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Abstract: As it is often unavoidable to obtain incomplete data in life testing and survival analysis,
research on censoring data is becoming increasingly popular. In this paper, the problem of estimating
the entropy of a two-parameter Lomax distribution based on generalized progressively hybrid
censoring is considered. The maximum likelihood estimators of the unknown parameters are derived
to estimate the entropy. Further, Bayesian estimates are computed under symmetric and asymmetric
loss functions, including squared error, linex, and general entropy loss function. As we cannot obtain
analytical Bayesian estimates directly, the Lindley method and the Tierney and Kadane method are
applied. A simulation study is conducted and a real data set is analyzed for illustrative purposes.

Keywords: generalized progressively hybrid censoring; Lomax distribution; entropy; maximum
likelihood estimator; Lindley method; Tierney and Kadane method; loss function

1. Introduction

Lomax distribution, also conditionally known as Pareto Type II distribution, is a heavy tail
distribution widely used in reliability analysis, life testing problems, information theory, business,
economics, queuing problems, actuarial modeling and biological sciences. It is essentially a Pareto
Type II distribution that has been shifted so that it is non-negative. Lomax distribution was first
introduced in Reference [1]. Ahsanullah [2] derived some distributional proprieties and presented two
types of estimates for the unknown parameters based on the record value for a sequence of Lomax
distribution. Afaq [3] derived the Bayesian estimators of Lomax distribution under three different
loss functions using Jeffery’s and an extension of Jeffery’s prior, and compared the Bayesian estimates
with the maximum likelihood estimate by using mean squared error. Ismail [4] derived the maximum
likelihood estimators and interval estimators of the unknown parameters under a step-stress model
supposing that the time to failure has a Lomax distribution with failure-censoring and studied the
optimal test designs.

The cumulative distribution function of Lomax distribution is given as follows:

F(x) = 1− (1 +
x
λ
)−α, α > 0, λ > 0, x ≥ 0. (1)

The corresponding probability density function of Lomax distribution is given by:

f (x) =
α

λ
(1 +

x
λ
)−(α+1), x ≥ 0. (2)

One characteristic of Lomax distribution is that there are many distributions which have
a close relationship with it. Lomax distribution is a special case of q-exponential distribution,
generalized Pareto distribution, beta prime distribution and F distribution. Plus, it is a mixture
of exponential distributions where the mixing distribution of the rate is a gamma distribution.
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Besides, there are many variants of Lomax distribution, such as the McDonald Lomax distribution
with five parameters ([5]), gamma Lomax distribution ([6]) and weighted Lomax distribution ([7]).
Apparently, Lomax distribution is of great importance in statistics and probability. Another special
characteristic of Lomax distribution is that it plays an important role in information theory. Ahmadi [8]
found that on the assumption that (X,Y) has a bivariate Lomax joint survival function, then the bivariate
dynamic residual mutual information is constant.

Entropy, which is one of the most significant terms in statistics and information theory,
was originally proposed by Gibbs in the thermodynamic system. Shannon [9] re-defined it and
introduced the concept of entropy into information theory to quantitatively measure the uncertainty of
information. Cover and Thomas [10] extended Shannon’s idea and defined differential entropy (or
continuous entropy) of a continuous random variable X with probability density function f as:

H = H(X) = H( f ) = −
∫ ∞

−∞
f (x) log( f (x))dx.

Differential entropy can be used to measure the uniformity of a distribution. A distribution
that spreads out has a higher entropy, whereas a highly peaked distribution has a relatively lower
entropy. Many authors have carried out their studies based on entropy. Siamak and Ehsan [11]
proposed Shannon aromaticity based on the concept of Shannon entropy in information theory and
applied it to describe the probability of electronic charge distribution between atoms in a given ring.
Tahmasebi and Behboodian [12] derived the entropy and the order statistics for the Feller-Pareto family
and presented the entropy ordering property for the sample minimum and maximum of Feller-Pareto
subfamilies. Cho et al. [13] estimated the entropy for Weibull distribution under three different loss
functions based on generalized progressively hybrid censoring scheme. Seo and Kang [14] discussed
the entropy of a generalized half-logistic distribution based on Type II censored samples.

The entropy of the Lomax distribution is given by:

H = H( f ) = log(λ)− log(α) +
1
α
+ 1. (3)

As it is often inevitable to lose some experimental units before terminal time in a test, censoring is
becoming increasingly popular in lifetime testing and survival analysis. The two most popular
censoring schemes in literature are Type I and Type II censoring schemes. Hybrid censoring, which was
first proposed in Reference [15], is a mixture of Type I and Type II censoring schemes. The conventional
censoring schemes (Type I, Type II, hybrid censoring) do not allow experimental units to be removed
other than the terminal time. The early removals are desirable so that some experimental units can
be removed and used in other experiments. Accordingly, the progressively censoring scheme was
introduced by Reference [16]. The progressively hybrid censoring scheme can be described as follows.
Suppose that n identical units are placed on a test. Let X1, X2, · · · , Xm be the ordered failure times
and R = (R1, R2, · · · , Rm) be the censoring scheme. Then we have ∑m

i=1 Rm + m = n. We refer to
Reference [17] for detailed discussion about progressively censoring. The test is terminated either
when a pre-assigned number, say m, failures have been observed or when a pre-specified time, say
T, has been reached. So clearly the terminal time Tend = min{Xm, T}. When the first failure occurs,
R1 units are randomly removed from the test. When the second failure occurs, R2 units are randomly
removed. Eventually, when the m-th failure occurs or when the pre-specified time T is reached, all the
remaining units are removed from the test.

The disadvantages of progressively hybrid censoring are that it cannot be applied and the accuracy
of the estimates can be extremely low if only a few units fail before terminal time Tend. For this reason,
Cho et al. [18] proposed a generalized progressively hybrid censoring scheme. Suppose n identical
units are placed on an experiment. For the sake of observing at least k (pre-determined) units in
the experiment, the terminal time is adjusted to T∗end = max{Xk, min{Xm, T}}. Similarly, R1 units
are randomly removed from the test when the first failure is observed. R2 units are randomly
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removed when the second failure is observed. This continues until all the units are removed when
the T∗end has been reached. A representation of the generalized progressively hybrid censoring
scheme, the corresponding condition and the expressions of terminal time (T∗end) and R∗1 , R∗2 , R∗3 ,
terminal removals are presented as follows.

Case I (T < Xk < Xm)

T Xk Xm

R∗1

X1 X2 · · ·

R1 R2

T∗end = Xk, R∗1 = n− k−∑k−1
i=1 Ri.

Case II (Xk < T < Xm)

Xk T Xm

R∗2

XD+1XDX1 X2 · · ·

R1 R2 Rk RD

T∗end = T, R∗2 = n− D−∑D
i=1 Ri.

Case III (Xk < Xm < T)

Xk Xm T

R∗3

X1 X2 · · ·

R1 R2 R2

T∗end = Xm, R∗3 = n−m−∑m−1
i=1 Ri = Rm.

The objective of this paper is to derive the maximum likelihood estimator (MLE) and Bayesian
estimators of entropy, and to compare the proposed estimates of entropy with respect to mean squared
error (MSE) and bias value. We first derive the maximum likelihood estimators of the unknown
parameters for the Lomax distribution and calculate the entropy based on the invariance property of
the MLE. Next, we consider the Bayesian estimators of the entropy under squared error, linex and
general entropy loss function. It is to be noted that it is not easy to obtain explicit expressions of
Bayesian estimates and thus the Lindley method and the Tierney and Kadane method are applied.
We conduct a simulation study and compare the performance of all the estimates of entropy with
respect to MSE and bias values.

The rest of this paper is organized as follows. In Section 2, we deal with computing entropy
based on MLEs. Bayesian estimators under squared error, linex and general entropy loss function are
derived using the Lindley method and Tierney and Kadane method in Section 3. A simulation study is
conducted and presented to study the performance of the estimates in Section 4. In Section 5, a real
data set is analyzed for illustrative purposes. Finally, we conclude the paper in Section 6.
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2. Maximum Likelihood Estimator

In this section, we obtain the maximum likelihood estimators of entropy based on generalized
progressively hybrid censoring. The likelihood functions and log-likelihood functions for cases I, II
and III can be found in Appendix A, and the likelihood functions and log-likelihood functions in Case
I, Case II and Case III can be combined and written as

L(data|α, λ) = L ∝ αJλ−J
J

∏
i=1

(1 +
Xi
λ
)−[α(1+Ri)+1]e(−αW(λ)). (4)

l(data|α, λ) = l ∝ J log(α)− J log(λ)− α
J

∑
i=1

(1 + Ri) log(1 +
Xi
λ
)−

J

∑
i=1

log(1 +
Xi
λ
)− αW(λ). (5)

where J = k, Rk = R∗1 , W(λ) = 0 for Case I; J = D, W(λ) = R∗2 log(1+ T
λ ) for Case II; J = m, W(λ) = 0

for Case III.
Let Equation (5) take derivatives with respect to α and λ. We can get

∂l
∂α

=
J
α
−

J

∑
i=1

(1 + Ri) log(1 +
Xi
λ
)−W(λ) = 0. (6)

∂l
∂λ

= − J
λ
+ α

J

∑
i=1

(1 + Ri)(
1
λ
− 1

λ + Xi
) +

J

∑
i=1

(
1
λ
− 1

λ + Xi
)− αW1(λ) = 0. (7)

where, W1(λ)=0 for Case I and Case III; W1(λ) = R∗2(
1

λ+T −
1
λ ) for Case II.

Equation (6) can also be written as
α = A(λ). (8)

where A(λ) = J

∑J
i=1(1+Ri) log(1+ Xi

λ )+W(λ)
.

Using Equation (8), Equation (7) can be written as

λ = B(λ). (9)

where, B(λ) = J
A(λ)∑J

i=1(1+Ri)(
1
λ−

1
Xi+λ )+∑J

i=1(
1
λ−

1
Xi+λ )−A(λ)W1(λ)

.

Therefore, we can use an iterative procedure, which was proposed by Reference [19] and applied
in Reference [20], to compute the MLEs. Set an initial guess value of λ, say λ(1), then let λ(2) = B(λ(1)),
λ(3) = B(λ(2)), · · · , λ(i+1) = B(λ(i)), · · · . This iterative process continues until |λ(k+1) − λ(k)| < ε,
where ε is some pre-specified tolerance limit. Then λ̂ = λ(k+1).

Then according to the invariance property of the MLE, using Equations (3) and (8), we can obtain:

α̂ = A(λ̂)

Ĥ = log(α̂)− log(λ̂) +
1
α̂
+ 1

3. Bayesian Estimation

3.1. Prior and Posterior Distributions

It is to be noticed that both parameters α and λ are unknown, namely no natural conjugate
bivariate prior distribution exists. Therefore we assume the independent priors of α and λ are
Gamma(a, b) and Gamma(c, d) with corresponding means a

b and c
d , respectively. The priors of α and λ

can be written as:
α ∼ Ga(a, b), π1(α) =

ba

Γ(a)
αa−1e−bα.



Symmetry 2019, 11, 1219 5 of 17

λ ∼ Ga(c, d), π2(λ) =
dc

Γ(c)
λc−1e−dλ.

where a, b, c, d are the positive hyperparameters containing the prior knowledge.
Thus, the joint prior distribution is given by:

π0(α, λ) ∝ αa−1λc−1e−bαe−dλ. (10)

The posterior distribution of α and λ is:

π(α, λ|data) =
L(data|α, λ)π0(α, λ)∫ ∞

0

∫ ∞
0 L(data|α, λ)π0(α, λ)dαdλ

.

Let ĝ(α, λ) be the expectation of a function of α and λ, say g(α, λ). Then we obtain:

ĝ(α, λ) = E[g(α, λ)|data] =

∫ ∞
0

∫ ∞
0 g(α, λ)L(data|α, λ)π0(α, λ)dαdλ∫ ∞
0

∫ ∞
0 L(data|α, λ)π0(α, λ)dαdλ

. (11)

In this passage, we only compute the Bayesian estimates for entropy. So particularly, g(α, λ) is a
function of H.

3.2. Loss Function

In this subsection, we consider Bayesian estimators under symmetric and asymmetric loss
functions. One of the most widely used symmetric loss functions is squared error loss function.
The loss function is given by:

L1(θ, δ) = (δ− θ)2,

where δ is an estimator of θ.
In this case, the Bayesian estimator (say θ̂S) is obtained as:

θ̂S = E(θ|data). (12)

As for asymmetric loss function, we choose two most commonly used asymmetric loss
functions—linex loss function and general entropy loss function. The linex loss function is defined as:

L2(θ, δ) = eh(δ−θ) − h(δ− θ)− 1,

where, δ is an estimator of θ, and h is the sign presenting the asymmetry. We refer to Reference [21] for
detailed information about linex loss function.

The Bayesian estimator under linex function (say θ̂l) is given by:

θ̂l = −
1
h

log[E(e−hθ |data)]. (13)

Next, the general entropy loss function is defined as:

L3(θ, δ) = (
δ

θ
)q − q log(

δ

θ
)− 1,

where δ is an estimator of θ, and q is the sign presenting the asymmetry. For a detailed information,
we refer to Reference [22].

The Bayesian estimator in this situation (say θ̂e) is given as:

θ̂e = [E(θ−q|data)]−
1
q . (14)
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Using Equations (12)–(14), the Bayesian estimators of entropy under squared error loss function,
linex loss function and general entropy loss function can be obtained as:

ĤS( f ) =

∫ ∞
0

∫ ∞
0 H( f )L(data|α, λ)π0(α, λ)dαdλ∫ ∞

0

∫ ∞
0 L(data|α, λ)π0(α, λ)dαdλ

. (15)

ĤL( f ) = −1
h

log[

∫ ∞
0

∫ ∞
0 e−hH( f )L(data|α, λ)π0(α, λ)dαdλ∫ ∞
0

∫ ∞
0 L(data|α, λ)π0(α, λ)dαdλ

]. (16)

ĤE( f ) = [

∫ ∞
0

∫ ∞
0 H( f )−qL(data|α, λ)π0(α, λ)dαdλ∫ ∞
0

∫ ∞
0 L(data|α, λ)π0(α, λ)dαdλ

]
− 1

q . (17)

It is to be noted that all the Bayesian estimates of entropy are in the form of a ratio of two integrals,
which cannot be simplified or computed directly. Thus, we apply the Lindley method and Tierney and
Knadane method to compute the estimates.

3.3. Lindley Method

In this subsection, we apply the Lindley ([23]) method to compute the approximate Bayesian
estimates of entropy. For the two parameters case, the Lindley method can be written as:

ĝ = g(α̂, λ̂) + 0.5[(u11τ11 + 2u12τ12 + u22τ22) + l30(u1τ11 + u2τ12)τ11 + l03(u2τ22 + u1τ21)τ22

+l21(3u1τ11τ12 + u2(τ11τ22 + 2τ2
12)) + l12(3u2τ22τ21 + u1(τ22τ11 + 2τ2

21))]

+p1(u1τ11 + u2τ21) + p2(u2τ22 + u1τ12). (18)

The notations in this formula and some basic formulas are omitted here and presented in
Appendix B.

• For squared error loss function, we take:

g(α, λ) = H( f ) = log(λ)− log(α) +
1
α
+ 1.

Then we can compute that:

u1 = − 1
α
− 1

α2 ,

u2 =
1
λ

,

u12 = u21 = 0,

u11 =
1
α2 +

2
α3 ,

u22 = − 1
λ2 .

Then using Equation (18), the Bayesian estimates under squared error loss function can be
obtained as:

ĤS = ĝ

= g(α̂, λ̂) + 0.5[(u11τ11 + u22τ22) + l30(u1τ11 + u2τ12)τ11 + l03(u2τ22 + u1τ21)τ22

+l12(3u2τ22τ21 + u1(τ22τ11 + 2τ2
21))] + p1(u1τ11 + u2τ21) + p2(u2τ22 + u1τ12)
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• Further, for the linex loss function, we take:

g(α, λ) = e−hH( f ), H( f ) = log(λ)− log(α) +
1
α
+ 1.

We can obtain that:

u1 = he−hH(
1
α
+

1
α2 ),

u2 = − h
λ

e−hH ,

u12 = u21 = −h2

λ
e−hH(

1
α
+

1
α2 ),

u11 = he−hH [h(
1
α
+

1
α2 )

2 − (
1
α2 +

2
α3 )],

u22 =
h

λ2 e−hH(1 + h).

Similarly, using Equation (18), we can derive the Bayesian estimates of entropy under the linex
loss function as:

Ĥl = −1
h

log(ĝ)

= −1
h

log{g(α̂, λ̂) + 0.5[(u11τ11 + 2u12τ12 + u22τ22) + l30(u1τ11 + u2τ12)τ11

+l03(u2τ22 + u1τ21)τ22 + l12(3u2τ22τ21 + u1(τ22τ11 + 2τ2
21))] + p1(u1τ11 + u2τ21)

+p2(u2τ22 + u1τ12))}.

• For general entropy loss function, we take:

g(α, λ) = H( f )−q, H( f ) = log(λ)− log(α) +
1
α
+ 1.

We can derive that:

u1 = qH−(q+1)(
1
α
+

1
α2 ),

u2 = − q
λ

H−(q+1),

u12 = u21 = − q(q + 1)
λ

H−(q+2)(
1
α
+

1
α2 ),

u11 =
qH−(q+2)

α2 [(q + 1)(1 +
1
α
)2 − H(1 +

2
α
)],

u22 =
q

λ2 H−(q+2)(1 + q + H).

Thus, the Bayesian estimate under general entropy loss function can be computed using:

Ĥe = ĝ−
1
q = {g(α̂, λ̂) + 0.5[(u11τ11 + 2u12τ12 + u22τ22) + l30(u1τ11 + u2τ12)τ11 +

l03(u2τ22 + u1τ21)τ22 + l12(3u2τ22τ21 + u1(τ22τ11 + 2τ2
21))] + p1(u1τ11 + u2τ21)

+p2(u2τ22 + u1τ12))}
− 1

q .

In the next subsection, we apply the Tierney and Kadane method to compute the approximate
Bayesian estimate.
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3.4. Tierney and Kadane Method

An alternative to the Lindley method to approximate the integrals is using the method proposed
by Tierney and Kadane. Detailed information about the Tierney and Kadane method can be found in
Reference [24], and a comparision between the Tierney and Kadane method and Lindley method can
be found in [25]. In this subsection, we use the Tierney and Kadane method to estimate the entropy.
We consider the function of α and λ, say g(α, λ). The formulas in the Tierney and Kadane method are
as follows:

δ(α, λ) =
l(data|α, λ) + π0(α, λ)

n
,

δ∗(α, λ) = δ(α, λ) +
log(g(α, λ))

n
,

ĝ =

√
|Σ∗|
|Σ| en[δ∗(α̂∗T ,λ̂∗T)−δ(α̂T ,λ̂T)],

where Σ and Σ∗ are the inverse of the negative Hessian matrix of δ and δ∗, respectively.
Note that using Equations (5) and (10), we have:

δ(α, λ) =
1
n
[(J + a− 1) log α + (c− 1− J) log λ− (b + W(λ))α− dλ

−α
J

∑
i=1

(1 + Ri) log(1 +
Xi
λ
)−

J

∑
i=1

log(1 +
Xi
λ
)].

In order to compute α̂T and λ̂T , we need to solve the following equations:

∂δ

∂α
=

1
n
[
J + a− 1

α
− (b + W(λ))−

J

∑
i=1

(1 + Ri) log(1 +
Xi
λ
)] = 0. (19)

∂δ

∂λ
=

1
n
[
c− J − 1

λ
− αW1(λ)− d + α

J

∑
i=1

(1 + Ri)(
1
λ
− 1

λ + Xi
) +

J

∑
i=1

(
1
λ
− 1

λ + Xi
)] = 0. (20)

We can also find that

∂2δ

∂α2 = − J + a− 1
nα2 ,

∂2δ

∂α∂λ
=

1
n
[−W1(λ) +

J

∑
i=1

(1 + Ri)(
1
λ
− 1

λ + Xi
)],

∂2δ

∂λ2 =
1
n
[
J + 1− c

λ2 − αW2(λ) + α
J

∑
i=1

(1 + Ri)(
1

(λ + Xi)2 −
1

λ2 )

+
J

∑
i=1

(
1

(λ + Xi)2 −
1

λ2 )].

Thus, we can compute |Σ| = [ ∂2δ
∂α2

∂2δ
∂λ2 − ( ∂2δ

∂α∂λ )
2]−1 at (α̂T , λ̂T)

• For squared error loss function, we take:

g(α, λ) = H( f ) = log(λ)− log(α) +
1
α
+ 1,

δ∗S = δ(α, λ) +
log H

n
.
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Let δ∗S take derivatives with respect to α and λ, we obtain:

∂δ∗S
∂α

=
∂δ

∂α
− 1

nH
(

1
α
+

1
α2 ) = 0, (21)

∂δ∗S
∂λ

=
∂δ

∂λ
+

1
nHλ

= 0. (22)

According to the equations above, we can obtain (α̂∗T , λ̂∗T). In order to compute |Σ∗| = [
∂2δ∗S
∂α2

∂2δ∗S
∂λ2 −

(
∂2δ∗S
∂α∂λ )

2]−1 at (α̂∗T , λ̂∗T), we also need to compute:

∂2δ∗S
∂α∂λ

=
∂2δ

∂α∂λ
+ [

1
nH2λ

(
1
α
+

1
α2 )],

∂2δ∗S
∂α2 =

∂2δ

∂α2 +
1

nH2α2 [H(1 +
2
α
)− (1 +

1
α
)2],

∂2δ∗S
∂λ2 =

∂2δ

∂λ2 −
H + 1
nH2λ2 .

So the Bayesian estimate under squared error loss function is:

ĤS = ĝ =

√
|Σ∗|
|Σ| en[δ∗(α̂∗T ,λ̂∗T)−δ(α̂T ,λ̂T)]

• Further, for linex loss function, we take:

g(α, λ) = e−hH( f ), H( f ) = log(λ)− log(α) +
1
α
+ 1,

δ∗l = δ(α, λ)− hH
n

.

Thus, we have:
∂δ∗l
∂α

=
∂δ

∂α
+

h
n
(

1
α
+

1
α2 ) = 0, (23)

∂δ∗l
∂λ

=
∂δ

∂λ
− h

nλ
= 0. (24)

Using Equations (23) and (24), we can obtain (α̂∗T , λ̂∗T).

We can also compute that:
∂2δ∗l
∂α∂λ

=
∂2δ

∂α∂λ
,

∂2δ∗l
∂α2 =

∂2δ

∂α2 −
h

nα2 (1 +
2
α
),

∂2δ∗l
∂λ2 =

∂2δ

∂λ2 +
h

nλ2 .

Thus, we can compute |Σ∗| = [
∂2δ∗S
∂α2

∂2δ∗S
∂λ2 − (

∂2δ∗S
∂α∂λ )

2]−1 at (α̂∗T , λ̂∗T). The Bayesian estimate under
linex loss function can be derived as:

Ĥl = −
1
h

log(ĝ) = −1
h

log[

√
|Σ∗|
|Σ| en[δ∗(α̂∗T ,λ̂∗T)−δ(α̂T ,λ̂T)]].
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• As for general entropy loss function, we take:

g(α, λ) = H( f )−q, H( f ) = log(λ)− log(α) +
1
α
+ 1,

δ∗e = δ(α, λ)− q
n

log H.

We can compute that:
∂δ∗e
∂α

=
∂δ

∂α
+

q
nH

(
1
α
+

1
α2 ) = 0, (25)

∂δ∗e
∂λ

=
∂δ

∂λ
− q

nHλ
= 0. (26)

Using Equations (25) and (26), we can compute (α̂∗T , λ̂∗T).

We can also compute that:

∂2δ∗e
∂α∂λ

=
∂2δ

∂α∂λ
− q

nH2λ
(

1
α
+

1
α2 ),

∂2δ∗e
∂α2 =

∂2δ

∂α2 +
q

nH2α2 [(1 +
1
α
)2 − H(1 +

2
α
)],

∂2δ∗e
∂λ2 =

∂2δ

∂λ2 +
q

nH2λ2 (1 + H).

Then, we can obtain |Σ∗| = [ ∂2δ∗e
∂α2

∂2δ∗e
∂λ2 − ( ∂2δ∗e

∂α∂λ )
2]−1 at (α̂∗T , λ̂∗T).

Obviously, the Bayesian estimate under the general entropy loss function can be derived as:

Ĥe = ĝ−
1
q = [

√
|Σ∗|
|Σ| en[δ∗(α̂∗T ,λ̂∗T)−δ(α̂T ,λ̂T)]]

− 1
q .

4. Simulation Results

In this section, a simulation study is conducted in order to compare different estimates of entropy
with respect to MSEs and bias values. First, we describe how to generate a generalized progressively
hybrid censored sample for Lomax distribution.

Let X = (X1, X2, · · · , Xm) be the Type II progressively censored sample for Lomax distribution
with censoring scheme R = (R1, R2, · · · , Rm). Then

Yi = α log(1 + Xi
λ ) (i = 1, 2, ..., m)

is the Type II progressively censored sample for a standard exponential distribution. According to the
transformation proposed by [16], let

Z1 = nY1, Zi = (n−∑i−1
i=1(Ri + 1))(Yi −Yi−1) (i = 2, ..., m)

Then Z1, Z2, · · · , Zm are the independent random variables from standard exponential
distribution. Further, after generating Type II progressively censored sample X1, X2, · · · , Xm, we need
to convert it to generalized progressively hybrid censored sample. For fixed T and k, if T < Xk < Xm,
then the generalized progressively hybrid censored sample X is X = (X1, X2, · · · , Xk); if Xk < T < Xm,
then the corresponding generalized progressively hybrid censored sample X is X = (X1, X2, · · · , XD);
and if Xk < Xm < T, then the corresponding generalized progressively hybrid censored sample X
is X = (X1, X2, · · · , Xm). The algorithm for generating generalized hybrid censored sample can be
described as:
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1. generate Z1, Z2, · · · , Zm, where Zi (i = 1, 2, · · · , m) is the random variable from standard
exponential distribution.

2. Let Y1 = Z1
n , Yi = Yi−1 +

Zi
n−(i−1)−∑i−1

k=1 Rk
, then Y = (Y1, Y2, · · · , Ym) is the Type II progressively

censored sample from standard exponential distribution.
3. Further, let Xi = F−1(1− e−Yi ), where F−1 is the inverse of the cumulative distribution function.

Then X = (X1, X2, · · · , Xm) is the Type II progressively censored sample for Lomax distribution.
4. For pre-fixed T and k, if T < Xk < Xm, then the generalized progressively hybrid censored sample

X is X = (X1, X2, · · · , Xk); if Xk < T < Xm, then the corresponding generalized progressively
hybrid censored sample X is X = (X1, X2, · · · , XD); if Xk < Xm < T, then the corresponding
generalized progressively hybrid censored sample X is X = (X1, X2, · · · , Xm).

Without loss of generality, we take T = 1, α = 0.4 and λ = 0.2. The desired MLEs of entropy is
obtained based on the MLEs of unknown parameters. The Bayesian estimates under squared error,
linex and general entropy loss function are derived using the Lindley method and the Tierney and
Kadane method. Under the linex loss function, we choose h = 0.2 and h = 0.5. Under general entropy
loss function, we choose q = 0.2 and q = −0.2. For computing proper Bayesian estimates, we assign the
value of hyperparameters as a = 2, b = 5, c = 1, d = 5. Besides, we also computed Bayesian estimates
with respect to non-informative prior distribution. This corresponds to the case when hyperparameters
take values a = b = c = d = 0. The simulation results with non-informative priors are presented in
Table 1 and the results with informative priors are presented in Table 2. We apply two different types
of censoring scheme (Sch). Sch I: R1 = n−m. Ri = 0 for i 6= 1; Sch II: R1 = R2 = · · · = Rn−m = 1.
Ri = 0 for i > n−m.

In all the tables, the bias values and the MSEs of the MLES of entropy are presented in the fifth
column. All other columns uniformly contain four values. The first value denotes the bias value of the
Bayesian estimate using the Lindley method and the second value denotes the corresponding MSE of
the estimate using the Lindley method. The third and forth values represent the bias value and MSE of
the estimates obtained by the Tierney and Kadane method.

In general, we can observe that the MSE values decrease as the sample size n increases. For fixed
n and m, the MSEs decrease as k increases. Plus, the Bayesian estimate with informative prior
performs much better than that with non-informative prior with respect to bias value and MSE.
Further, it is observed that Bayesian estimates with proper priors usually perform better than the
MLEs, while MLEs compete really well with Bayesian estimates with non-informative priors. When the
prior is informative, both the methods perform well; while when the prior is non-informative, the
Tierney and Kadane method is a better choice. For linex loss function, h = 0.5 seems to be a better
choice than h = 0.2, and for general entropy loss function, q = 0.2 compete well with q = −0.2.
Overall, the Bayesian estimates with proper prior under the linex loss function behave better than the
other estimates.
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Table 1. The relative MSEs and biases of entropy estimates with MLE and the Bayes estimates with
non-informative priors (Ĥ for the MLEs, Ĥs for the Bayesian estimates under the squared error loss
function, Ĥl for the Bayesian estimates under the linex loss function, Ĥe for the Bayesian estimates
under general entropy loss function, Lindley for the Lindley method and TK for the Tierney and
Kadane method) .

n m k Sch Ĥ Ĥs
Ĥl Ĥe

Method
h = 0.2 h = 0.5 q = 0.2 q = −0.2

60 52

40

I

−0.0157 0.0518 0.0171 −0.0402 −0.0712 −0.0079 Lindley(0.3544) (0.4323) (0.4141) (0.4054) (0.5412) (0.4432)
0.0282 −0.0058 −0.0566 −0.0474 −0.022 TK(0.3818) (0.3706) (0.3562) (0.3770) (0.3766)

II

−0.066 0.0331 0.0001 −0.0539 −0.0619 −0.0303 Lindley(0.374) (0.4233) (0.4065) (0.395) (0.4669) (0.4521)
−0.0062 −0.0394 −0.0912 −0.0818 −0.0577 TK(0.35) (0.341) (0.3329) (0.3516) (0.3489)

48

I

−0.0265 0.1006 0.077 0.0116 0.0433 0.0668 Lindley(0.2412) (0.4526) (0.4618) (0.3594) (0.5667) (0.5138)
0.0861 0.0633 0.0238 0.0303 0.047 TK(0.2981) (0.2873) (0.2744) (0.2871) (0.2917)

II -0.0224 0.0569 0.0312 −0.0079 0.0013 0.02 Lindley(0.2501) (0.2706) (0.2632) (0.2553) (0.2662) (0.2669)
0.0457 0.0221 −0.018 −0.0135 0.0067 TK(0.2745) (0.267) (0.2574) (0.2744) (0.2706)

100 80

64

I

−0.0346 −0.0692 −0.0978 −0.1384 −0.1935 −0.1383 Lindley(0.206) (0.2741) (0.2948) (0.3182) (0.4859) (0.3755)
0.0319 0.0116 -0.0189 -0.0129 0.0033 TK(0.2074) (0.2025) (0.1967) (0.2053) (0.2056)

II

−0.0601 −0.025 −0.046 −0.077 −0.081 −0.0567 Lindley(0.2282) (0.2405) (0.238) (0.235) (0.2712) (0.2443)
0.0099 −0.0105 −0.042 −0.0361 −0.0213 TK(0.2159) (0.2115) (0.2068) (0.2141) (0.2147)

72

I

−0.031 0.0379 0.0154 −0.0125 −0.0047 0.0066 Lindley(0.1713) (0.2766) (0.2481) (0.2291) (0.2766) (0.2538)
0.022 0.0062 −0.0198 −0.0148 −0.0026 TK(0.1773) (0.174) (0.1705) (0.1763) (0.1765)

II

−0.0138 0.03 0.0131 −0.0128 −0.0092 0.0059 Lindley(0.1814) (0.1914) (0.1864) (0.1809) (0.1944) (0.1877)
0.0324 0.0161 −0.0105 −0.0052 0.0067 TK(0.1805) (0.1767) (0.1724) (0.1779) (0.1796)
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Table 2. The relative MSEs and biases of entropy estimates with MLE and the Bayes estimates with
informative priors (Ĥ for the MLEs, Ĥs for the Bayesian estimates under the squared error loss function,
Ĥl for the Bayesian estimates under the linex loss function, Ĥe for the Bayesian estimates under general
entropy loss function, Lindley for the Lindley method and TK for the Tierney and Kadane method).

n m k Sch Ĥ Ĥs
Ĥl Ĥe

Method
h = 0.2 h = 0.5 q = 0.2 q = −0.2

60 52

40

I

−0.0157 0.152 0.1181 0.0733 0.0718 0.101 Lindley(0.3544) (0.3253) (0.3242) (0.3577) (0.3696) (0.3403)
0.078 0.0481 0.0005 0.0095 0.0323 TK(0.3025) (0.2911) (0.2774) (0.2936) (0.2961)

II

−0.066 0.0687 0.0379 −0.0173 −0.0374 0.0012 Lindley(0.374) (0.289) (0.2823) (0.3057) (0.4011) (0.3508)
0.0592 0.0294 −0.0177 −0.0106 0.0139 TK(0.2919) (0.2818) (0.2703) (0.284) (0.2873)

48

I

−0.0265 0.064 0.0391 0.0011 0.01 0.0282 Lindley(0.2412) (0.227) (0.2199) (0.2122) (0.2226) (0.2233)
0.0322 0.0091 −0.0284 −0.0219 −0.004 TK(0.2242) (0.2184) (0.2125) (0.2225) (0.2233)

II

−0.0224 0.0692 0.0437 0.0048 0.0116 0.03 Lindley(0.2501) (0.2307) (0.2223) (0.2129) (0.2312) (0.2331)
0.0338 0.0109 −0.0268 −0.0213 −0.0032 TK(0.2408) (0.2352) (0.2289) (0.2399) (0.2394)

100 80

64

I

−0.0346 0.0229 −0.0009 −0.0309 −0.0393 −0.016 Lindley(0.206) (0.1948) (0.2015) (0.1963) (0.2426) (0.2195)
0.0563 0.0371 0.0073 0.0133 0.0278 TK(0.1748) (0.1702) (0.1644) (0.1709) (0.1716)

II

−0.0601 0.0254 0.0052 −0.0256 −0.0186 −0.0037 Lindley(0.2282) (0.2015) (0.1965) (0.1912) (0.1986) (0.1989)
0.0488 0.0295 −0.0007 0.0048 0.0197 TK(0.1989) (0.1942) (0.188) (0.1954) (0.1966)

72

I

−0.031 0.0289 0.012 −0.0137 −0.0077 0.0046 Lindley(0.1713) (0.16) (0.1568) (0.1534) (0.1585) (0.1586)
0.0426 0.0269 0.0013 0.006 0.0183 TK(0.1649) (0.1614) (0.1573) (0.1623) (0.1631)

II −0.0138 0.0484 0.0316 0.0058 0.012 0.0244 Lindley(0.1814) (0.172) (0.1659) (0.1599) (0.1659) (0.1671)
0.0395 0.0231 −0.0026 0.0018 0.0149 TK(0.1573) (0.154) (0.1502) (0.1556) (0.1552)

5. Data Analysis

In this section, a real data set is analyzed for illustrative purposes. We consider the data set
obtained from a meteorological study in Reference [26] and analyzed by Reference [27]. The data
were based on the radar-evaluated rainfall from 52 cumulus clouds (26 seeded clouds and 26 control
clouds), namely the sample size n is 52. We apply the Akaike information criterion (AIC), defined by
2× (p− log(L)), Bayesian information criterion (BIC), defined by p× log(n)− 2× log(L), where p
is the number of parameters, n is the number of observations, and L is the maximized value of the
likelihood function and Kolmogorov-Smirnov (K-S) statistics with its p-value. The competing model is
gamma distribution and generalized inverted exponential distribution. If the Lomax model fits well
with the data, it will have low AIC, BIC, K-S statistics value and high p value. Plus, we also draw
quantile-quantile plots to test the goodness of the model. The results are presented in Table 3 and
Figure 1.

Table 3. AIC, BIC K-S statistics with p value for competing lifetime models.

No. Distribution MLEs AIC BIC K-S p Value

1. Lomax distribution (α̂, λ̂) = (1.3055, 150.6285) 681.4757 685.3782 0.0952 0.7337
2. Gamma distribution (α̂, λ̂) = (0.5606, 0.0021) 682.1883 686.0908 0.0893 0.8009
3. Generalized inverted exponential distribution (α̂, λ̂) = (0.1425, 0.0819) 788.2046 792.1071 0.4184 2.4× 10−8
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Figure 1. Quantile-quantile plots .

Although Gamma distribution competes well with Lomax distribution, its second parameter
is too small. Plus, compared with gamma distribution, Lomax distribution is easier to handle with
respect to the computational aspect. So, Lomax distribution is a better choice. We choose to apply the
same censoring scheme as Reference [28], which is R1 = R2 = · · · = R24 = 1, R25 = 3, m = 25 and
n = 52 and the ordered progressively type-II censored sample generated by Reference [28] is: 1, 4.1,
4.9, 4.9, 7.7, 11.5, 17.3, 17.5, 21.7, 26.3, 28.6, 29, 31.4, 36.6, 40.6, 41.1, 68.5, 81.2, 92.4, 95, 115.3, 118.3, 119,
163, 198.6. Take Case I (k = 15, T = 80), Case II (k = 15, T = 100), and Case III (k = 18, T = 80). For Case I,
the generalized progressively hybrid censored sample is 1.0, 4.1, 4.9, 4.9, 7.7, 11.5, 17.3, 17.5, 21.7, 26.3,
28.6, 29.0, 31.4, 36.6, 40.6, 41.1, 68.5; for Case II, the generalized progressiveky hybrid censored sample
is 1.0, 4.1, 4.9, 4.9, 7.7, 11.5, 17.3, 17.5, 21.7, 26.3, 28.6, 29.0, 31.4, 36.6, 40.6, 41.1, 68.5, 81.2, 92.4, 95.0,
and for Case III, the generalized progressively hybrid censored sample is 1.0, 4.1, 4.9, 4.9, 7.7, 11.5, 17.3,
17.5, 21.7, 26.3, 28.6, 29.0, 31.4, 36.6, 40.6, 41.1, 68.5, 81.2.

For the Bayesian estimation, we apply the non-informative prior a = b = c = d = 0. Besides,
for the linex loss function, we choose h = 0.2 and h = 0.5. For the general loss function, we assign
q = 0.2 and q = −0.2. The results are shown in Table 4. We can observe that, although using different
methods under different loss functions, the estimates of entropy are pretty close to each other.

Table 4. Estimation of entropy based on a real data from a meteorological study.

Ĥ Ĥs
Ĥl Ĥe

Method
h = 0.2 h = 0.5 q = 0.2 q = −0.2

I 7.514680 7.391941 7.199010 6.966619 7.236140 7.286647 Lindley
8.047029 7.699564 7.452938 7.731689 8.073602 TK

II 6.595185 6.167338 6.102223 6.029770 6.108076 6.126530 Lindley
6.975125 6.821545 6.717372 6.856352 6.883334 TK

III 6.956195 6.586184 6.462234 6.324426 6.478268 6.512196 Lindley
7.462613 7.187117 7.023052 7.259597 7.390569 TK

6. Conclusions

The problem of estimating the entropy for Lomax distribution is considered in this paper, based
on generalized progressively hybrid censoring. The maximum likelihood estimator of entropy is
derived. Further, we apply the Lindley method and the Tierney and Kadane method to compute
Bayesian estimates under squared error loss function, linex loss function and general entropy loss
function. Then the proposed estimates are compared with respect to bias values and MSEs. It is
observed that Bayesian estimates with proper priors behave better than the corresponding MLEs.
However, MLEs compete very well with Bayesian estimates when the priors of the Bayesian estimates
are non-informative. Overall, the Bayesian estimates with proper priors under the linex loss function
behave better than other estimates according to the simulation results presented in this passage.
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Much research has been done based on traditional censoring schemes and progressively censoring
schemes, while few studies have been conducted based on generalized hybrid censoring schemes.
Besides, compared with the parameters, entropy has a wider use in many fields now. Therefore, the
estimation of entropy from other distributions based on generalized progressively hybrid censoring is
still of great potential for future study.
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Appendix A. Likelihood and Log-Likelihood Functions

The likelihood functions and log-likelihood functions are presented in this Section as follows:
Case I:

L ∝
αk

λk (1 +
Xk
λ
)−[α(1+R∗1)+1]

k−1

∏
i=1

(1 +
Xi
λ
)−[α(1+Ri)+1].

l ∝ k log(α)− k log(λ)− α(1 + R∗1) log(1 +
Xk
λ
)− log(1 +

Xk
λ
)

−α
k−1

∑
i=1

(1 + Ri) log(1 +
Xi
λ
)−

k−1

∑
i=1

log(1 +
Xi
λ
).

Case II:

L ∝
αD

λD (1 +
T
λ
)−αR∗2

D

∏
i=1

(1 +
Xi
λ
)−[α(Ri+1)+1].

l ∝ D log(α)− D log(λ)− αR∗2 log(1 +
T
λ
)− α

D

∑
i=1

(1 + Ri) log(1 +
Xi
λ
)−

D

∑
i=1

log(1 +
Xi
λ
).

Case III:

L ∝
αm

λm

m

∏
i=1

(1 +
Xi
λ
)−[α(Ri+1)+1].

l ∝ m log(α)−m log(λ)− α
m

∑
i=1

(1 + Ri) log(1 +
Xi
λ
)−

m

∑
i=1

log(1 +
Xi
λ
).

Appendix B. Lindley Method

Notations and basic expressions in (18) in Lindley method are as follows:

ui =
∂g
∂θi

, uij =
∂2g

∂θi∂θj
, lij =

∂i+jl

∂θi
1∂θ

j
2

,

p = log(π0(α, λ)), pi =
∂p
∂θi

,

τij denotes the (i, j)-th element of the inverse of the negative Hessian matrix of
log-likelihood function.
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For Lomax distribution based on generalized progressively hybrid censoring sample, we have:

l30 =
2J
α3 ,

l03 = − 2J
λ3 + α

J

∑
i=1

(1 + Ri)(
2

λ3 −
2

(λ + Xi)3 ) +
J

∑
i=1

(
2

λ3 −
2

(λ + Xi)3 )− αW3(λ),

l21 = 0,

l12 =
J

∑
i=1

(1 + Ri)(
1

(λ + Xi)2 −
1

λ2 )−W2(λ),

l20 = − J
α2 ,

l02 =
J

λ2 + α
J

∑
i=1

(1 + Ri)(
1

(λ + Xi)2 −
1

λ2 ) +
J

∑
i=1

(
1

(λ + Xi)2 −
1

λ2 )− αW2(λ),

l11 =
J

∑
i=1

(1 + Ri)(
1
λ
− 1

λ + Xi
)−W1(λ).

where, W1(λ) = R∗2(
1

T+λ −
1
λ ), W2(λ) = R∗2(

1
λ2 − 1

(λ+T)2 ), W3(λ) = R∗2(
2

(λ+T)3 − 2
λ3 ) for Case II,

W1(λ) = W2(λ) = W3(λ) = 0 for Case I and Case III.
We also have:

p1 =
a− 1

α
− b,

p2 =
c− 1

λ
− d,

τ11 = − l02

l20l02 − l2
11

,

τ12 = τ21 =
l11

l20l02 − l2
11

,

τ22 = − l20

l20l02 − l2
11

.
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