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Abstract: In this paper, we present the gH-symmetrical derivative of interval-valued functions and
its properties. In application, we apply this new derivative to investigate the Karush-Kuhn-Tucker
(KKT) conditions of interval-valued optimization problems. Meanwhile, some examples are worked
out to illuminate the obtained results.
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1. Introduction

In modern times, the optimization problems with uncertainty have received considerable
attention and have great value in economic and control fields (e.g., [1-4]). From this point of
view, Ishibuchi and Tanaka [5] derived the interval-valued optimization as an attempt to handle
the problems with imprecise parameters. Since then, a collection of papers written by Chanas,
Kuchta and Bitran et al. (e.g., [6-8]) offered many different approaches on this subject. For more
profound results and applications, please see [9-15]. In addition, the importance of derivatives in
nonlinear interval-valued optimization problems can not be ignored. Toward this end, Wu [16-18]
discussed interval-valued nonlinear programming problems and gave a utilization of the H-derivative in
interval-valued Karush-Kuhn-Tucker (KKT) optimization problems. Also, according to the results given
by Chalco-Cano [19], the gH-differentiability was extended to learn interval-valued KKT optimality
conditions. As for details of above mentioned derivatives, we refer the interested readers to [20,21].

Motivated by Wu [17] and Chalco-Cano [19], we introduce the gH-symmetrical derivative which
is more general than the gH-derivative. Based on this derivative and its properties, we give KKT
optimality conditions for interval-valued optimization problems.

The paper is discussed as follows. In Section 2, we recall some preliminaries. In Section 3, we put
forward some concepts and theorems of the gH-symmetrical derivative. In Section 4, new KKT type
optimality conditions are derived and some interesting examples are given. Finally, Section 5 contains
some conclusions.

2. Preliminaries

Firstly, let R denote the space of real numbers and QQ denote the set of rational numbers. We denote
the set of real intervals by
I={c=[ccllc,c € Randc <ct},
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the Hausdorff-Pompeiu distance between interval [¢, ¢] and [d,d] € [ is defined by
D([c e, [d,d]) = max{|c - d],[c —d[}.
(I, D) is a complete metric space. The relation "< ;" of I is determined by
ot Zrulddl e c<de<d

Definition 1 ([21]). The gH-difference of c,d € 1 is defined as below

B (a)c=d+e
c@gd—e<:>{ or (b)d =c+ (—1)e.

This gH-difference of two intervals always exists and it is equal to
cOgd = [min{c —d,¢ —d}, max{c —d,c —d}]. 1)

Proposition 1 ([22]). We recall some properties of intervals c,d and e.
(1) Assume the length of interval c is defined by 1(c) = ¢ — c. Then

c@gd—{ c-d @) i1 2 @) o

) If (I(c) — 1(d))(I(d) — I(e)) > 0, then
cOge=(cogd)+(doge).

Let f : (a,b) — I be an interval-valued function, and f(t) = [f(t), f(t)] so that f(t) < f(¢) for
all t € (a,b). The functions i,f are called endpoint functions of f. In [21] Stefannini and Bede
introduced the gH-derivative as follows.

Definition 2 ([21]). Let f : (a,b) — 1L Then f is gH-differentiable at to € (a,b) if there
exists f'(ty) € 1such that

For more basic notations with interval analysis, see [21-24].

Definition 3 ([25]). Let f : (a,b) — R. Then f is symmetrically differentiable at ty € (a,b) if there

exists A € R and
h—0 2h

3. Main Results

Now, we introduce the gH-symmetrical derivative and some corresponding properties.
Definition 4. Let f : (a,b) — L. Then f is symmetrically continuous at ty € (a,b) if

}llli)ré (f(to +h) @gf(t() —h)) =0.
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Definition 5. Let f : (a,b) — L. Then f is gH-symmetrically differentiable at t if there exists f*(to) such that

. flto+h)og f(to—h)
lim o = f*(to)- (4)

For convenience, let Dz((a,b),I), SDz((a,b),1)) be the collection of gH-differentiable and
gH-symmetrically differentiable interval functions on (a, b).

Lemma 1. Letc,dande € 1. If (I(c) — 1(d))(I(d) — I(e)) < O, then we have
coge=(cOgd) OS¢ (—1)(dSge).
Proof. If (I(c) —I(d)) < 0and (I(d) —I(e)) > 0, by (2) we have

(cogd) O (—1)(d Sge)
=[c—dc—d &g (-1)d—ed—7
=[c—dc—dlogle—de—d]
= [min{c —¢,¢c — e}, max{c —¢,c — e}]

=coge.
If (I(c) —1(d)) > 0and (I(d) —I(e)) < O, the proof is similar to above. [
The following Theorem 1 shows the relation between Dz ((a,b),1) and SDz((a,b),I)).

Theorem 1. Let f : (a,b) — 1 be an interval-valued function. If f is gH-differentiable at t € (a, b) then f is
gH-symmetrically differentiable at t. However, the converse is not true.

Proof. Fix t € (a,b) and assume f'(t) exists. Put

K= (I(f(t+h) = L(F(6)) (HF(B) = L(F(E = h))-

Applying Proposition 1 and Lemma 1, we obtain

e f) +(FB g f—h),  ifK20;
flEF1) S £t =1) = { (F(t+ 1) 0 £(5) O (1) (F() Og £(E—)), if K<0. O

Hence,
a. If K > 0, by (5) we have

f(t+h)Sg f(t—h)

% %
i SR g (D) + (F(1) ©g f(E— 1))
h—0 2h
= f(t).

According to Definition 5, f*(t) exists and

(8 = f(#). (6)
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b. If K < 0, by (5) we have

fEEm) Og f(t =)
h—0 2h

Thus, f°(t) exists and
"(¢ "(¢
F = e Y @)
Therefore, f is gH-symmetrically differentiable in view of (6) and (7).
Conversely, we now give a counter example as follows.

Let f1(t) = { [=12t], 13e]), if £ A Since

2, ift=1
i [TRAF WL B+ )] S (=200 =m)| 31 = h)]] _ -2,3],
h—0 2h

f1 is gH-symmetrically differentiable at t = 1. However,

lim [—[2(1+1)[,[3(1+h)[] & [2,2]
h—0 h

does not exist. Then f; is not gH-differentiable att =1. O

Remark 1. Clearly the gH-symmetrically derivative is more general than gH-derivative reflected by Theorem 1.
Moreover, f'(t) and f°(t) are not necessarily equal according to (6) and (7). For example, consider
interval-valued function fo(t) = [—|t|, |t|]. We have

1(0) = }1[13% f(h) thf(o) _ }1[12% [—|hl, |h]] ©4 [0,0] v
However,
—h —|h|, |k —|h|, |k
5(0) = fim LSSy LIS LMD,

which implies f5(0) # f5(0).

Theorem 2. Let f :(a,b)— 1L Then f is gH-symmetrically differentiable at toe (a,b) iff f and f are
symmetrically differentiable at ty. Moreover

fo(to) = [min{f*(to), f (to) }, max{f*(to), f (to)}]- ®)

Proof. Suppose f is gH-symmetrically differentiable at to, then f*(to) = [g(to), §(f0)] exists. According
to Definition 5 and (1),

to+h)— f(to—h) F T
g(t0>=}lli§5min{f(0+ )th<0 ),f(f0+h)2hf(to h)},

to+h)—f(to—h) F  Fe
g(to>=mmax{f(°+ >2hf<o ),f(to+h)2hf(to h)}
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exist. Then f°(to), fs(to) must exist and (8) is workable.

Conversely, suppose f and f are symmetrically derivative at £.

If (f)*(to) > (f)*(to), then

[(f)*(t0), () (to)]
_ i f(to+h) — f(to—h) i [t + 1) — F(to — h)
N [hli% 2h g, 2h ]
~ lim f(to+h) g f(to —h)

h—0 2h

= f*(to)-

So f is gH-symmetrically differentiable. Similarly, if (f)°(tp) < (f)°(to), then f*(ty) =

[(f)* (o), (f)*(t0)]. O3

Next, we study the gH-symmetrically derivative of f : M C R" — I where M is an open set.
Definition 6. Let f: M — 1,10 = (ttl), tg,. .., 19) € M. If there exist Ay, Ay, ..., Ay € L such that

i DU+ 1) S F(10 — 1), 200 hii)
m 7

h=(hy,..., hy). Then we call f gH-symmetrically differentiable at 0 and define (A1, Ay, ..., Ay) (denote
V;f(to) = (A1, Ay, ..., Ay)) the symmetric gradient of f at t°.

Theorem 3. The function f : M — 1 is gH-symmetrically differentiable iff f and f are symmetrically
differentiable.

Proof. The proof is similar to Theorem 2, so we omit it. [

Definition 7. Let f : M — 1 and t© € M. If the interval- valued function ¢(t;) =
FE, o, 80, 1) is gH-symmetrically differentiable at t{, then f has the ith partial gH-symmetrical

derivative (%)g(to) at 0, ie.,

<a;{>g<t°> — (¢)°(t)).

The following Theorem illustrates the relation between symmetric gradients and partial
gH-symmetrical derivatives.

Theorem 4. Let f : M — L 1 = (19,19,...,19) € M. If f is gH-symmetrically differentiable at t°, then
(50)5(t0) exists, and (5L)g (1) = Ai(i =1,2,...,n), where (A1, Ay, ..., Ay) = V3f(1°).

Proof. By Definition 6, substituting h; = 0 (j # i) and taking h; — 0 in M, it follows at once
aS
A= (F)(1). O

(=12t + 8,131 + 8], if (t1,82) # (0,0);

E le 1. Let f(ty,tp) = i
Xample e f( 1 2) { [t%,t%—l—l], 1f (tl,tz):(0,0).

We have

*f . f(h0) S f(=h,0)  [~|2h],3[h]] ©g [|2h],3|h]]
(5¢,)2(0,0) = lim 20 Him 2
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and
(asf)g(o, 0) — lim f(O,h) Og f(o' _h) — 1 [hZI hz] Oy [hz, hz} —0

ot h—0 2h h—0 2h
Therefore, the symmetric gradient of f at the point (0,0) is 75 f(0,0) = (0,0).

Remark 2. The gradient of f in [19] is more restrictive than the symmetric gradient. For instance, the partial
derivative (%) ¢(0,0) does not exist in Example 1. So we can not obtain the gradient at (0,0) using the
gH-derivative.

4. Mathematical Programming Applications

Now, we discuss the following interval-valued optimization problem (IVOP):

min  f(t) (IvOP1)
subjectto g;(t) <0, i=1,...,m,

where g1,92,...,8m : M C R" = R are symmetrically differentiable and convex on M, M is an open
and convex set and f : M — [ is LU-convex (see [19], Definition 8). Then we study the LU-solution
(see ([17], Definition 5.1)) of the problem (IVOP1).

Theorem 5. Suppose f : M — 1 is LU-convex and gH-symmetrically differentiable at t*. If there exist
(Lagrange) multipliers 0 < A1, Ay € Rand 0 < p; € R, i =1,...,m so that
(1) MVEF(#) + A VEF(E) + Ty 4 Vogi(F) = 0;
2) Y wigi(t*) =0, where y = (p1, ..., um)".
Then t* is an optimal LU-solution of problem (IVOP1).

Proof. We define fj(t) = A1f(t) + A2f(t). Since f is LU-convex and gH-symmetrically differentiable
at t*, then f; is convex and symmetrically differentiable at t*. And

VEAI(E) = MV F(E) + A VEF(H),

then we have following conditions
(1) V() + Ty i Vogi(t) = 0;
) XM wigi(t) = 0where p = (p1, ..., pim) "
Based on Theorem 3.1 of [26], t* is an optimal solution of the real-valued objective function
f1 subject to the same constraints of problem (IVOP1), i.e.,

FiE) < fi(F)

for any (# t*) € M.
Next, we illustrate this theorem by contradiction. Assume t* is not a solution of (IVOP1), then there
exists an f € M such that f(f) <py f(t*), ie.,

Therefore, we obtain that f;(f) < f;(t*) which leads to a contradiction. This completes
the proof. O
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Example 2. Suppose the objective function

) BE+t—622+2t], ifte(—1,0);
f<t)_{ [2t — 6,21], ifte|0,1),

and the optimization problem as below

min  f(t) (IVOP2)
subjectto  —t <0,
t—1<0.
We have
32 +t—6, if t € (—1,0);
(t) = B .
2t —6, if te0,1),

() = { 2242t ifte(—1,0);

I~

by

2t, if t €0,1).

Both f, f are convex and symmetrically differentiable. Furthermore, the condition (1) and (2) of Theorem 5
are satisfying at t* = 0 when Ay = %m,/\z = 1y and py = 0. Hence, t* = 0 is a LU-solution of (IVOP2).

Remark 3. Note Theorem 4 in [19] can not be used in problem (IVOP?2) since f is not differentiable at 0. Hence,
Theorem 5 generalizes Theorem 4 in [19].

Applying Theorem 5 we have the following result.

Corollary 1. Under the same assumption of Theorem 5, let k be any integer with 1 < k < m. If there
exist (Lagrange) multipliers 0 < y; € R,i =1,...,m, such that
(1) VSF(#) + Xy wiVogi(t') = 0;
@) VEF(E) + L wiV8i(17) = 0;
(3) X pigi(t) =0 = XLy y pigi(t"), where pt = (. jim)
Then t* is an optimal LU-solution of problem (IVOP1).

Proof. Letv; = Aqpu; i =1,...,k)and w; = Ayp; (i = k+1,...,m). The conditions in this corollary
can be written as

(D) M VEF(E) + A VEF(E) + T v Vogi () + iy @i Vogi(t*) = 0;

(@) Ty pigi() = 0= L1 pigi(7):

Then from Theorem 5 the result follows. [

As shown in Example 1, symmetric gradient is more general than the gradient of f using
the gH-derivative, we derive new KKT conditions for (IVOP1) using the symmetric gradient of
interval-valued function given in Definition 6.

Theorem 6. Under the same assumption of Theorem 5, the following KKT conditions hold

(1) V() + iy pi Vi) = O;

2) Y wigi(t*) =0, where = (1, .., m) "
Then t* is an optimal LU-solution of problem (IVOP1).

Proof. By Theorem 3, the equation V7§ f(#*) + ¥ ;i Vogi(t*) = 0 can be interpreted as

V() + 0 wiVegi(t) = 0= VEF(E) + 30 i Vegi(tY), (10)
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which implies
V() + VEF(E) + 3L viVisi(t) =0, (11)

where v; = 2u; (i = 1,...,m). Then the result meets all conditions of Theorem 5. That is the end
of proof. O

Example 3. Suppose

[2t—14, ift>0
t) = 12
f(t) { [—3t—1,—t], if t<0. (12)
and the programming problem
min  f(t) (IVOP3)
subjectto  —t <2,
t—1<3.

We can observe that Vg f(0) = 0. The conditions (1) and (2) of Theorem 6 are satisfied for yiy = p = 0.
Hence, 0 is an optimal LU-solution of (IVOP3).

Remark 4. It is worth noting that Theorem 9 of [19] can not solve the problem (IVOP3) since f is not
gH-differentiable at 0. So Theorem 6 is more general than Theorem 9 in [19].

Remark 5. Comparing Example 2 with Example 3, it is easy to see Theorem 5 is more generic than Theorem 6.
Nonetheless, Theorem 6 can be very effective for obtaining the solution of (IVOP1) in some cases.

5. Conclusions and Further Research

We defined the gH-symmetrical derivative of interval-valued functions, which is more general
than the gH-derivative. In addition, we generalized some results of Wu [17] and Chalco-Cano [19]
by establishing sufficient optimality conditions for optimality problems involving gH-symmetrically
differentiable objective functions. The symmetric gradient of interval functions is more general and it
is more robust for optimization problems. However, the equality constraints are not considered in our
paper. We can try to handle equality constraints using a similar methodology to the one proposed in
this paper. Moreover, the constraint functions in this paper are still real-valued. In future research,
we may extend the constraint functions as the interval-valued functions. And we may study the
symmetric integral and more interesting properties about interval-valued functions.
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