to prevent 
spoofing attacks—unauthorized attempts to bypass the system with fake faces. The most common 
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type of spoofing attack is the use of photos either printed on paper or displayed on a digital device. 
An NIR face recognition system can easily block such attempts in the image acquisition stage because 
fake faces in the NIR spectrum are different from real faces, as shown in Figure 1. 

Although many studies [3,4] have considered these advantages with respect to NIR face 
recognition, few studies have applied deep learning to NIR face recognition. Some studies have used 
deep learning for cross-modality face recognition between RGB, NIR, and thermal. These provide an 
elegant solution to the complex problem by utilizing multiple networks [5-8]. However, there are 
very few deep-learning studies that focus solely on NIR face recognition. To the best of our 
knowledge, NIRFaceNet [9] is the only existing deep learning architecture designed for NIR face 
recognition. In this work, a compact architecture is introduced that is modified from GoogLeNet [10] 
for less computation. However, their experiments do not sufficiently validate the performance in real-
world situations. Compared to FaceNet, which used a maximum of 260 million images for training, 
NIRFaceNet only used 591 images from the small-sized NIR face dataset. 

Furthermore, NIRFaceNet [9] evaluated its performance on a closed set. However, in real-world 
applications, the faces for training the system and the faces in actual use are different (i.e., open set). 
More importantly, they did not include glasses wearers in their research. The recognition of glasses 
wearers is essential in this field because the reflections of NIR lighting on eyeglasses cause significant 
interference to the recognition, as shown in Figures 2 and 3a. People who wear glasses also account 
for about half of the total population. 

In this paper, we tried to apply a deep-learning approach to NIR face recognition. First, several 
public NIR databases were collected to construct a massive NIR face database, as each database 
individually was too small for a deep learning approach. Thus, we used a larger NIR database than 
other NIR face recognition studies for training and evaluation. In order to determine how the size of 
the architecture affected NIR face recognition, two deep-learning architectures were compared using 
the same test conditions. Because face images in the NIR databases tend to have less head pose 
variation than images in the RGB databases, small architectures can recognize faces with adequate 
performance. Lastly, we propose a data augmentation method for improving the recognition of 
glasses wearers. We compared recognition rates between the networks trained with the original and 
augmented datasets. Open-set recognition was used throughout the experiments, assuming real-
world use. 

The rest of this paper provides a detailed description of the architectures, dataset, data 
augmentation, experiments, and conclusions. 

  
(a) (b) 

  
(c) (d) 

Figure 1. Spoofing attacks on RGB and near-infrared (NIR) images: (a) RGB image holding a face 
image in RGB on a digital device; (b) NIR image of (a); (c) RGB image holding a printed face image in 
RGB; (d) NIR image of (c). All images were taken by the Intel RealSense SR 300. 
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Figure 2. Sample images for each database. (a) CASIA web face; (b) CASIA NIR face data; (c) CASIA 
NIR-VIS face 2.0; (d) PolyU NIR face data; (e) ND-NIVL face data. 

 
(a) 

 
(b) 

Figure 3. Sample images of (a) glasses-wearing faces and (b) augmented faces. 
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2. Architectures 

FaceNet [2] introduced a unified system for various face recognition applications. This versatility 
could be achieved because the system utilizes the output of the network not as a label, but rather as 
a 128-D vector. This is called an embedding and is unique to each individual. By measuring the 
proximity of two embeddings in Euclidean distance, we can decide whether these embeddings are 
from the same person or not. We adopted this method of utilizing an embedding for our face 
verification system. Our system used cross-entropy as the objective function for training, whereas the 
original FaceNet used a triplet loss. The training process becomes much faster and converges well in 
this approach if the training data is small [11]. The public databases used in this paper are much 
smaller (i.e., RGB with approximately 0.5 million and NIR with approximately 30,000 face images) 
than the private databases used in FaceNet (with over 100 million images). 

Two deep-learning architectures were used in this paper: Inception-ResNet v1 [12] and the one 
used in NIRFaceNet [9]. Inception-ResNet is an outstanding deep-learning architecture that combines 
Inception [10] and Resnet [13]. This network showed one of the best performances in many image 
recognition challenges including ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012, 
and many studies have employed this network. Inception-ResNet is based on the Inception network 
that provides much deeper layers with small-sized (3 × 3, 1 × 1) filters, and takes advantage of residual 
connection from ResNet. The performance of Inception-ResNet has been verified in many ways, and 
open sources are also provided in various deep-learning frameworks including TensorFlow. For this 
reason, we employed Inception-ResNet (version v1) for our face verification system. 

NIRFaceNet is a deep neural network for NIR face recognition. NIRFaceNet has a compact 
architecture with less learning time required for recognition with respect to the Institute of 
Automation, Chinese Academy of Sciences (CASIA) NIR face database. NIRFaceNet claims that 
medium-sized networks can perform better if the dataset is small, which is the case with the CASIA 
NIR database. NIRFaceNet is a network that is motivated by a two-stage Convolutional Neural 
Network (CNN). The first stage is for low-level feature extraction and the second stage is for high-
level global feature extraction. While the Inception-ResNet v1 has a total of 20 blocks (Inception-
ResNet-A: 5, -B: 10, -C: 5 blocks), the NIRFaceNet architecture has only two blocks. The blocks used 
in Inception-ResNet and NIRFaceNet have a similar shape, which includes about three branches of 
two small, subsequent convolutional filters and are concatenated at the end of the block. We were 
inspired by the idea of using a small-sized network because the public NIR datasets contain small 
data as well as less-diverse face images compared to RGB datasets (NIR face datasets are composed 
of illumination-invariant and frontal face images). Thus, we employed NIRFaceNet in the 
experiments. 

Although NIRFaceNet introduced a new compact architecture, their experiments need to be 
complemented considering real NIR face recognition scenarios. First, they evaluated the recognition 
rate on users without glasses. However, reflected NIR light on glasses significantly degraded 
recognition performance [3]. In addition, they trained the network with a small dataset, using only 
three images per person despite the whole training set having about 20 images per person (using only 
705 images from the 3940 images). Reducing the size of the training dataset is undesirable because 
the amount of training data should be maximized to model the target entirely. Additionally, closed-
set recognition was used, so the recognition rate described in the paper does not consider open-set 
recognition such as a mobile unlocking system. 

3. Databases 

Five public databases are used in this paper, four of which are NIR face databases and the 
remaining is an RGB face database. The databases are described in Table 1. Later in this paper, each 
database is expressed as the given symbol in the table for convenience. Sample images of each 
database are shown in Figure 2. The CASIA NIR face data does not need a symbol because this data 
was only used as the test set in the experiments. 

Compared to the RGB database, the sizes and variations of the NIR databases are limited. Given 
that the RGB database is composed of web-crawled celebrity data, it covers most of the challenges 
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with face recognition, including lighting, age, hairstyle, severe head pose change, and image quality. 
On the other hand, NIR face images are collected as frontal head poses. Although this pose variation 
seems to be less general for face recognition in public places, it contains most of the common cases 
for unlocking smartphones and accessing control systems. This characteristic motivated us to find 
smaller networks that can have adequate performance. 

Table 1. Public databases used in this paper. 

Database Number of Images Number of Identities Symbol 
CASIA-Web face [14] 453,415 10,575 RGB 

CASIA NIR face data [3] 3940 197 N/A 
CASIA NIR-VIS 2.0 Face Database [15] 12,485 725 NIR1 

PolyU NIR Face Database [16] 24,698 335 NIR2 
ND-NIVL Database [17] 22,261 655 NIR3 

4. NIR Reflection Augmentation 

Practical and reliable face recognition systems must tolerate various changes to users’ 
appearance. Among these facial variations, wearing eyeglasses makes recognition difficult for NIR 
face images. If people wear glasses, the active NIR light is reflected in the glasses and the reflected 
light covers the eyes, as shown in Figure 2. According to the literature [4], the area around the eyes 
is the most discriminative area for differentiating between faces. Thus, traditional face recognition 
methods which focus on the eye regions are hindered by artifacts covering the eye region. 

In this case, removing or dispelling the reflected light can be the solution. Many studies have 
introduced ways to acquire invariant images using deep learning. However, the eye regions can be 
filled with incorrect information after removing glints (e.g., filled with skin texture around the eye 
region, or filled with the another person’s eye in the training set). Also, making a simple framework 
with only one network could have practical applications. Thus, we focused on making NIR face 
recognition robust against corruption in one of the most informative regions (i.e., around the eye) by 
adding artificial noises. 

Data augmentation is one of the techniques used in deep learning approaches when the size of 
training datasets is limited. Its purpose is to increase the size of the dataset by transforming the 
original images via rotation, scaling, cropping, or changing the color characteristics. This technique 
emulates various changes of the original images relating to geometric and color transformation, and 
it results in expanding the model of the target [18]. In this paper, we adopted a data augmentation 
technique to improve the recognition of glasses wearers. Instead of having a tolerance for geometric 
or color variations in faces, we wanted the trained networks to tolerate glasses-wearing situations. 
For this, we hoped that the networks would perceive the augmented face images as real glasses-
wearing images in the training step. 

For the augmentation method, we added artificial NIR-reflected lights onto face images as a 
simple way to make a virtual image of a face wearing glasses. There were then added back to the 
dataset. Several ellipses with random sizes and shapes were augmented around the eye region, as 
shown in Figure 3. To make realistic reflections, we considered the head pose, the lens properties, 
and active lighting configurations. However, we wanted to verify the feasibility of the augmentation 
method in advance. Thus, we added randomly generated contamination. From the different 
perspectives of machine learning, this process can be shown as lowering the importance of a specific 
region (in this case, the region around the eyes) during the learning process by adding artificial 
contamination to this region. 

5. Experiments 

In this section, we evaluated the recognition performance of the two different architectures and 
the various training sets in which the data augmentation method was applied. All face images used 
in this paper were aligned by this method [19] in order to ensure the eyes were located at a similar 
position in the aligned images. 
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5.1. Evaluation Methods 

Ten-fold cross-validation [2] was used as an evaluation method. The total number of pairs in the 
evaluation set was 6000 (3000 positive pairs and 3000 negative pairs). Each fold had 600 pairs. The 
face images in the CASIA NIR face data [3] were used for constructing the evaluation set. We used 
the validation rate (at false acceptance rate (FAR) = 0.1%) as an evaluation metric. 

5.2. Architectures 

The validation rate of FaceNet trained with RGB was 85.4%. The results were similar to the 
performance described in the original FaceNet paper, although our experiments were conducted for 
images using a different spectrum (NIR). We considered this result as the baseline and conducted 
comparative experiments. Figure 4 compares the performance of FaceNet and NIRFaceNet when 
trained with the same data. As shown in Figure 4, the validation rate became even lower when the 
NIR databases were used for training FaceNet. Interestingly, NIRFaceNet showed better performance 
when trained with NIR databases and was even higher than the baseline (FaceNet trained with RGB 
data). In other words, the recognition rate was increased by using a smaller network when the 
recognition was performed on NIR images with fewer head poses and facial variations. 

 
Figure 4. Comparisons between FaceNet and NIRFaceNet. 

5.3. NIR Reflection Augmentation 

We also calculated the validation rate of glasses pairs—defined as a pair of face images that 
contain at least one face image that is wearing glasses. There were 1588 glasses pairs in the test set of 
6000 pairs. Figure 5 shows the validation rate of all pairs and glasses pairs on the NIRFaceNet trained 
by each database. Note that the validation rate of the glasses pairs was lower than that of all the pairs 
because false negatives occurred more frequently for glasses pairs in these experiments. This is 
because the same person (a positive pair) was more often recognized as a different person (a negative 
pair) when wearing glasses in the NIR spectrum. 

The overall validation rates were increased when the augmented data were used for training the 
networks. In particular, the performance after data augmentation increased more for the glasses pairs. 
This shows that our augmentation method had a positive effect on the recognition of glasses wearers. 
Furthermore, the combined dataset (NIR1 + NIR2) showed the best performance. 

The overall validation rates were increased when the augmented data were used for training the 
networks. In particular, the performance after data augmentation increased more for the glasses pairs. 
This shows that our augmentation method had a positive effect on the recognition of glasses wearers. 
Furthermore, the combined dataset (NIR1 + NIR2) showed the best performance. 
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Figure 5. The validation rate of NIRFaceNet trained with (a) each database on all pairs and (b) glasses 
pairs. 

Note that networks trained by the dataset, including NIR1, generally had higher performances. 
One difference between NIR1 and the others is the existence of glasses pairs. The images of wearing 
and not wearing glasses are not present for the same person in NIR2 and NIR3. This means the 
network does not have the opportunity to learn positive glasses pairs. On the other hand, the images 
in NIR1 contain both types for each person. To demonstrate the effect of data augmentation in NIR1, 
we trained NIRFaceNet with NIR1 after excluding the glasses-wearing images (results are shown in 
Figure 6). The validation rate on the glasses pairs decreased to 59.6%. However, the validation rate 
improved to 76.1% when the network was trained by the training set (NIR1 without glasses-wearing 
images) after applying the augmentation method. From this performance improvement, the model 
can be seen as having symmetry with the model trained with real glasses-wearing images under the 
glasses pair situation. In conclusion, this augmentation method is especially useful when the training 
set does not have positive glasses pairs. Figure 7 shows the true-positive examples after augmentation. 

 
Figure 6. Validation rate of NIRFaceNet trained by NIR1 excluding glasses-wearing images. 
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Figure 7. Examples of true-positive glasses pairs after NIR reflection augmentation. 

6. Conclusions 

In this paper, we applied a deep learning approach to NIR face recognition and studied how to 
improve the performance of this field compared to FaceNet. Several public NIR face databases were 
gathered to construct a sufficiently large training set, and the network trained by the integrated dataset 
showed the best performance. Furthermore, we found that a small architecture could have better 
performance for NIR face recognition. Our experiments showed that our data augmentation method 
could improve face recognition for glasses wearers. The method is simple, but it resolves one of the 
most significant issues regarding NIR face recognition. It also implies that the time and cost to add real 
glasses-wearing images to a training set can be reduced by applying our augmentation method. 

In future studies, we plan to research the augmentation method further. This would allow us to 
emulate various characteristics of NIR face images in order to make an extensive NIR face training 
set. We will also evaluate the recognition performance at FAR = 0.001%, which is used in the field of 
fingerprint recognition. 

Author Contributions: Conceptualization, H.J.; methodology, H.J.; software, H.J.; validation, H.J.; formal 
analysis, H.J.; investigation, H.J.; resources, H.J.; writing—original draft preparation, H.J.; writing—review and 
editing, H.J. and W.-Y.K.; supervision, W.-Y.K.; project administration, W.-Y.K. 

Funding: This research was funded by Samsung Electronics (No. 201900000002726). And the APC was funded 
by Samsung Electronics’ University R&D program.  

Conflicts of Interest: The authors declare no conflicts of interest. 



Symmetry 2019, 11, 1234 9 of 9 

 

References 

1. Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. DeepFace: Closing the Gap to Human-Level Performance in 
Face Verification. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern 
Recognition, Columbus, OH, USA, 24–27 Jun 2014; pp. 1701–1708. 

2. Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A unified embedding for face recognition and clustering. 
In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 
MA, USA, 7–12 Jun 2015; pp. 815–823. 

3. Li, S.Z.; Chu, R.F.; Liao, S.C.; Zhang, L. Illumination invariant face recognition using near-infrared images. 
IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 627–639. 

4. Pan, K.; Liao, S.; Zhang, Z.; Li, S.Z.; Zhang, P. Part-based Face Recognition Using Near Infrared Images. In 
Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, 
USA, 17–22 June 2007; pp. 1–6. 

5. Wang, Z.; Wang, Z.; Zheng, Y.; Chuang, Y.-Y.; Satoh, S. Learning to Reduce Dual-Level Discrepancy for 
Infrared-Visible Person Re-Identification. In Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), Long Beach, CA, USA, 15–21 Jun 2019. 

6. Iranmanesh, S.M.; Dabouei, A.; Kazemi, H.; Nasrabadi, N.M. Deep cross polarimetric thermal-to-visible 
face recognition. In Proceedings of the 2018 International Conference on Biometrics (ICB 2018), Gold Coast, 
Australia, 20–23 February 2018; pp. 166–173. 

7. He, R.; Cao, J.; Song, L.; Sun, Z.; Tan, T. Cross-spectral Face Completion for NIR-VIS Heterogeneous Face 
Recognition. arXiv 2019, XX, 1–12 arXiv:1902.03565. 

8. Lezama, J.; Qiu, Q.; Sapiro, G. Not afraid of the dark: NIR-VIS face recognition via cross-spectral 
hallucination and low-rank embedding. In Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6807–6816. 

9. Peng, M.; Wang, C.; Chen, T.; Liu, G. NIRFaceNet: A convolutional neural network for near-infrared face 
identification. Information 2016, 7, 1–14. 

10. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. 
Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), Boston, MA, USA, 7–12 Jun 2015; pp. 1–9. 

11. Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep Face Recognition. In Proceedings of the British Machine 
Vision Conference 2015; British Machine Vision Association, Swansea, UK, 7–10 September 2015; pp. 41.1–
41.12. 

12. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual 
Connections on Learning. Pattern Recognit. Lett. 2016, 42, 11–24. 

13. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 Jun–1 July 
2016; Volume 45, pp. 770–778. 

14. Yi, D.; Lei, Z.; Liao, S.; Li, S.Z. Learning Face Representation from Scratch. J. Struct. Chem. 2014, 53, 1062–1074. 
15. Li, S.Z.; Yi, D.; Lei, Z.; Liao, S. The CASIA NIR-VIS 2.0 Face Database. In Proceedings of the 2013 IEEE 

Conference on Computer Vision and Pattern Recognition Workshops, Portland, OR, USA, 23–28 Jun 2013; 
pp. 348–353. 

16. Zhang, B.; Zhang, L.; Zhang, D.; Shen, L. Directional binary code with application to PolyU near-infrared 
face database. Pattern Recognit. Lett. 2010, 31, 2337–2344. 

17. Bernhard, J.; Barr, J.; Bowyer, K.W.; Flynn, P. Near-IR to visible light face matching: Effectiveness of pre-
processing options for commercial matchers. In Proceedings of the 2015 IEEE 7th International Conference 
on Biometrics Theory, Applications and Systems, BTAS 2015, Arlington, VA, USA, 8–11 September 2015. 

18. Perez, L.; Wang, J. The Effectiveness of Data Augmentation in Image Classification using Deep Learning. 
arXiv 2017 arXiv:1712.04621. 

19. Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint Face Detection and Alignment Using Multitask Cascaded 
Convolutional Networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503. 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


