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Abstract: In this paper, by applying Valenti’s theory for the approximate symmetry, we introduce and
define the concept of a one-dimensional optimal system of approximate subalgebras for a generalized
Ames’s equation; furthermore, the algebraic structure of the approximate Lie algebra is discussed.
New approximately invariant solutions to the equation are found.
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1. Introduction

In [1], Ames et al. performed the symmetries classification of the model

utt = [ f (u)ux]x (1)

that can describes the flow of one-dimensional gas, longitudinal wave propagation on a moving
threadline, dynamics of a finite nonlinear string. The study of Equation (1) gave impetus to later
investigations. In 2007, Bluman et al. [2] made an interesting nonlocal analysis of Equation (1). In this
paper, our aim is to investigate the generalized model of Equation (1)

utt = [ f (u)ux]x + ε[λ(u) ut]xx, (2)

where f and λ are smooth functions. ε� 1 is the small parameter for the perturbative analysis, while,
when ε = 0, we recover the unperturbed Equation (1).

As in the exact symmetries, even in the approximate one, an important task in determing
approximately invariant solutions is to employ the concept of an optimal system of approximate
subalgebras in order to obtain all the essentially different approximate invariant solutions.

In this manuscript, in the context of Valenti’s theory [3], we define the definition of
one-dimensional optimal system of approximate subalgebras for Equation (2). By its application,
we get new approximate solutions for the generalized Ames’s equation.

The plan of the manuscript is the following: in Section 2, after a brief introduction of the main
concepts of Lie theory, we introduce the definition of Approximate Subalgebra and, finally, recall
the main results of the approximate symmetry analysis of Equation (2). The Optimal Systems
of one-dimensional approximate subalgebras are introduced and defined in Section 3 and the
application of the method to the model is provided. Section 4 presents the reductions of Equation
(2) to ordinary differential equations (ODEs) through the approximate optimal operators and new
approximate solutions are obtained. Finally, in Section 5, the optimal system is used in order to
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construct new approximate non-invariant solutions for two other models linked to Equation (2) by a
nonlocal transformation.

2. On the Approximate Symmetry Classifications

Various and different theories on approximate symmetries have been developed over the years;
the first contribution on this argument is due to Baikov et al. [4], but the method does not consider
an approximation in the perturbation meaning well, since, if we utilise the first order operator,
the corresponding approximate solution could include higher order terms. Later, another interesting
method was suggested by Fushchich et al. [5], where the strategy is consistent in the perturbation sense
and produces correct terms for the approximate solutions, but it is impossible to work in hierarchy;
then, the algebra could really grow. In 2004, Pakdemirli et al. [6] have compared these two methods.
Afterwards, Valenti in [3] introduced his method, where, following the technique proposed in [5], he
removes the “obstacle” of the impossibility of working in hierarchy, in accordance with the perturbation
theory and, for this reason, we will apply this method.

Before entering in the details of approximate theory, we recall briefly the main concepts of Lie
theory for a system of PDEs.

For a given system of differential equation

∆(t, x, u, v, u(k), v(h)) = 0, (3)

where t, x represents the independent variables. u, v are the dependent variables and u(k), v(h) stand
for all partial derivatives of u and v up to order k and h, respectively.

The invertible transformations of t, x, u, v

T = T(t, x, u, v, a), X = X(t, x, u, v, a), U = U(t, x, u, v, a), V = V(t, x, u, v, a), (4)

depending on a continuous parameter a, are defined as one-parameter (a) (exact) Lie point symmetry
transformations of Equation (3) if Equation (3) has the same form in the new variables T, X, U, V.

By expanding Equation (4) in Taylor’s series around a = 0, we obtain the infinitesimal
transformations, according to the Lie theory:

T = t + a ξ1(t, x, u, v) + o(a2), X = x + a ξ2(t, x, u, v) + o(a2), (5)

U = u + a η1(t, x, u, v) + o(a2), V = v + a η2(t, x, u, v) + o(a2), (6)

where their infinitesimals ξ1, ξ2, η1 and η2 are given by

ξ1(t, x, u, v) =
∂T
∂a

∣∣∣∣
a=0

, ξ2(t, x, u, v) =
∂X
∂a

∣∣∣∣
a=0

, η1(t, x, u, v) =
∂U
∂a

∣∣∣∣
a=0

, η2(t, x, u, v) =
∂V
∂a

∣∣∣∣
a=0

.

The corresponding operator

Ξ = ξ1(t, x, u, v)∂t + ξ2(t, x, u, v)∂x + η1(t, x, u, v)∂u + η2(t, x, u, v)∂v (7)

is known in the literature as the infinitesimal operator or generator of the Lie group.
The Lie group of point transformations, which leave a differential Equation (3) invariant, is

obtained by means of the Lie’s algorithm, with the requirement that the k̄-order prolongation of
Equation (7), which acts on Equation (3), is zero along the solutions, i.e.:

Ξk̄∆ = 0|∆=0, (8)
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where k̄ = max(k, h). The invariance condition Equation (8) produces an overdetermined system of
linear differential equations (called determining equations) for the infinitesimals whose integration
provides the generators of Lie Algebra admitted by Equation (3).

Now, we are able to define the concepts of Approximate Subalgebra of Equation (2).

Definition 1. We call Approximate Subalgebra of Equation (2) the (exact) subalgebra of the following system
of PDEs:

L0 := u0tt − f (u0) u0xx − f ′(u0) u2
0x = 0, (9)

L1 := u1tt − f (u0) u1xx − f ′(u0) u0xx u1x

− 2 f ′(u0) u0x u1x − f ′′(u0) u2
0x u1

− λ′′(u0) u2
0x u0t − λ′(u0) u0xx u0t

− 2 λ′(u0) u0x u0tx − λ(u0) u0txx = 0. (10)

Systems (9)–(10) have been obtained considering u(t, x, ε) analytics in ε and expanded it in power series of ε,
i.e.,

u(t, x, ε) = u0(t, x) + ε u1(t, x) +O(ε2), (11)

where u0 is the solution of the “unperturbed equation” (9) while u1 can be obtained from the linear Equation (10).

For the sake of clarity, we briefly recall the main results of the symmetry classifications of
Equation (2), which are obtained in [7].

The approximate generator of Equation (2) is written in the form

X = ξ1
0(t, x, u0)

∂

∂t
+ ξ2

0(t, x, u0)
∂

∂x
+ η0

0(t, x, u0)
∂

∂u0

+ [η1
0(t, x, u0) + η1

1(t, x, u0) u1]
∂

∂u1
(12)

and the associate Approximate Principal Lie Algebra of Equation (2), obtained when f (u0) and λ(u0) are
arbitrary functions of u0, is

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = t

∂

∂t
+ x

∂

∂x
− u1

∂

∂u1
, (13)

denoted with LAP . For suitable forms of functions f (u0) and λ(u0), we also get the symmetries
summarized in the following Table 1:
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Table 1. Classification of f (u0) and λ(u0) with the corresponding extensions of LAP of Equation (2).
f0, λ0, p, q and s are constitutive constants with p 6= 0.

Case Forms of f (u0) and λ(u0) Extensions of ApproxL̃P

f (u0) = f0 e
1
p u0

I X4 = x ∂
∂x + 2 p ∂

∂u0
+ 2 s u1

∂
∂u1

λ(u0) = λ0 e
1+s

p u0

f (u0) = f0 (u0 + q)
1
p

I I X4 = x ∂
∂x + 2 p (u0 + q) ∂

∂u0
+ 2 s u1

∂
∂u1

λ(u0) = λ0 (u0 + q)
1+s

p −1

f (u0) = f0 (u0 + q)−
4
3 X4 = x ∂

∂x −
3
2 (u0 + q) ∂

∂u0
− 3

2 u1
∂

∂u1

I I I
λ(u0) = λ0 (u0 + q)−

4
3 X5 = x2 ∂

∂x − 3 x (u0 + q) ∂
∂u0
− 3 x u1

∂
∂u1

3. Optimal System of Approximate Subalgebras

In this section, we introduce the definition of Optimal Systems of one-dimensional approximate
subalgebras for Equation (2), in the context of Valenti’s theory of approximate symmetries; we begin
by introducing the following definition:

Definition 2. We call the One-Dimensional Optimal system of Approximate Subalgebras of Equation (2) the
one-dimensional, Optimal system of (exact) Subalgebras of systems (9)–(10).

As in the classical symmetries, even in the approximate one, an important instrument to get
approximate solutions is to find the optimal system of approximate subalgebras in order to obtain all
the essentially different approximate invariant solutions. In order to obtain reductions and to construct
classes of group-invariant approximate solutions for Equation (2) in a systematic way, we will get an
optimal system of one-dimensional approximate subalgebras for Equation (2).

Following [8] by using both the adjoint table [9] and the global matrix [10], we get one dimensional
optimal system of subalgebras. We present only the details for the approximate principal Lie Algebra LP
of Equation (2). Thus, as a basis of LAP , we take adjoint operators, namely

Ai = −[Xi, Xj]
∂

∂Xj
, (i, j = 1, 2, 3), (14)

where, if Xi and Xj are vector fields, then their Lie bracket [Xi, Xj] is the unique vector field satisfying

[
Xi, Xj

]
= Xi (Xj)− Xj (Xi).

The commutator table of Approximate Principal Lie Algebra of case (13) is shown in Table 2.

Table 2. Commutator Table of the Approximate Lie Algebra of Equation (2). The (i,j)-th entry indicates[
Xi, Xj

]
= Xi (Xj)− Xj (Xi).

X1 X2 X3

X1 0 0 X1

X2 0 0 X2

X3 −X1 −X2 0
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The adjoint representation can be denoted as Ad(exp(εi Xi))Xj and is written by summing the
Lie series

Ad(exp(εi Xi))Xj =
+∞

∑
n=0

εn

n!
(ad Xi)

n(Xj) = Xj − ε[Xi, Xj] +
ε2

2
[Xi, [Xi, Xj]]− ...

The Adjoint Table of Approximate Principal Lie Algebra spanned by operators (13) is written in
Table 3:

Table 3. Adjoint Table of the Approximate Lie Algebra LP of Equation (2). The (i, j)-th entry indicates
Ad(exp(εi Xi))Xj = Xj − ε[Xi, Xj] +

ε2

2 [Xi, [Xi, Xj]]− ...

Ad X1 X2 X3

X1 X1 X2 X3 − ε1X1

X2 X1 X2 X3 − ε2X2

X3 X1(1 + ε3) X2(1 + ε3) X3

According the method given in [8], keeping in consideration the commutators, in the first line of
Table 2, we get for instance

A1 = −X1
∂

∂X3
, (15)

which generates the linear transformations

X′1 = X1, X′2 = X2, X′3 = −ε1X1 + X3. (16)

Moreover, the linear transformations generated by each Ai can be obtained simply by checking
the first, second , etc ... row of the Adjoint table (Table 3) of approximate principal Lie algebra LP of
Equation (2); for example, in the case of (16), the linear transformation is represented by the matrix

M1(ε1) =

(
1 0 0
0 1 0
−ε1 0 1

)
.

Following [9], the global matrix M of the adjoint transformations is the product of matrices Mi(εi)

associated with each Ai. For LP of Equation (2), we have

M = Π3
i=1 Mi(εi) =

(
1 + ε3 0 0

0 1 + ε3 0
−ε1 (1 + ε3) −ε2 (1 + ε3) 1

)
.

In order to obtain the global action of operators Ai, (i = 1, ..., 3), we apply the matrix MT ,
transposed matrix of M, to an element of LP , i.e., Xo = ∑3

i=1 ai Xi. Actually, it is preferable to work
with the vector a ≡ (a1, a2, a3); the coordinates of the transformed vector of a are

ā1 = (1 + ε3)a1 − ε1(1 + ε3) a3,

ā2 = (1 + ε3) a2 − ε2(1 + ε3) a3,

ā3 = a3,

and firstly we underline that these transformations leave invariant the component a3 and provide the
adjoint group GA of LAP .

We can determine the optimal system of LP by using a simple approach. We simplify any given
vector a ≡ (a1, a2, a3) through the above transformations. Then, distinguish the obtained vectors
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into nonequivalent classes, where we choose the one with the simplest form by which we obtain the
following non-trivial operator of the optimal system of LP :

Xo1 = c1 X1 + c2 X2 + X3 = (c1 + t)
∂

∂t
+ (c2 + x)

∂

∂x
− u1

∂

∂u1
, (17)

where c1, c2 are real parameters.
Finally, starting from Case III of Table 1, we are able to construct the corresponding extensions of

the optimal system of approximate subalgebras Lp of Case III for Equation (2), by using the Adjoint
Table in the Appendix A (Table A1), which in this case reads as:

Xo2 = c1 X1 + X3 + X4 = (c1 + t)
∂

∂t
+ 2x

∂

∂x
− 3

2
(u0 + q)

∂

∂u0
− 5

2
u1

∂

∂u1
, (18)

Xo3 = c1 X1 + c2 X2 + X5 = c1
∂

∂t
+ (c2 + x2)

∂

∂x
− 3 x(u0 + q)

∂

∂u0
− 3 x u1

∂

∂u1
. (19)

4. Reduction to ODEs and New Approximate Invariant Solution for the Generalized Ames’s
Equation

Based on the results obtained in the previous section, thanks to the approximate generators, we
can construct the corresponding reduced ODEs of Equation (2); indeed, as we know from literature,
group classification problems are interesting not only from a purely mathematical point of view but
above all in the applications that can be achieved [9–12].

We obtain an approximate solution for Equation (2) considering the approximate operator (17) of
Lp, i.e.,

Xo1 = c1 X1 + c2 X2 + X3 = (c1 + t)
∂

∂t
+ (c2 + x)

∂

∂x
− u1

∂

∂u1
,

we get the following transformation

z =
c2 + x
c1 + t

, u0 = φ(z), u1 =
ψ(z)
c1 + t

, (20)

which maps Equation (2) into the following ODEs:

2 z φ′ − f ′ φ′2 + (z2 − f )φ′′ = 0,

λzφ′′′ − ( f ′ψ− 2λ− 3zλ′φ′)φ′′ + (z2 − f )ψ′′

+
(
zλ′′φ′ + 2(λ′ − f ′′

)
ψ)φ′′ − 2( f ′φ′ − 2z)ψ′ + 2ψ = 0,

f = f (u) and λ = λ(u) being arbitrary functions of its argument. When f = f0 = constant and
λ = λ0 = constant, by integration of the reduced equations, we get

φ = k1 +
k2

f0
arctanh

(
z√
f0

)
, ψ =

(k3 + k4z)( f0 − z2) + k2λ0z
( f0 − z2)2 ,

where ki, (i = 1, . . . , 4) are arbitrary constants, and, as a consequence, we obtain the following solution
of Equation (2)

u = k1 +
k2

f0
arctanh

(
c2 + x√
f0(c1 + t)

)

+ε
(k3(c1 + t) + k4(c2 + x))( f0(c1 + t)2 − (c2 + x)2) + k2λ0(c1 + t)2(c2 + x)

( f0(c1 + t)2 − (c2 + x)2)2 . (21)
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Another solution can be obtained by the operator

Xo2 = (c1 + t)
∂

∂t
+ 2x

∂

∂x
− 3

2
(u0 + q)

∂

∂u0
− 5

2
u1

∂

∂u1

when f = f0(u0 + q)−4/3 and λ = λ0(u0 + q)−4/3 (Case III of Table 1), which leads to get the following
transformation of variables:

z =
x

(c1 + t)2 , u0 =
φ(ξ)

(c1 + t)3/2 − q, u1 =
ψ(ξ)

(c1 + t)5/2 , (22)

and to the following reduced equations:

12(4z2 φ
4
3 − f0)φφ′′ + 16( f0φ′ + 9z φ

7
3 )φ′ + 45φ

10
3 = 0,

72λ0z φ2φ′′′ − 6φ(48λ0z φ′ − 21λ0φ− 8 f0ψ)φ′′ + 36(4z2 φ
4
3 − f0)φ

2ψ′′

+96( f0φ′ + 6z φ
7
3 )φψ′ + 56(4λ0z φ′ − 2 f0ψ− 21λ0φ)φ′2 + 315φ

10
3 ψ = 0

that admit as a solution

φ = (

√
f0

z
)3/2, ψ =

1
z3/2

k1 +
3
2

k2 log z− λ0

(
log z
4
√

f0

)2
 ,

k1 and k2 being arbitrary constants. Thus, a solution of (2) is

u =

√
c1 + t

x3

 f 3/4
0 (c1 + t)− q + ε

k1 +
3
2

k2 log
x

(c1 + t)2 − λ0

(
log x

(c1+t)2

4
√

f0

)2
 . (23)

Finally, if we consider the approximate operator:

Xo3 = c1 X1 + c2 X2 + X5 = c1
∂

∂t
+ (c2 + x2)

∂

∂x
− 3 x(u0 + q)

∂

∂u0
− 3 x u1

∂

∂u1
, (24)

we get the following transformation:

z =
1√
c2

arctan
(

c1

c2
x
)
− t

c1
, u0 =

(
c2

c2 + c1x2

) 3
2

φ(z)− q, u1 =

(
c2

c2 + c1x2

) 3
2

ψ(z),

which maps Equation (2) into the following ODEs:

3(c2
2φ

4
3 − c4

1 f0)φφ′′ + c4
1 f0(4φ′2 + 9c2φ2) = 0, (25)

9c3
1λ0φ2φ′′′ + 12φ(c1 f0ψ− 3λ0φ′)φ′′ + 9(c2

2φ
4
3 − c4

1 f0)φ
2ψ′′ (26)

+24c4
1 f0φφ′ψ′ − c3

1(c1 f0ψ− λ0φ′)(9c2φ2 + 28φ′2) = 0. (27)

A particular solution is given by φ = 0, so that the solution of Equation (2) is

u = −q + ε

(
c2

c2 + c1x2

) 3
2

ψ(z) (28)

with ψ(z) arbitrary function of

z =
1√
c2

arctan
(

c1

c2
x
)
− t

c1
.
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A simple solution that can be obtained from (24) by setting c1 = c2 = 0; the similarity solution
and the variables become, respectively,

z = t, u0 = x−3φ(t)− q, u1 = x−3ψ(t), (29)

while the corresponding reduced ODEs of (2) assume the simple form:

φ′′φ
1
3 = 0, ψ′′φ

4
3 = 0

, which admit the solution
φ = h1 t + h0, ψ = k1 t + k0 (30)

with h1, h0, k1 and k0 arbitrary constants of integration. Then, we can write the invariant approximate
solution for Equation (2)

u(t, x) =
h1 t + h0

x3 − q + ε
k1 t + k0

x3 +O(ε2). (31)

5. The Potential System Associated with the Generalized Ames’s Equation

We recall that, for any given system of PDEs, it is possible to construct nonlocally related
potential systems that have the same solutions of the given system [2]. The transformation
that allows for mapping the given system of PDEs into nonlocally potential systems is defined
“nonlocal transformation”.

Thus, we have that Equation (2) leads to getting the following system:

ut − vx = 0, (32)

vt −
(∫ u

f (s) ds + ελ(u) vx

)
x
= 0, (33)

studied in [13], which can be treated as the potential system of Equation (2).
In addition, if we consider the nonlocal transformation u = wx, v = wt, systems (32)–(33) are

equivalent to
wtt = f (wx)wxx + ε[λ(wx)wtx]x (34)

studied in [8,14]. Special cases of models belonging to the class of Equation (34) can be found in [15–19].
Furthermore, some questions related to global existence, uniqueness and stability of solutions have
been addressed in [20,21].

In Ref. [7], the authors have proved a Theorem affirming that For any f and λ, an approximate
symmetry admitted by the systems (32)–(33) and Equation (34) defines an approximate symmetry
admitted by Equation (2); conversely, some approximate symmetries of Equation (2) do not induce
approximate symmetries of Equation (34) and the systems (32)–(33).

In a few words, the classification of Equation (2) is richer than those of systems (32)–(33) and of
Equation (34). In fact, while there is a correspondence between the approximate symmetry operators
X1,. . ., X4 admitted by Equation (2) with the ones admitted by (34), the operator X5 reported in case III
of Table 2 is a new approximate operator, admitted only by Equation (2).

According to this theorem, in light of the determination of the one-dimensional optimal system of
approximate subalgebras, we are able to get approximate invariant and non-invariant solutions for the
systems (32)–(33) and Equation (34).

For better clarification: the correspondence between the approximate symmetry operators X1,. . .,
X4 admitted by Equation (2) with the ones admitted by (34), allows us to get approximate invariant
solutions for the systems (32)–(33) and Equation (34); for instance, the general solution (21) which we
have obtained in this paper, when k2 = 0, includes the solution obtained considering an approximate
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operator admitted by Equation (34) and found in [8]. Instead, starting from the approximate solution
(31), obtained by means of the operator X03 that involves the generator X5, we are able to obtain
approximate non-invariant solutions for the systems (32)–(33) and Equation (34) that could not have
been obtained from the symmetry analysis and reductions performed in [13,14] because the operator
X5 is new and it is admitted only by Equation (2).

New Approximate Non-Invariant Solutions for Equation (35) and the Potential System

Starting from the approximate solution (31), keeping in consideration the nonlocal transformation
u = wx, by integrating (31) with respect to x, we obtain:

w(t, x) = −h1 t + h0

2x2 − q x + χ0(t) + ε

(
k1 t + k0

2x2 + χ1(t)
)

, (35)

where χ0(t) and χ1(t), at this stage, are arbitrary functions of t. When we substitute them into (34), we
get that it must be linear in their arguments, so we obtain the following new non-invariant approximate
solution for Equation (34):

w(t, x) = − h1 t + h0

2x2 − q x− 27 f0

10 h2
1
(h1 t + h0)

5
3 + K1 t

− ε

[
k1 t + k0

2x2 − 9(h0 + h1 t)
2
3

10 h3
1

[
45 λ0h2

1 + f0(h1k1 t− 5 h1k0 + 6 h0k1)
]
− K2 t

]
+O(ε2),

(36)

where K1 and K2 are arbitrary constants.
Finally, the non-invariant approximate solution for the system (32)–(33) reads as

u =
h1 t + h0

x3 − q + ε
k1 t + k0

x3 ,

v = − h1

2x2 −
9 f0

2 h1
(h1 t + h0)

2
3 + K1

− ε

[
k1 t + k0

2x2 − 9(h0 + h1 t)
2
3

10 h3
1

[
45 λ0h2

1 + f0(h1k1 t− 5 h1k0 + 6 h0k1)
]
− K2 t

]
.

(37)

6. Conclusions

In this manuscript, we worked following the method of Valenti’s approximate symmetries;
moreover, thanks to the link between the approximate symmetries of the three related models (2),
(32)–(33), (34) and the definition of one-dimensional optimal system of approximate subalgebras, we
are also capable in this manuscript to get new approximate, invariant and non-invariant, solutions
not only for the generalized Ames’s Equation (2), but also for Equation (34) and the systems (32)–(33)
which could not be obtained from the approximate symmetry analysis performed in [13,14].
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Appendix A

In this Appendix, the Adjoint Table (Table A1) of the case III is reported.
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Table A1. Adjoint Table of the Approximate Lie Algebra of Equation (2)

Ad X1 X2 X3 X4 X5

X1 X1 X2 X3 − ε1X1 X4 X5

X2 X1 X2 X3 − ε2X2 X4 − ε2X2 X5 − 2ε2X4

X3 X1(1 + ε3) X2(1 + ε3) X3 X4 X5(1− ε3)

X4 X1 X2(1 + ε4) X3 X4 X5(1− ε4)

X5 X1 X2 + 2ε5X4 X3 + ε5X5 X4 + ε5X5 X5
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