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Abstract: It is shown that symmetric products of Heine–Stieltjes quasi-polynomials satisfy an addition
formula. The formula follows from the relationship between Heine–Stieltjes quasi-polynomials and
spaces of generalized spherical harmonics, and from the known explicit form of the reproducing
kernel of these spaces. In special cases, the addition formula is written out explicitly and verified.
As an application, integral equations for Heine–Stieltjes quasi-polynomials are found.
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1. Introduction

Let S be a set and H a finite dimensional vector space of real-valued functions defined on S.
Suppose there is an inner product 〈 f , g〉 defined for f , g ∈ H which turns H into a Hilbert space.
In this situation, there exists a unique reproducing kernel K(x, y) forH, see Aronszajn ([1] §1.1–1.3).
This kernel is a real-valued function defined on S× S with the property that K(x, y) as a function of y
belongs toH for every x ∈ S, and

f (x) = 〈 f , K(x, ·)〉 for every f ∈ H, x ∈ S. (1)

In fact, the existence of K is easy to see. We choose an orthonormal basis e1, e2, . . . , ed of H,
d = dimH. Then,

K(x, y) =
d

∑
i=1

ei(x)ei(y) (2)

is a reproducing kernel. In some applications, the basis functions ei are represented by special functions.
Then, Equation (2) can be called an addition formula for these special functions if the kernel admits
an explicit representation.

As an example, we consider S = Sk, where Sk is the unit sphere in Rk+1 and k is a positive
integer. For a non-negative integer m, let H = Hm be the space of spherical (surface) harmonics of
degree m. A spherical harmonic of degree m is a harmonic polynomial in k + 1 variables x0, x1, . . . , xk,
homogeneous of degree m. The inner product ofHm is given by

〈 f , g〉 =
∫

Sk
f (x)g(x) dS(x),

where we normalize the surface measure of Sk to one:

1 =
∫

Sk
dS.
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In this case, there is an explicit formula for the reproducing kernel:

Km(x, y) =
m + k−1

2
k−1

2

C( k−1
2 )

m (x0y0 + · · ·+ xkyk), (3)

where C(λ)
m denotes the Gegenbauer polynomial of degree m as shown by Hochstadt ([2] §6.3 (25)).

If k = 2, then Km = (2m + 1)Pm(x0y0 + x1y1 + x2y2), where Pm denotes the Legendre polynomial.
Using spherical coordinates, we construct the standard basis ofHm employing associated Legendre
functions, and we obtain the classical addition theorem for Legendre polynomials ([2] §5.5).

In this paper, we treat another special case of Equation (2). In this instance, the special functions
appearing on the right-hand side of Equation (2) are Heine–Stieltjes quasi-polynomials—see Section 2
for their definition. Heine–Stieltjes quasi-polynomials are solutions E(t) of a Fuchsian equation in
the form E(t) = g(t)p(t), where g(t) is an explicitly known function and p(t) is a polynomial in
one variable t. In the special case that g(t) = 1 they are also called Heine–Stieltjes polynomials.
These polynomials were introduced by Stieltjes [3] based on previous work by Heine ([4] pp. 445–479).
There exists a considerable amount of research on Heine–Stieltjes polynomials in mathematics and
physics, for example, see [5–8]. Heine–Stieltjes polynomials also appear in the Digital Library of
Mathematical Functions [9] in Section 31.15 (they are called Stieltjes polynomials in [9]). The kernel on
the left-hand side of Equation (2) involves an integral over a Gegenbauer polynomial, see Section 4.
It is the reproducing kernel for a spaceHm of generalized spherical harmonics, see Section 3 for the
definition ofHm. This reproducing kernel was found by Xu ([10] Theorem 3.3). This result is related to
a product formula for Jacobi polynomials due to Dijksma and Koornwinder [11].

In this way, we obtain an addition theorem for Heine–Stieltjes quasi-polynomials. In general,
Heine–Stieltjes quasi-polynomials cannot be represented explicitly but they can be computed
numerically as shown in the numerical example in Section 5. However, the kernel K has the explicit
representation Equation (25). Therefore, we observe the remarkable fact that although Heine–Stieltjes
quasi-polynomials do not allow an explicit representation, a certain combination of them does admit an
explicit representation. In the theory of Heine–Stieltjes quasi-polynomials, such formulas of an explicit
nature are very rare.

In the special case k = 2, Heine–Stieltjes polynomials reduce to Heun polynomials ([12] A 3.6)
and we find an addition formula for Heun quasi-polynomials which is still new. Lamé polynomials
are special cases of Heun polynomials. The corresponding addition formula for Lamé polynomials can
be found in Hobson ([13] p. 475).

In Section 6, we apply equation Equation (1) to obtain nonlinear integral equations for
Heine–Stieltjes polynomials. In the special case k = 2, we obtain integral equations for Heun
polynomials comparable to but different from equations given by Arscott [14] and Sleeman [15].
The reader is also referred to papers by Kalnins and Miller [16,17] which contain related results.

Finally, we make a few remarks concerning notation. We denote the non-negative integers by
N and the real numbers by R. Boldface letters denote vectors or multi-indices. Throughout, we use
n = (n1, n2, . . . , nk) and p = (p0, p1, . . . , pk), where k is a given positive integer. n is an “oscillation
multi-index” where nj ∈ N for all j = 1, 2, . . . , k. It counts the number of zeros of a Heine–Stieltjes
quasi-polynomial in k disjoint intervals. p is a “parity multi-index”, where pj ∈ {0, 1} for every
j = 0, 1, . . . , k. It determines the parity of a function f : Rk+1 → R. The function f (x0, x1, . . . , xk) is said
to have parity p if it is an even function of xj when pj = 0 and an odd function of xj when pj = 1 for
every j = 0, 1, . . . , k. We use the standard notation |n| = n1 + n2 + · · ·+ nk, |p| = p0 + p1 + · · ·+ pk.

2. Heine–Stieltjes Quasi-Polynomials

Throughout the paper, two sets of parameters are given as

a0 < a1 < · · · < ak (4)
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and
α0, α1, . . . , αk ∈ (− 1

2 , ∞). (5)

Consider multi-indices n = (n1, n2, . . . , nk) ∈ Nk of non-negative integers and p =

(p0, p1, . . . , pk) ∈ {0, 1}k+1. We define the Heine–Stieltjes quasi-polynomial En,p by

En,p(t) := dn,p

k

∏
j=0
|t− aj|pj/2

|n|

∏
`=1

(t− θ`), t ∈ R, (6)

where dn,p > 0 is a normalization factor to be determined by Equation (22), and

θ1 < θ2 < · · · < θ|n|, |n| := n1 + · · ·+ nk,

with the first n1 of θ’s lying in (a0, a1), then the next n2 of θ’s lying in (a1, a2), and so on until the last
nk of θ’s lying in (ank−1 , ank ). The θ’s are uniquely determined by the condition that En,p is a solution
of the Fuchsian Equation (2.1) [18]

k

∏
j=0

(t− aj)

[
E′′ +

k

∑
j=0

αj +
1
2

t− aj
E′
]
+

[
−1

2

k

∑
j=0

pjαj Aj

t− aj
+

k−1

∑
i=0

λiti

]
E = 0 (7)

for some suitable values of λ0, . . . , λk−1 (which are also uniquely determined.) The constants Aj in
Equation (7) are defined by

Aj :=
k

∏
i=0
i 6=j

(aj − ai) for j = 0, 1, . . . , k. (8)

Equivalently, the θ’s are determined by the system of equations

|n|

∑
q=1
q 6=`

2
θ` − θq

+
k

∑
j=0

αj +
1
2 + pj

θ` − aj
= 0, ` = 1, 2, . . . , |n|. (9)

For the existence and uniqueness statements, see Szegö ([19] Section 6.8). Apart from the constant
factor dn,p, the definition of En,p agrees with the one given in ([18] §2).

3. Generalized Spherical Harmonics

By definition, a generalized spherical harmonic of degree m ([18] §4) is a polynomial f (x0, x1, . . . , xk),
homogeneous of degree m, satisfying the equation

∆α f :=
k

∑
j=0
D2

j f = 0, α = (α0, α1, . . . , αk), (10)

introduced by Dunkl [20] and also by Dunkl and Xu [21]. In Equation (10) we use the generalized
partial derivatives

Dj f (x) :=
∂

∂xj
f (x) + αj

f (x)− f (σjx)
xj

, x = (x0, x1, . . . , xk), (11)

where σj is the reflection at the jth coordinate plane:

σj(x0, x1, . . . , xk) = (x0, x1, . . . , xj−1,−xj, xj+1, . . . , xk). (12)
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Equation (10) contains the given parameters α0, α1, . . . , αk from Equation (5). If αj = 0 for all j
then the equation reduces to the Laplace equation, and we are in the classical case.

LetH = Hm denote the linear space of generalized spherical harmonics of degree m considered
as functions on Sk. Its dimension is

dimHm =

(
m + k− 1

k− 1

)
+

(
m + k− 2

k− 1

)
.

We introduce a weighted inner product onHm by defining

〈 f , g〉 :=
∫

Sk
w(x) f (x)g(x) dS(x), (13)

where the weight function is given by

w(x) := M|x0|2α0 |x1|2α1 . . . |xk|2αk (14)

with the constant M chosen such that ∫
Sk

w(x) dS(x) = 1.

Since we assume that αj > − 1
2 , for each j = 0, 1, . . . , k, w(x) is integrable on Sk.

Let x = (x0, x1, . . . , xk) ∈ Sk
+, where

Sk
+ := {x ∈ Sk : xj > 0 for all j = 0, 1, . . . , k}. (15)

Its sphero-conal coordinates (s1, . . . , sk) ([22] §1.3), ([18] §4) lie in

Q := (a0, a1)× (a1, a2)× · · · × (ak−1, ak) (16)

and they are determined by the equations

k

∑
j=0

x2
j

si − aj
= 0 for i = 1, . . . , k. (17)

In Equations (16) and (17), we use the parameters in Equation (4).
This defines a bijective map from Sk

+ to Q with inverse

x2
j =

∏k
i=1(si − aj)

∏k
i=0
i 6=j

(ai − aj)
. (18)

Let En,p be a Heine–Stieltjes quasi-polynomial. We introduce the generalized sphero-conal
harmonic ([18] §4)

Gn,p(x0, x1, . . . , xk) := En,p(s1)En,p(s2) . . . En,p(sk), (19)

where s1, . . . , sk denote sphero-conal coordinates for x ∈ Sk
+. It is shown in [18] that

Gn,p(x) = (dn,p)
kcn,p xp0

0 xp1
1 . . . xpk

k

|n|

∏
`=1

k

∑
j=0

x2
j

θ` − aj
, (20)
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when En,p is written in the form Equation (6),

cn,p := (−1)|n|
k

∏
j=0
|Aj|pj/2

|n|

∏
`=1

k

∏
i=0

(ai − θ`), (21)

and Aj is defined in Equation (8). Moreover, Gn,p ∈ Hm is a generalized spherical harmonic of degree
m = 2|n|+ |p|, |p| := p0 + p1 + · · ·+ pk, and it has parity p, that is

Gn,p(σjx) = (−1)pj Gn,p(x).

By choice of dn,p in Equation (6), we have

〈Gn,p, Gn,p〉 = 1, (22)

using the inner product inHm, defined by Equation (13). The normalization can be carried out based
on the formula ([23] Appendix B)

∫
Sk

w(x)x2q0
0 x2q1

1 . . . x2qk
k dS(x) =

(ρ0)q0 . . . (ρk)qk

(ρ)q0+···+qk

, (23)

where (a)q = a(a + 1) . . . (a + q− 1) ((a)0 := 1) denotes the Pochhammer symbol, and here and in the
following we abbreviate

ρj := αj +
1
2

, ρ :=
k

∑
j=0

ρj. (24)

The following result is known from ([18] Theorem 3).

Theorem 1. Let m ∈ N. The system of all generalized sphero-conal harmonics Gn,p of degree m = 2|n|+ |p|
forms an orthonormal basis forHm with respect to the inner product Equation (13).

4. Addition Formula

For given m, k, and α = (α0, α1, . . . , αk), we consider the space Hm of generalized spherical
harmonics equipped with the inner product Equation (13). Let Km be its reproducing kernel. If all αj
are positive, Xu ([10] Theorem 3.3) derived the following beautiful formula for Km:

Km(x, y) =
m + ρ− 1

ρ− 1

∫
[−1,1]k+1

C(ρ−1)
m (x0y0u0 + · · ·+ xkykuk) (25)

×
k

∏
i=0

c(αi)(1 + ui)(1− u2
i )

αi−1 du0 . . . duk.

Here, C(λ)
n denotes the Gegenbauer polynomial, ρ is from Equation (24), c(µ) is defined by

1
c(µ)

=
∫ 1

−1
(1− u2)µ−1 du =

Γ( 1
2 )Γ(µ)

Γ(µ + 1
2 )

, µ > 0,

and
x = (x0, x1, . . . , xk) ∈ Sk, y = (y0, y1, . . . , yk) ∈ Sk.

The kernel Km can be calculated without carrying out a numerical integration. When we
expand C(ρ−1)

m (x0y0u0 + · · · + xkykuk), we obtain a linear combination of monomials
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(x0y0u0)
q0(x1y1u1)

q1 · · · (xkykuk)
qk , where q0, q1, . . . , qk are non-negative integers. To carry out

the integration in Equation (25), we use that, for all q ∈ N and µ > 0,

c(µ)
∫ 1

−1
uq(1 + u)(1− u2)µ−1 du =

( 1
2 )r

(µ + 1
2 )r

, (26)

where
r = b 1

2 (q + 1)c

denotes the largest integer less than or equal to 1
2 (q + 1). The formula in Equation (25) can be used only

for αj > 0. However, using Equation (26), we see that Km is a well-defined polynomial in the variables
x0, . . . , xk, y0, . . . , yk whenever αj > − 1

2 for all j = 0, 1, . . . , k. Therefore, the function Km defined by
Equation (25) can be extended analytically to the parameter domain ρj > 0, j = 0, 1, . . . , k, and this
extended function is the reproducing kernel forHm.

For illustration, let us compute K2. We start with the Gegenbauer polynomial

C(ρ−1)
2 (z) = (ρ− 1)(2ρz2 − 1).

We substitute z = ∑k
j=0 xjyjuj and use Equation (26). We obtain

K2(x, y) = ρ(ρ + 1)

[
k

∑
j=0

x2
j y2

j

ρj
+

k

∑
i=0

k

∑
j=i+1

xixjyiyj

ρiρj

]
− ρ− 1. (27)

We see that this kernel is well-defined when ρj > 0 for all j = 0, 1, . . . , k. If α = 0, Km reduces to
the classical kernel Equation (3) through a limiting process using that

lim
α→0+

∫ 1
−1 g(t)(1− t2)α−1 dt∫ 1
−1(1− t2)α−1 dt

=
1
2
(g(−1) + g(1))

for every continuous function g(t) defined on [−1, 1].
We now obtain the following addition formula for generalized sphero-conal harmonics.

Theorem 2. For every m ∈ N and all x, y ∈ Sk we have

Km(x, y) = ∑
2|n|+|p|=m

Gn,p(x)Gn,p(y), (28)

where the summation extends over all pairs n, p with 2|n|+ |p| = m.

Proof. The space Hm equipped with the inner product Equation (13) has the reproducing kernel
Km(x, y) given by Equation (25). By Theorem 1, the system of generalized sphero-conal harmonics
Gn,p, 2|n|+ |p| = m, is an orthonormal basis ofHm. Then, Equation (28) follows from Equation (2).

We may decompose the kernel Km as

Km(x, y) = ∑
p

Km,p(x, y), (29)

where the sum extends over all p ∈ {0, 1}k+1 and Km,p(x, y) is the sum of all monomials
cxq0

0 xq1
1 . . . xqk

k yq0
0 yq1

1 . . . yqk
k appearing in Km(x, y) that have parity p = (p0, p1, . . . , pk), that is, pj + qj is

even for every j = 0, 1, . . . , k. Therefore, using the reflections from Equation (12) we have

Km,p(σjx, y) = Km,p(x, σjy) = (−1)pj Km,p(x, y) for all j = 0, 1, . . . , k.
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We note that Km,p is the reproducing kernel of the subspaceHm,p ofHm consisting of functions
with parity p. For example, Equation (27) yields

K2,0(x, y) = ρ(ρ + 1)
k

∑
j=0

x2
j y2

j

ρj
− ρ− 1. (30)

Since Gn,p has parity p, Theorem 2 implies

Km,p(x, y) = ∑
2|n|=m−|p|

Gn,p(x)Gn,p(y) for x, y ∈ Sk, (31)

where m and p are given and the sum extends over all n satisfying 2|n| = m− |p|.
Let s = (s1, . . . , sk) ∈ Q, t = (t1, . . . , tk) ∈ Q be sphero-conal coordinates for x, y ∈

Sk
+, respectively. Let Lm(s, t) be the reproducing kernel Km written in sphero-conal coordinates.

The transformation formulas are given by Equation (18).
Then Theorem 2 and Equation (19) imply the following addition formula for Heine–Stieltjes

quasi-polynomials.

Theorem 3. For every m ∈ N and all s, t ∈ Q we have

Lm(s, t) = ∑
2|n|+|p|=m

k

∏
i=1

En,p(si)En,p(ti). (32)

Similarly, let Lm,p(s, t) be the kernel Km,p written in sphero-conal coordinates. Then, using
Equations (19) and (31), we obtain for any m and p

Lm,p(s, t) = ∑
2|n|=m−|p|

k

∏
i=1

En,p(si)En,p(ti). (33)

In the special case p = 0, Equation (33) is an addition formula for Heine–Stieltjes polynomials
and the kernel Lm,p is a polynomial in s1, . . . , sk, t1, . . . , tk.

For illustration, let us write out the addition formula in detail if m = 2 when

dimH2 =
k(k + 1)

2
+ k.

We begin by finding all pairs n, p with 2|n|+ |p| = 2. There are two cases: (1) |n| = 0, |p| = 2;
and (2) |n| = 1, |p| = 0. In the first case, we have n = 0 and there are k(k+1)

2 different p’s with |p| = 2.
One of these p is p = (p0, p1, . . . , pk) with pi = pj = 1, i < j and all other components of p equal to
zero. Then, Equation (20) gives

G0,p(x) = (d0,p)
k|Ai|1/2|Aj|1/2xixj. (34)

From Equations (22) and (23), we obtain

d0,p =

(
ρ(ρ + 1)

ρiρj|Ai||Aj|

)1/(2k)

so

G0,p(x) =

(
ρ(ρ + 1)

ρiρj

)1/2

xixj, (35)
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and, by Equation (6),

E0,p(t) =

(
ρ(ρ + 1)

ρiρj|Ai||Aj|

)1/(2k)

|t− ai|1/2|t− aj|1/2. (36)

From Equation (27), we find

K2,p(x, y) =
ρ(ρ + 1)

ρjρj
xixjyiyj.

Now, Equation (35) verifies Equation (31) because the sum on the right-hand side of Equation (31)
contains only one term.

In the second case, we have p = 0 and there are k different n’s with |n| = 1. One of these n is
n = (n1, . . . , nk) with nh = 1 and all other components of n equal to zero. Let us abbreviate En,p as Eh
and Gn,p as Gh. Then,

Eh(t) = dh(t− θh),

where dh = dn,0, and, by Equation (9), θh is the unique solution of the equation

k

∑
j=0

αj +
1
2

θh − aj
= 0 (37)

lying in the interval (ah−1, ah). By Equation (20), we obtain

Gh(x) = eh

k

∑
j=0

x2
j

θh − aj
, (38)

where

eh = −dk
h

k

∏
i=0

(ai − θh). (39)

Using Equation (23), we calculate

∫
Sk

w(x)Gh(x)
2 dS(x) = e2

h

k

∑
i,j=0

1
(θh − ai)(θh − aj)

∫
Sk

w(x)x2
i x2

j dS(x)

=
e2

h
ρ(ρ + 1)

 k

∑
j=0

ρj(ρj + 1)
(θh − aj)2 +

k

∑
i,j=0
i 6=j

ρiρj

(θh − ai)(θh − aj)

 .

Applying Equation (37), we simplify to

∫
Sk

w(x)Gh(x)
2 dS(x) =

e2
h

ρ(ρ + 1)

k

∑
j=0

ρj

(θh − aj)2 . (40)

We introduce the polynomials

f (t) :=
k

∏
i=0

(t− ai), g(t) :=
k

∏
i=1

(t− θi).

Then, we have

g(t) =

(
1
ρ

k

∑
j=0

ρj

t− aj

)
f (t). (41)
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In order to prove Equation (41), we note that both sides are polynomials in t of degree k with
leading coefficient 1, and, by Equation (37), both sides have the same zeros θ1, . . . , θk. Therefore,
we have the partial fraction expansion

g(t)
f (t)

=
1
ρ

k

∑
j=0

ρj

t− aj
. (42)

We first differentiate Equation (42), with respect to t, and then substitute t = θh to write
Equation (40) as ∫

Sk
w(x)Gh(x)

2 dS(x) = −
e2

h
ρ + 1

g′(θh)

f (θh)
for h = 1, 2, . . . , k. (43)

By Equation (22), the integral on the left-hand side is equal to 1, so

e2
h = −(ρ + 1)

f (θh)

g′(θh)
for h = 1, 2, . . . , k. (44)

It follows from Equation (39) and dh > 0 that (−1)h+1eh > 0 for every h = 1, 2, . . . , k. Therefore,
Equations (38) and (44) give

Gh(x) = (−1)h+1
(
(ρ + 1)

| f (θh)|
|g′(θh)|

)1/2 k

∑
j=0

x2
j

θh − aj
for h = 1, 2, . . . , k. (45)

From Equation (39), we find

dh =

(
|eh|
| f (θh)|

)1/k
for h = 1, 2, . . . , k,

so, by Equation (6),

Eh(t) =
(

ρ + 1
| f (θh)||g′(θh)|

)1/(2k)
(t− θh) for h = 1, 2, . . . , k. (46)

If we replace the constant term −(ρ + 1) on the right-hand side of Equation (30) by −(ρ +

1)∑k
j=0 x2

j ∑k
j=0 y2

j and compare coefficients, the addition formula Equation (31) with m = 2 and p = 0
holds, provided that

f ′(aj)

g(aj)
− 1 = −

k

∑
h=1

f (θh)

g′(θh)

1
(θh − aj)2 for j = 0, 1, . . . , k (47)

and

− 1 = −
k

∑
h=1

f (θh)

g′(θh)

1
(θh − ai)(θh − aj)

for 0 ≤ i 6= j ≤ k. (48)

In fact, we may derive the formulas in Equations (47) and (48) from suitable partial fraction
expansions. Therefore, combining both cases, we verified the addition formula Equation (28) for
m = 2, and the reader might imagine the formidable task that would be required to verify the addition
formula in this way for general m.

If k = 2, the addition formula Equation (32) can be written in a slightly different form using
sphero-conal coordinates involving Jacobi elliptic functions ([9] Ch. 22]), see ([24] p. 24) and ([9] 29.18.2).
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These coordinates have the advantage that they are valid on the entire sphere S2. We choose
a modulus κ ∈ (0, 1) and set

x0 = κ snβ1 snβ2, (49)

x1 = i
κ

κ′
cnβ1 cnβ2, (50)

x2 =
1
κ′

dnβ1 dnβ2, (51)

where sn z = sn(z, κ), cn z = cn(z, κ), and dn z = dn(z, κ) denote Jacobi elliptic functions
corresponding to the modulus κ and κ′ =

√
1− κ2 is the complementary modulus. If K = K(κ)

and K′ = K′(κ) denote elliptic integrals ([9] Ch. 19), then we obtain a coordinate system in S2 by
letting β1 vary in [0, 4K] and β′2 in [0, 2K′], where β2 = K + iβ′2. These coordinates are connected to
sphero-conal coordinates in algebraic form by s1 = sn2β1, s2 = sn2β2 when β1 ∈ (0, K), β′2 ∈ (0, K′),
with a0 = 0, a1 = 1, a2 = κ−2 > 1.

If β1 ∈ (0, K), then

|sn2β1 − aj|1/2 =


snβ1 if j = 0,

cnβ1 if j = 1,
1
κ dnβ1 if j = 2,

so En,p(sn2β1) becomes a polynomial in snβ1, cnβ1, dnβ1 of degree 2|n|+ |p|. We define En,p(sn2β1) to
be this polynomial for all values of β1 allowing for a slight abuse of notation. Similarly, if β′2 ∈ (0, K′) then

|sn2β2 − aj|1/2 =


snβ2 if j = 0,

i cnβ2 if j = 1,
1
κ dnβ2 if j = 2,

so En,p(sn2β2) becomes a polynomial in snβ2, cnβ2, dnβ2 of degree 2|n|+ |p|.
If x = (x0, x1, x2) ∈ S2, y = (y0, y1, y2) ∈ S2 are represented by coordinates (β1, β2), (γ1, γ2),

respectively, we have
Gn,p(x, y) = En,p(sn2β1)En,p(sn2β2). (52)

If we set
L̃m(β1, β2, γ1, γ2) = Km(x(β1, β2), y(γ1, γ2)), (53)

then we obtain the addition formula Equation (32) in the form

L̃m(β1, β2, γ1, γ2) = ∑
2|n|+|p|=m

En,p(sn2β1)En,p(sn2β2)En,p(sn2γ1)En,p(sn2γ2). (54)

In particular, if we choose α0 = α1 = α2 = 0 then Equations (3) and (53) imply

L̃m(β1, β2, γ1, γ2) = (2m + 1)Pm(H), (55)

where Pm is the Legendre polynomial of degree m and

H = κ2snβ1snβ2snγ1snγ2 −
κ2

κ′2
cnβ1cnβ2cnγ1cnγ2 +

1
κ′2

dnβ1dnβ2dnγ1dnγ2

and Equation (54) reduces to the addition formula for Lamé quasi-polynomials given by Hobson
([13] p. 475):

(2m + 1)Pm(H) = ∑
2|n|+|p|=m

En,p(sn2β1)En,p(sn2β2)En,p(sn2γ1)En,p(sn2γ2). (56)
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5. A Numerical Example

Heine–Stieltjes quasi-polynomials En,p do not admit an explicit representation. However, they can
be computed numerically, then we can also verify the addition formula numerically in some examples.
We consider the example k = 2, m = 4, and

a0 = 0, a1 = 1, a2 = 3, α0 =
1
2

, α1 =
1
3

, α2 =
4
3

.

The spaceH4 has dimension 9. To calculate the 9 corresponding Heine–Stieltjes quasi-polynomials
En,p, we start by finding all n = (n1, n2) and p = (p0, p1, p2) that satisfy 2|n|+ |p| = 4. There are
three pairs n, p with |n| = 2, |p| = 0 and six pairs with |n| = 1, |p| = 2. These pairs are listed
explicitly in Table 1. The next step is to solve Equation (9) numerically. If |n| = 2 there will be
two equations for θ1, θ2 and three pairs of solutions—the first a0 < θ1 < θ2 < a1 for n = (2, 0),
the second a0 < θ1 < a1 < θ2 < a2 for n = (1, 1), and the third a1 < θ1 < θ2 < a2 for n = (0, 2).
The equations can be solved easily with mathematical software (we use Maple). The three different
solutions pairs can be found by choosing suitable initial values for the unknowns θ1, θ2. If |n| = 1,
there is only one equation, Equation (9), that we can also solve numerically (or exactly). Our results are
listed in Table 1. The table also contains the values of the constants cn,p, dn,p. The computation of cn,p

from Equation (21) is trivial. The computation of dn,p is a little more involved but also easy. We are
using Equations (20), (22) and (23).

Table 1. Zeros and norming constants for Heine–Stieltjes polynomials.

n p θ1 θ2 cn,p dn,p

(2,0) (0,0,0) 0.1962642033 0.7837291906 0.1661415463 2.3125743278
(1,1) (0,0,0) 0.3317225234 2.1827247789 −1.2479976882 1.7110564475
(0,2) (0,0,0) 1.3576619901 2.3831914313 1.6215061837 1.3837750463
(1,0) (1,1,0) 0.4745185575 1.5425185368 2.1309937152
(0,1) (1,1,0) 2.2313637955 −5.1731280029 1.5747131736
(1,0) (1,0,1) 0.6061553109 2.4246057510 1.5175072801
(0,1) (1,0,1) 1.7467858656 −6.9358117249 1.1668545986
(1,0) (0,1,1) 0.2790107946 1.8961260741 1.6279553075
(0,1) (0,1,1) 1.8974597937 −6.5038818353 1.1962339394

Using Table 1 we can numerically evaluate the right-hand side of the addition formula in
Equation (28) (or Equation (32)). The left-hand side of Equation (28) is given by

K4(x, y) =
1
2

ρ(ρ + 3)− ρ(ρ + 1)(ρ + 3)

[
2

∑
i=0

x2
i y2

i
ρi

+
1

∑
i=0

2

∑
j=i+1

xiyixjyj

ρiρj

]

+ρ(ρ + 1)(ρ + 2)(ρ + 3)

[
1
2

2

∑
i=0

x4
i y4

i
ρi(ρi + 1)

+
2

∑
i,j=0
i 6=j

x3
i y3

i xjyj

ρi(ρi + 1)ρj

+
1

∑
i=0

2

∑
j=i+1

x2
i y2

i x2
j y2

j

ρiρj
+

x0y0x1y1x2y2

ρ0ρ1ρ2

2

∑
i=0

xiyi

]
.

It should be noted that the kernel K4 is given explicitly. Choosing various points x, y ∈ S2, one can
verify numerically that the addition formula Equation (28) holds. Of course, there will be a small
difference between the left-hand and right-hand sides of Equation (28) because the right-hand side
cannot be calculated exactly.
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6. Integral Equations

By Equations (1) and (13), we have, for f ∈ Hm,

f (x) =
∫

Sk
w(y)Km(x, y) f (y) dS(y) for x ∈ Sk,

where w(y) is defined by Equation (14). Since Gn,p ∈ Hm, when m = 2|n| + |p|, we obtain the
following integral equation for generalized spherical harmonics.

Theorem 4. If m = 2|n|+ |p|, then

Gn,p(x) =
∫

Sk
w(y)Km(x, y)Gn,p(y) dS(y) for x ∈ Sk, (57)

which holds regardless of whether Gn,p is normalized or not.

Noting that

Km,p(x, σjy)Gn,p(σjy) = Km,p(x, y)Gn,p(y) for all j = 0, 1, . . . , k,

with the reflection σj defined by Equation (12) and Gn,p ∈ Hm,p when m = 2|n|+ |p|, it follows that

Gn,p(x) = 2k+1
∫

Sk
+

w(y)Km,p(x, y)Gn,p(y) dS(y) (58)

with Sk
+ defined in Equation (15). We transform the integral on the right-hand side of Equation (58) to

sphero-conal coordinates t1, t2, . . . , tk by using that

2k+1w(y(t))dS(y(t)) = v(t) dt, (59)

where

v(t) :=
Γ(ρ)

∏k
j=0 Γ(ρj)

k

∏
j=0
|Aj|−αj

k

∏
j=0

k

∏
i=1
|ti − aj|αj−1/2 ∏

1≤i<j≤k
(tj − ti).

This transformation formula is derived from the metric tensor for sphero-conal coordinates given
in ([22] Equation (18)). Transforming the integral in Equation (58) to sphero-conal coordinates and
using Equation (19) we obtain the following integral equation for Heine–Stieltjes quasi-polynomials.

Theorem 5. If m = 2|n|+ |p|, then

k

∏
j=1

En,p(sj) =
∫

Q
v(t)Lm,p(s, t)

k

∏
j=1

En,p(tj) dt for s ∈ Q (60)

with Q from Equation (16).
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As a special case, consider k = 2, p = (0, 0, 0); and a0 = 0, a1 = 1, and a2 = a > 1. Then,
the polynomial En,0 with θl from Equation (9) is called a Heun polynomial ([12] A 3.6). For example,
for m = 2 we employ the kernel

L2,0(s1, s2, t1, t2) =
ρ(ρ + 1)s1s2t1t2

ρ0a2 +

+
ρ(ρ + 1)(s1 − 1)(s2 − 1)(t1 − 1)(t2 − 1)

ρ1(1− a)2 + (61)

+
ρ(ρ + 1)(s1 − a)(s2 − a)(t1 − a)(t2 − a)

ρ2a2(1− a)2 − (ρ + 1).

Sleeman ([15] (4.35)) gave an integral equation for Heun polynomials in the form

En,0 = λ
∫

Q
K(u, t1, t2)En,0(t1)En,0(t2) dt1dt2. (62)

This integral equation is similar to Equation (60) with k = 2. The difference is that Equation (62)
contains an eigenvalue λ on the right-hand side and only one Heun polynomial on the left-hand
side. The kernel functions are different because we use sphero-conal coordinates in S2 while Sleeman
([15] (4.1)) uses ellipsoidal coordinates in R3.

If k = 2, we may also employ the kernel L̃m introduced in Section 4. This allows us to use the same
kernel for all Heun quasi-polynomials En,p with m = 2|n|+ |p|. Using the sphero-conal coordinates in
the form Equations (49)–(51), we obtain

w(y)dS(y) = ṽ(γ1, γ2) dγ1 dγ′2,

where

ṽ(γ1, γ2) : =
Γ(ρ)

2Γ(ρ0)Γ(ρ1)Γ(ρ2)
×

|κsnγ1 snγ2|2α0
∣∣∣ κ

κ′
cnγ1cnγ2

∣∣∣2α1
∣∣∣∣ 1
κ′

dnγ1dnγ2

∣∣∣∣2α2

κ2(sn2γ2 − sn2γ1).

Then, Theorem 4 and Equation (52) yield the following integral equation for Heun
quasi-polynomials in Jacobi form.

Theorem 6. Let k = 2 and m = 2|n|+ |p|. Then,

En,p(sn2β1)En,p(sn2β2) (63)

=
∫ 2K′

0

∫ 4K

0
ṽ(γ1, γ2)L̃m(β1, β2, γ1, γ2)En,p(sn2γ1)En,p(sn2γ2) dγ1 dγ′2.

In the special case α0 = α1 = α2 = 0, this is an integral equation for Lamé quasi-polynomials
([1] Ch. IX) involving

ṽ(γ1, γ2) =
κ2

4π
(sn2γ2 − sn2γ1) (64)

and the kernel L̃m given in Equation (55).
Arscott ([14] (5.6)) obtained a similar integral equation for Lamé polynomials, but of the type

Equation (62). Comparison of the kernels shows that Arscott’s kernel is more complicated than L̃m.
Moreover, our integral equation does not involve unknown constants. It is interesting to note that the
kernel L̃m from Equation (55) also appears in linear integral equation for Lamé polynomials. In this
setting, the kernel enters the theory as the Riemann function of a partial differential equation, see [25].
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7. Conclusions

We showed in Theorem 3 that Heine–Stieltjes quasi-polynomials satisfy an addition formula.
The proof is simple because it is based on two known results, namely, Theorem 1 and Equation (3.1)
for a reproducing kernel. However, it is a nontrivial task to define Heine–Stieltjes quasi-polynomials
and the corresponding generalized sphero-conal harmonics. The addition formula is one of very
few results of an explicit nature in the theory of Heine Stieltjes quasi-polynomials. We verified the
correctness of the formula in special cases exactly (m = 2) and numerically (m = 4). As a mathematical
application, we found integral relations for Heine–Stieltjes polynomials that appear to be new.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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