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Abstract: In this paper a method for detecting and estimating the distance of a vehicle driving in
front using a single black-box camera installed in a vehicle was proposed. In order to apply the
proposed method to autonomous vehicles, it was required to reduce the throughput and speed-up the
processing. To do this, the proposed method decomposed the input image into multiple-resolution
images for real-time processing and then extracted the aggregated channel features (ACFs). The idea
was to extract only the most important features from images at different resolutions symmetrically.
A method of detecting an object and a method of estimating a vehicle’s distance from a bird’s eye
view through inverse perspective mapping (IPM) were applied. In the proposed method, ACFs were
used to generate the AdaBoost-based vehicle detector. The ACFs were extracted from the LUV color,
edge gradient, and orientation (histograms of oriented gradients) of the input image. Subsequently,
by applying IPM and transforming a 2D input image into 3D by generating an image projected
in three dimensions, the distance between the detected vehicle and the autonomous vehicle was
detected. The proposed method was applied in a real-world road environment and showed accurate
results for vehicle detection and distance estimation in real-time processing. Thus, it was showed
that our method is applicable to autonomous vehicles.

Keywords: vehicle detection; vehicle distance estimation; aggregated channel features (ACFs);
inverse perspective mapping (IPM); advance driver assistance system (ADAS)

1. Introduction

In recent years, interest in autonomous vehicles has been increasing rapidly. Traditional vehicles can
be improved with advances in artificial intelligence and its applications in various fields. Automakers
are developing self-driving vehicles and are selling vehicles with safe driving devices to support the
driver. For safe autonomous driving, a fusion of various technologies is needed along with vehicle IT
technology [1–4]. For vehicle IT technology, the sensors include laser, radar, ultrasonic wave, lidar,
charge coupled device (CCD) sensors, and additional devices for communication among vehicles.
However, sensors for the safe driving of vehicles remain expensive. An additional problem is that
sensors can be easily damaged in slight collisions [5,6]. Moreover, sensors that collect three-dimensional
information (such as lidar) are not practical for common use, because the price of a sensor is comparable
to the price of a vehicle [3,7]. Therefore, ultrasonic sensors are used to collect two-dimensional
information to recognize nearby objects as an auxiliary device for safe driving. However, most of these
sensors are located on the outside of the vehicle (front and rear bumper and rearview mirror). In some
cases, sensors may malfunction because of the damage caused by an external collision or the presence
of dust. In recent years, most vehicles have been equipped with black-box devices to record driving
conditions [6,8–10]. In some countries, black boxes are mandatory for business vehicles or are installed
with government support [6]. Currently, black-box devices for vehicles are used to recover information
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only in special situations, such as vehicle accidents. Therefore, it was required to develop a black box
for a vehicle equipped with a function of automatically recognizing the driving situation in advance
and automatically providing relevant information for the driver to support safe driving. Some of the
existing video recording devices include a driver assistance function (such as a lane departure and a
departure guide on the front side) [6,8–13]. However, it has a very limited capacity for supporting
driving safety because it cannot detect and estimate the distance of objects 50 m or beyond in all
directions. Therefore, we proposed a technique of estimating the distance between the vehicle and
other vehicles in real-time, by using an image acquired from a low-cost image-recording device.

Many studies based on vision sensors have been carried out for vehicle detection and symmetrical
distance estimation [14–17]. Image processing can be applied in different ways based on the features
of the vision sensor. By detecting the vehicle on the input image using image processing, various
information about the detected vehicle can be obtained. Vehicle detection research includes, for example,
feature-based template matching methods [18–22], neural networks or support vector machines [23–25],
or shape- and motion-based methods [19,26,27]. Vehicle detection methods are mostly based on features
that assume an invariable and formal shape of the vehicle. Vehicle-to-vehicle distance estimation
research includes a distance estimation method based on the size of the detected vehicle [15,17,28],
stereo camera-based method [16,29], and a method that compares the size of road infrastructure (lane,
guide rail, etc.). Vehicle distance estimation methods are mostly based on the detected vehicle shape
information [12]. Although the distance estimation based on the stereo camera provides a relatively
accurate result, the stereo camera is more expensive, and the computation throughput is more limited
than for a mono camera.

Therefore, in this paper, I proposed a method to detect a forward moving vehicle from a
single camera and to estimate the distance of the current vehicle from the detected vehicle. To reduce
computational cost and ensure symmetrical real-time processing, the input road image was decomposed
into multiple-resolution images, and vehicle detection was performed for a low-resolution image.
The proposed method used a cascade classifier using aggregated channel features (ACFs) and the
AdaBoost algorithm [30,31] to learn vehicle images and generate vehicle detectors. The AdaBoost
algorithm is known as a classifier that can classify two classes well by adaptive boosting. The AdaBoost
algorithm is an improved method to use the idea of boosting algorithm in real data analysis. It generates
a strong classifier with a combination of several week classifiers and weight values. The Adaboost
algorithm re-adjusts the weight of the sample data at the beginning of learning; the data are equally
weighted but misclassified data increase the weight difference and well-classified data decrease the
weight. The classifier with the lowest weighted error value at each stage is one weak classifier.
The Viola-Jones algorithm [32] is known as an effective real-time object detection algorithm using the
AdaBoost algorithm using square features as a weak classifier.

In the proposed method, the ACFs are used to downsample a multi-resolution image without
reducing the feature information included in the input image. The ACF is a method that reduces the
original image size by downsampling it, while maintaining unique features of the image and skipping
other features. Thus, ACF aims to reduce the dimensions of the image and maintain unique features
at the same time. After all, two-dimensional feature information is extracted and downsampled k
times to generate kth feature information while maintaining (k−1)th feature information. This has the
advantage of reducing the amount of computation [33]. In the proposed method, ACF and AdaBoost
algorithms [32,34] are used to learn the automotive domain in advance for vehicle detection. The reason
for using the AdaBoost algorithm is that it is about 15 times faster than the study using neural networks
or SVM (support vector machine), and has high accuracy, as Viola [32] revealed.

Subsequently, an inverse perspective transformation (IPM) was applied to estimate the distance
from the detected vehicle region in the input image [35,36]. Inverse perspective transformation is a
method of generating a bird-view (or top-view) image by projecting a two-dimensional image acquired
by a camera into a three-dimensional real-world space and mapping it to a two-dimensional space
again. Although it is impossible to accurately calculate the distance with image-based processing,
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the experiments showed that the distance error was within ±5 m for moving vehicles. To apply the
proposed method to the safe driving support system of a vehicle under a road driving environment,
real-time processing was required. In our method, the image size was reduced while maintaining the
feature information of the input image, and then the vehicle was detected using an AdaBoost-based
vehicle detector. Afterwards, using the inverse perspective transformation, the two-dimensional road
image was mapped onto the three-dimensional space that corresponded to the real-world space, and
the distance to the detected vehicle was estimated symmetrically.

1.1. Related Works

Kim et al. [13] used Haar-like features and edge orientation information to detect vehicles, and they
used the detected vehicle widths and location information to estimate the distance among vehicles.
To build a classifier that can detect vehicles, a large number of vehicle images is required for training.
To overcome this difficulty, they used the pattern of the rear part of the vehicle on the road to detect
the vehicle. However, if the surface of the vehicle reflects sunlight or if objects that are not related to
the vehicle (such as road pollution or lanes) are included in the road image, misdetection may occur.
To use the width of the detected vehicle for the estimation of the vehicle distance, it is required to
accurately detect the shape of the vehicle.

Jeong et al. [37] proposed a method to detect a vehicle and estimate the distance to prevent
collision. They proposed a method that uses Haar-like features to detect driving vehicles. To estimate
the distance, the method uses the number of horizontal pixels of the detected vehicle area. Candidate
vehicle regions are selected using Haar-like features, and only vehicle regions are detected in the
candidate vehicle regions according to the shape of the edge distribution through the Sobel edge.
The distance to the detected vehicle was estimated using a pre-trained distance database that calculates
the actual number of pixels per meter. This method has the disadvantage of low accuracy because it
does not consider changes in image resolution and the degree of distortion of the camera in actual
calculations. In addition, the estimated distance database (DB) is calculated up to 15 m, which limits
its application in real-world road environments.

Bertozzi et al. [29] proposed a method of projecting a two-dimensional image onto a
three-dimensional real world through computation of inverse perspective transformation to estimate
the distance to the vehicle detected in the image acquired from the camera. However, projecting a
two-dimensional image onto a three-dimensional space is challenging for real-time processing, because
the amount of calculations is increased per pixel.

In order to implement a safe ADAS, Lee et al. [38] and Yin et al. [39] proposed a method for
analyzing a driver’s movement while driving and focusing on a driving task. In their proposed method,
the risk level was estimated using the hand movement information of the driver. While their methods
are concerned with the inadvertent driving behavior of the driver, the proposed method proposes a
method that is interested in the movement of other vehicles.

1.2. Definition of Problems

To ensure vehicle safety, detection of a vehicle moving forward in road environment requires
real-time processing. The storage capacity of the black-box camera used in the proposed method is
more than 30 frames per second. However, it is difficult to process more than 10 frames per second
because of the high computational complexity of the image processing algorithm for vehicle detection
and inter-vehicle distance estimation. Therefore, a problem in this study was that the computational
complexity increased with the increase in the dimensions of the input image. As a result, the calculation
time required for image processing increased. As proposed by Dollar et al. [30], several well-refined
image features can be extracted, and these features can be enhanced to improve detection performance.
However, it is difficult to process more than 15 frames per second because of an increased amount of
pixel calculations. As in the autonomous driving and safe driving support system to be applied in the
proposed method, a vehicle detection and inter-vehicle distance estimation of more than 10 frames per
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second were required to ensure a relatively high accuracy at the speed of 60 km/h. To guarantee the
satisfaction of these processing constraints in this problem area, it was necessary to select whether or
not to reduce the processing of more than 10 frames per second instead of increasing the accuracy of the
vehicle detection by applying complex features. Furthermore, it was necessary to estimate the distance
among vehicles in real-time and to implement the method without additional sensors (ultrasonic, lidar,
stereo vision, etc.). Therefore, in this paper, the problems of vehicle detection and distance estimation
are defined as follows. The detection of the target vehicle is limited to vehicles in the same driving lane.
The distance estimation is limited by the vehicles within 70 m ahead. To achieve real-time processing
and a relatively high accuracy, it is necessary to apply a method that can effectively extract unique
features and reduce computational complexity, even if the dimensions of the input image is reduced.

2. Proposed Methods

Figure 1 shows the workflow of the proposed method for vehicle detection and distance estimation
based on road images when driving forward symmetrically. The proposed method includes three
processing steps: vehicle detection, tracking, and distance estimation. Additionally, two preliminary
steps are required for this workflow: learning the vehicle images and extracting the camera parameters.
Figure 2 shows the process of vehicle detection and distance estimation. In the pre-processing step,
the 1920 × 1080 pixel size was reduced to a 900 × 505 pixel size, and the median filtering process was
performed to remove the salt and pepper noise included in the road image. In the vehicle detection
step, the regions of interest (ROI) corresponding to the vehicle detection area was first selected in the
input image. Next, the ACFs were extracted from the ROI and the vehicles were detected using the
ACF-based vehicle detector. It was possible not only to process the entire input image for detecting
the vehicle but also to reduce computations by performing the detection step only in the region of
interest. Next, vehicle regions detected by the vehicle detector were tracked through a pixel-matching
process. Finally, the distance of the current vehicle from the detected vehicle was estimated (during
the vehicle distance estimation step) based on the center coordinates of the bounding box area of
the detected vehicle. In the proposed method, the inverse perspective transformation method was
applied to transform the input image into a three-dimensional space to estimate the actual distance to
the vehicle.
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In this paper, I propose a vehicle detection method, a car tracking method, and a car distance
estimation method in Sections 3–5, respectively. Next, the experimental results are shown in Section 6.
Finally, the paper is concluded in Section 7.

3. Vehicle Detection

3.1. ROI Selection

To detect vehicles in the input image, it is necessary to reduce the detection processing range.
This step is required to provide vehicle detection information in real time to enable safe driving support.
Therefore, in the proposed method, ROI was selected from the input image. In the problem definition,
the selection of the ROI includes the left and right lanes of the driving lane, as it determines the range
of the detection and distance estimation of the vehicle traveling in the same road lane. Moreover,
the ROI for the vehicle detection was selected from the center part of the image obtained from the
moving vehicle. The ROI can be selected without any processing by applying a pre-defined pixel size
filtering on the input image, to reduce the execution time. However, when the ROI includes a bus or
truck with a height of approximately 3 m or more, part of the vehicle is omitted in the ROI, thus the
vehicle is not be detected. After selecting the ROI for the vehicle detection process, the ACFs were
extracted from the detected area of the vehicle in the ROI, and the vehicle was detected by inputting it
into a previously trained vehicle detector.

3.2. Extraction of Aggregated Channel Features

Dollar et al. [30] proposed the ACFs to dramatically enhance the performance of pedestrian
detection. The ACFs have the characteristic of extracting unique features quickly from the image.
To quickly extract the ACFs, the input image was first generated as a multiple-resolution pyramid
of images at a high speed. For the images included in the pyramid, the feature information was
extracted, including the same and uniquely extracted features from the high-level resolution image to
the low-level resolution image. The process of extracting ACFs was as follows. After extracting feature
information from the input image, the kth feature information was generated, while the (k−1)th feature
information was maintained while downsampling k times. That is, the ACFs have a characteristic
of keeping the (k−1)th extracted feature information, even if it is the kth downsampled extracted
feature information.
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Therefore, it is possible to extract the unique features of an input image even from a low-resolution
image (in which the dimensions are reduced) without processing the input image; thus, the amount of
calculations can be reduced [29,30].

Among features used in existing object detection studies, Haar-like [40–42] and integral channel
features (ICFs) [43,44] extract features from fixed-size blocks. However, the ACFs proposed by Dollar
et al. [30] have the advantage of extracting characteristic information regardless of object size variations
(by extracting features from blocks of various sizes). The input RGB image (I) was calculated as
a total of ten feature channels (C = Ω (I)) as shown in Figure 3. Each feature channel included a
normalized gradient magnitude, a quantized gradient angle in six orientations, and LUV color channels.
Each feature channel was calculated by a 4 × 4 pixels block sum, reduced four times, and smoothed by
a (1/4 1/2 1/4) filter. Finally, the feature vectors were extracted from the feature space of the low-level
resolution multi-channel decomposition of the input image. Subsequently, a classification process
was performed to distinguish whether the extracted feature vectors belong to the object of interest.
To classify the ACFs of the object of interest, this step used a binary decision-tree-based classifier to
generate a strong classifier. Among the ACF channels, the LUV color model focused on the fact that
human beings are more visually sensitive to intensity than color. The L channel is the brightness value,
the U channel is red and green, and the V channel is blue and purple [45]. The process of recalculating
the RGB color model as the LUV color model is shown in Equation (1). Here, Xn, Yn, and Zn are white
color information. Figure 4 shows a flowchart of the vehicle detector processing based on ACF.
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3.3. Object Detection

In this step, the vehicle is detected in the input image using the ACF-based vehicle detector.
The vehicle detector extracts ACFs from training images in advance and combines it with an
AdaBoost-based learning algorithm to generate a strong classifier. The AdaBoost algorithm is a
method of binary classification through matching process based on features of training images.
The ACFs extracted from the vehicle and non-vehicle training images are matched and can be used
to distinguish the two classes. The mutual matching process of features is performed not only once,
but also on various conditions. As a result, these multiple conditions are composed of weak classifiers
by generating a strong classifier with a linear combination of weak classifiers. The resulting classifier
can quickly produce a result with a good accuracy. In other words, a strong classifier is generated that
provides high accuracy through linear combinations of weak classifiers that correctly classify learned
features. Table 1 describes the AdaBoost algorithm.

Table 1. Overview of the AdaBoost algorithm.

Step 1. Define learning data: m objects of interest (+1) and n non-objects of interest (−1):
(x1, y1), . . . , (xi, yi), i = 1, . . . , N, N = m + n

xi ∈
{
training samples

}
, yi ∈ {1, −1}

Step 2. Initialization of the weight value of i-th weak classifier (h):

weigth1
i =

{ 1
m , yi = −1
1
n , yi = +1

Step 3. Training step (repeat for t = 1, . . . , C, t++)
(1) Normalization of the weight value of the i-th learning sample of the t-th weak classifier:

weigtht
i =

weightt
i∑N

i=1 weighti
i

(2) Calculation of error rate (εt) of t-th weak classifier:

εt =
N∑

i=1
weightt

i

∣∣∣ht(xi) − yi
∣∣∣

(3) Selection of a weak classifier (h) with a minimum error rate.
(4) Updating weight values:

weigtht+1
i = weigtht

i ×

{
e−αt , i f ht(xi) = yi
eαt , i f ht(xi) , yi

αt = log 1
βt

, βt =
εt

1−εt

Step 4. Creation of a strong classifier (H(x)) as a linear combination of weak classifiers (h):

H(x) = sign
(

C∑
n=1

αnhn(x)
)

To create an AdaBoost-based vehicle detector, the first step is to collect a training dataset N that
represents two classes: images with vehicles (m, class: +1) and images without vehicles (n, class: −1).
In the second step, the weight of the training data(x) are initialized to the same value. It is possible to
select strong classifiers by updating weight values iteratively in the learning process. In the third step,
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the learning data are fed to the weak classifier. Subsequently, the error rate between the predicted
result and the previously known result is calculated. To calculate the learning error rate, the weight
value of the learning data is first normalized. The error rate is a total sum of values obtained by
multiplying the learning data values erroneously classified in the learning data by the weight values.
Here, the error rate means the probability of presenting misclassified results in the classifier’s learning
process. Therefore, it is necessary to adjust the weight values assigned to them to exclude weak
classifiers that present the results that are misclassified in the learning process. Therefore, the weak
classifiers correctly presented by the learning result, that is, classifiers exhibiting a low error rate, are
selected. If the tth weak classifier is correctly classified as the label of the learning data, the error (εt)
becomes small. As a result, αt increases, and the weight value becomes small. If the weight value of the
tth weak classifier becomes smaller, the probability that a weak classifier with a smaller weight value is
selected in the next learning process becomes higher, thereby reducing the probability of misclassifying
the learning data. Finally, the final step is to create a strong classifier that can correctly classify the
learning data as a linear combination of weak classifiers with a low misclassification probability [46].
Figure 5 shows examples of images used for training the vehicle detector. The images show the rear
part of the front vehicle that was driving in various road environments. The ACFs were extracted from
the training image, and the extracted information was converted into a feature vector and used as an
input to the AdaBoost-based vehicle classifier. The vehicle image detected by the classifier is shown in
Figure 6. Generally, a large amount of training images is required to improve the performance of the
vehicle detector.
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The proposed method has a disadvantage if a large amount of training images cannot be obtained.
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image accumulated by normalizing the learning vehicle region to 31 × 34 pixels and converting it to
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template >= 0.7

4. Vehicle Tracking

At this step, the vehicle regions (previously detected in the vehicle detection step) are tracked
through a pixel-matching process [47]. Based on the feature information contained in the detected
vehicle region, the vehicle region is tracked by performing a comparison process, specifically,
by searching for adjacent regions that have the most similar feature information. In the proposed
method for reducing the pixel-matching processing time, a range for comparison with the most similar
regions in the adjacent frames was set. Generally, in an image obtained at a speed of 15 frames per
second, the position of a moving vehicle was less than approximately 20 pixels in an adjacent frame.
Therefore, the region of 20 pixels was set as the center of interest in the vehicle region detected in the
vehicle detection step. Pixel matching was performed in the corresponding region in the adjacent
frame. Figure 7 shows the results of vehicle tracking through the pixel matching process in the detected
vehicle region.
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5. Vehicle Distance Estimation

At this step, we estimated the distance of the current vehicle from the detected vehicle. To estimate
the distance, we used the inverse perspective transformation method [35]. The input image was
projected to a real-world image through inverse perspective transformation. Next, the distance
between the actual camera and the detected vehicle was estimated from the image projected in three
dimensions. The distance estimation method was processed as shown in Figure 2. The camera
calibration process was performed to acquire the parameters of the camera in advance. Through this
process, information such as the focal length of the camera, degree of distortion, and lens bending
rate were obtained. The inverse perspective transformation method transforms a two-dimensional
image into a three-dimensional space image that has a perspective using camera parameters. Finally,
the real-world coordinates were calculated to estimate the distance between the camera and the pixels
of the actually detected vehicle region on the inverse perspective transformed three-dimensional space.

5.1. Camera Parameters Extraction

At this step, we extracted the parameters of the vehicle’s black-box camera. In most cases, a vehicle
black-box camera was installed to acquire an omnidirectional road image from a driver’s point of
view. In other words, it was installed depending on the visual sensation without going through
the accurate measurement for the black-box camera installation. Therefore, an accurate acquisition
of the parameters of the black-box camera was required to estimate the distance from the vehicle.
Camera parameters included the degree of image warping, tilt and rotation angle, installation height,
and focal length of the camera lens. To calculate these parameters, it was necessary to analyze the
environment in which the image was acquired. In the proposed method, the camera parameters were
calculated using pattern board images. Figure 8 shows the results of estimating the camera parameters
in the checkerboard pattern image. Camera calibration is the process of estimating parameters of
the camera using images in a checkerboard pattern, and the reprojection error is calculated using the
calibration image. The reprojection error is the distance between the checkerboard pattern detected in
the calibration image and a world point projected on the same image. The calibration image with a
high mean reprojection error was excluded. Figure 8c shows the location of the checkerboard pattern
images using camera parameters in real-world space.
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errors; (c) position of pattern boards in the 3D space.

5.2. Inverse Perspective Transformation

As shown in the previous research [29,35], a 2D image obtained from a vehicle black-box
camera contains the perspective effect and stores it. The perspective effect means that the
coordinates of three-dimensional space (x,y,z) are mapped to two-dimensional space (u,v). Therefore,
the two-dimensional image loses perspective information in the real world, and the inverse perspective
transformation re-estimates the information about the perspective through the calculation process.
As shown in Figure 9, when the three-dimensional coordinate system is mapped to the two-dimensional
coordinate system, information about the image acquisition camera is required to estimate the
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perspective information. To transform the three-dimensional real-world coordinate system from
two-dimensional images, the proposed method acquires the angle of camera view (α), installed height
(h), twist degree (r: top-down camera angle, θ: horizontal camera angle), size of the input image
(n × m), and location information of the camera (l and d). Next, the obtained values were substituted
into Equation (2) to generate a two-dimensional image that included the perspective [48].
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Figure 9. Mapping of the 3D and 2D coordinates.

In the proposed method, position (d, l) of the camera was set to 1. The height (h) of the camera at
the ground was set to 1.8. The left and right rotation (r, θ = 0) of the camera was set to 0. Figure 10
shows the result of a bird-view image mapping a 2D image to a 3D real-world image.
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]
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]
+ l

y(u, v) = h tan
[(
θ− α

)
+ u 2α

nu−1

]
× sin

[
(γ− α) + v 2α

nv−1

]
+ d
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6. Experimental Results

To validate the proposed method, experimental images were obtained from a vehicle black-box
camera in real-world road conditions at various times. The images obtained for the experiment were
1920 × 1080 pixels in the HD-class black-box image.

The experimental setup was a PC with Windows 10 OS (3.3 GHz Hexa Core, 48 GB RAM,
dual 1080Ti GPUs) and MATLAB. To reduce the processing time, the size of the input image was
reduced to 900 × 505 pixels by the bilinear interpolation method. In the proposed method, the number
of positive vehicle images used for training of the AdaBoost algorithm was 2256 and non-vehicle
images were selected for the remaining area that excluded the vehicle regions. The average size of the
training vehicle regions for the vehicle detection was 31 × 34, the repetition period (T) of the AdaBoost
algorithm is set to 4, the number of training samples in the non-vehicle (negative) for each learning
step was 2 (S: 2), and the maximum number of weak classifiers was set to 2048. (It is necessary to
measure errors according to each setting.)

As shown in Figure 11, the proposed method was evaluated by comparing precision (P) and
recall (R), as in Equation (3). Accuracy shows how often the vehicle detector provides correct results,
and the recall rate is an indicator of how much the detector actually detects the vehicle. In other
words, the accuracy (P) measures how accurately the vehicle area is detected, and the recall rate (R) is
a measure of how much the area deviates from the detected vehicle area.

P =
Mm ∩ Mo

(Mm ∩ Mo) + Mo
, R =

Mm ∩ Mo

Mm + (Mm ∩ Mo)
(3)
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Here, Mm and Mo are the region previously specified as ground-truth in the learning stage and
the vehicle region detected by the vehicle detection algorithm, respectively.

6.1. Results of Vehicle Detection

To evaluate the performance of the proposed vehicle detection method, we compared the vehicle
region selected by the ground-truth method and the vehicle region detected by the proposed method
using Equation (3). The performance of the proposed vehicle detector was evaluated using precision
and recall. To determine the parameters of the AdaBoost algorithm for the vehicle detector, we analyzed
the accuracy and recall according to the number of learning cycles and training samples. To evaluate
the performance of the vehicle detector, the threshold value for a correct vehicle detection was set to
0.5 according to the degree of overlap between the vehicle region selected by the ground-truth method
and the vehicle region detected by the proposed method. If more than half of the selected vehicle
region was detected in the experiment, it was judged as correct vehicle detection.

Figure 12a shows the average detection accuracy as a receiver operating characteristic (ROC)
curve that measures how accurately a true positive sample was classified according to the learning
cycle and the sampling factor of the non-vehicle region. Figure 12b shows the ROC curve of the log
average vehicle detection error rate according to the vehicle verification step. The detection error rate
(MR: miss rate) means the mis-detected rate, and the false positive per image (FFPI) means the number
of mis-detected regions of the image.
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Table 3 shows the average vehicle detection success rate and learning time according to the
negative sampling factor (S) versus the learning period (T) required to train a vehicle detector. In the
experiment, it was possible to obtain the optimum learning period (T) and the sample factor (S) for
generating the vehicle detector.
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to vehicle verification step (b).

Table 3 shows that even if the learning success cycle (T) and the non-car area sample factor (S)
for generating the car detector in the learning process were set to T = 4 and S = 2, it can be seen that
the success rate of the detection of the vehicle did not significantly change, regardless of the time
consumed. Experimental results show that the average detection accuracy of the vehicle was 87.6%
and the average execution time was 0.051 s. The learning period (T) and the sample factor (S) were set
to values with high vehicle detection accuracy and minimum learning time. In the proposed method,
T and S were set to 4 and 2, respectively. It can be seen that even if learning was performed by setting a
higher value, the success rate of the vehicle detection did not change much, even though the learning
time increased.
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Table 3. Experimental results for an average vehicle detection accuracy, error rate, and learning time
requirements according to the vehicle detector setting parameters (T: learning cycle, S: non-vehicle area
sampling factor).
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Table 4. Results of the vehicle detection with various features. 

Measures 

Features 
Average Precision Recall (R) 

Average Processing 

Time, (s) 

Haar 0.7310 0.4941 0.135 

LBP 0.7641 0.5634 0.126 

HOG 0.8375 0.4775 0.149 

Our methods 0.8755 0.3017 0.121 

  

Table 4 shows the results of vehicle detection according to the features and the learning algorithm
used for vehicle detection. We compared the following features with the proposed method [41]: Haar,
local binary patterns, and Histogram of Gradient (HOG). Additionally, the learning algorithm used in
the vehicle detector was compared with the vehicle detection results of the cascade learning algorithm.

Table 4. Results of the vehicle detection with various features.
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Table 3. Experimental results for an average vehicle detection accuracy, error rate, and learning time 

requirements according to the vehicle detector setting parameters (T: learning cycle, S: non-vehicle 

area sampling factor). 

Measures 

Parameters 
Average Precision Log Average Error Rate 

Training Time 

(s) 

T = 2, S = 2 0.7847 0.4917 283.57 

T = 2, S = 4 0.5791 0.6387 432.47 

T = 4, S = 2 0.8755 0.3017 592.30 

T = 4, S = 4 0.8422 0.2947 680.04 

T = 5, S = 2 0.8428 0.2901 751.25 

T = 5, S = 4 0.8433 0.2908 821.34 

T = 6, S = 2 0.8292 0.3161 1257.56 

T = 6, S = 4 0.8375 0.2906 1503.33 

Table 4. Results of the vehicle detection with various features. 

Measures 

Features 
Average Precision Recall (R) 

Average Processing 

Time, (s) 

Haar 0.7310 0.4941 0.135 

LBP 0.7641 0.5634 0.126 

HOG 0.8375 0.4775 0.149 

Our methods 0.8755 0.3017 0.121 

  

To learn the configuration parameters of Haar, LBP, and HOG-based cascade learners [34], we set
the learning area size to 31 × 34, false alarm rate to 0.1, negative sampling factor to two, and learning
cycle to six. The performance comparison of the vehicle detection results was classified as the correct
detection if the degree of overlap between the detected vehicle region and the actual vehicle region
was 50% or more. Results of vehicle detection based on various features showed that the proposed
approach outperforms the method that used other features.

6.2. Results of Vehicle Distance Estimation

To evaluate the performance of the vehicle distance estimation method, the proposed method
was compared with the distance estimation results by using experimental images showing distances
of up to 50 m in 10 m increments in 10 different road environments. In addition, we compared the
results measured using the laser range finder with the accuracy of the proposed method. Figure 13
shows the results of estimating the distance to the vehicle detected in various road environments.
Table 5 shows the distance estimation results and the distance estimation accuracy of the proposed
method for 10 experimental images for each distance. The results show that the detection rate of the
vehicle was approximately 87.5%, and the accuracy of the distance estimation rate was approximately
92.8%. The execution time required to process an image was approximately 0.76 s. In the proposed
method, the processing time was consumed by performing inverse perspective transformation for
every input frame. Future research will be conducted to reduce the distance estimation time using a
stereo camera to obtain 3D information without inverse perspective transformation. Figure 14 shows
the results of the vehicle detection and distance estimation using the proposed method in a real road
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environment. Figure 14a shows the results of vehicle detection in the input image, (b) shows the
range for the template matching to track the vehicle, and (c) shows the results of detecting the final
vehicle region through the vehicle verification process in the detected vehicle regions and the distance
estimation result.
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7. Conclusions

The proposed method estimates the distance between the current vehicle and the detected vehicle
ahead from the image obtained from the black-box camera installed in the vehicle. In the proposed
method, the ACF-based AdaBoost algorithm was used to detect the vehicle region and estimate the
distance to the vehicle detected using the inverse perspective transformation symmetrically.

In the experiments on various road environments, the accuracy of the vehicle detection was
estimated to be 87.5%, the accuracy of the distance estimation was 92.8%, and the time required for
the processing was 0.76 s per frame. In the experimental road environment, there was a problem of
misdetection when the driving vehicles overlapped with the shadows of trees, traffic signs, streetlights
or were represented in a color similar to the background. The reason is that the algorithm must
learn various situations for vehicle detection, but it is difficult to learn all situations. In addition, it is
necessary to develop a simple method to apply the IPM to various vehicles. Therefore, future research
will focus on improving the accuracy of vehicle detection and reducing the processing time of inverse
perspective transformation.
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