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Abstract: Maglev transportation is a new type of rail transit, whose vehicle is different from the
two-bogie structure of the wheel-rail train. Generally, it consists of four to five suspension frames
supporting a car body in parallel. The moving mechanism of a vehicle often consists of hundreds of
moving parts, showing a multi-rigid body system in serial-parallel structure. At present, there is no
theoretical framework for systematically and accurately describing the kinematics and dynamics of
the Maglev train. The design work is at the level of simple equivalent estimation or measurement
from the CAD drawing, which makes the system performance analysis and optimization work unable
to be carried out scientifically. Based on the theoretical framework of screw theory and exponential
mapping, the forward kinematics modeling, inverse kinematics solution, transition curve modeling
and computational analysis methods for the Maglev train are proposed in this paper. A systematic
and accurate theoretical framework is constructed for the modeling and analysis of the motion
mechanism of the Maglev train, which makes the design and analysis of the Maglev train at the
scientific level.
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1. Introduction

Maglev trains rely on non-contact electromagnetic forces to achieve contactless support.
Compared with the traditional wheel-rail train, the Maglev train has the advantages of little mechanical
wear, small vibration, stable operation, strong climbing ability, low noise, small turning radius
and so on [1]. In recent years, with the commercial operation of the Changsha Maglev Express
Line and the Beijing S1 Maglev Demonstration Line and the construction of the Qingyuan Line in
Guangdong Province, the Maglev traffic has shown a rapid development momentum [2]. However,
the kinematics and dynamics modeling analysis method of Maglev traffic lacks a unified and feasible
theoretical framework. The design work is still at the level of simple equivalent estimation or drawing
measurement. The lack of scientificity, completeness and accuracy restrict the progress of Maglev
transportation technology.

The electromagnetic force required for the Maglev train is generated by the interaction between
the vehicle electromagnet and the ferromagnetic track. In order to reduce the volume of the track and
the system cost, the electromagnets and linear motors are generally arranged continuously along the
length of the vehicle and the track. In addition, the suspension frame under one train is generally
composed of four to five parallel arrangements. When the train is running, the plurality of suspension
frames jointly support the train body in the form of a parallel mechanism, which makes the kinematics
and dynamics analysis of the Maglev train different from that of the wheel-rail train supported by
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two bogies. Compared with the traditional wheel-rail train, the Maglev train has multiple suspension
frames (multi-points) supporting the same body (a straight line), and each suspension frame presents
different positions and attitudes relative to the body. Therefore, the kinematics and dynamics analysis
of Maglev trains cannot inherit the existing theoretical framework of wheel-rail traffic.

There are more than 100 moving parts in each vehicle of a Maglev train, which presents a typical
hybrid form of parallel mechanism and series mechanism. It is the goal of this paper to explore a
theoretical method of analysis and synthesis to describe in detail the motion state of each moving
mechanism of the vehicle. Based on the mathematical modeling theory of robotics, such as screw
motion and exponential mapping, this paper establishes the mathematical modeling and analysis
framework for the Maglev train motion mechanism, making the design and analysis of the Maglev
train at a complete and accurate system level.

In the modeling method of mechanism kinematics, the D-H (Denavit-Hartenberg) transformation
proposed by Denavit and Hartenberg [3,4] is a common method. However, in the equation of motion
established by the D-H transform method [5], the Jacobian matrix, singularity analysis, etc. are
related to the selection of the coordinate system of each component, which makes the analysis lose
its generality. At the same time, the dynamic equations for establishing motion mechanisms based
on D-H transformation are also quite complex. The application of helicoidal motion and exponential
mapping in the mechanism [6] overcomes the above shortcomings. It is a perfect combination of rigid
body motion, modern mathematics and classical mechanics. Furthermore, the helicoidal motion and
exponential mapping [7,8] apply the concept of metric space on the manifold to the joint manifold
of the motion mechanism, which makes the analysis and design of the mechanism more general.
Therefore, it has become a universal modeling method for modern robotics.

In this paper, the forward kinematics modeling method of a mid-low speed Maglev train is
introduced based on the theory of screw and exponential mapping. At the same time, the modeling
method of the transition curve is analyzed, and the solution method of vehicle inverse kinematics is
analyzed. Finally, based on the model established by the theory of screw and exponential mapping,
an example of the solution of the motion mechanism in the Maglev train on the typical track of the
transition curve is given.

The rest of the paper is organized as follows: Section 2 describes the forward kinematics modeling
of mid-low speed Maglev trains. The solution of vehicle inverse kinematics is introduced in Section 3.
In addition, the modeling of the track transition curve and the relationship of the vehicle/track posture
is then introduced in Section 4. Section 5 presents the examples of motion based on the theory in the
previous sections, which is followed by the conclusions in Section 6.

2. Forward Kinematics Modeling for a Mid-Low Speed Maglev Train

The running mechanism of the Maglev train mainly includes a suspension frame, a secondary
suspension system (secondary system), an auxiliary steering mechanism and so on, as shown in
Figure 1. Therefore, its kinematics modeling can be divided into two levels: the kinematics of the
suspension frame and secondary kinematics. In the kinematics of the suspension frame, the left
and right modules of the suspension frame are constrained by the track, so the kinematics mainly
analyzes the movement of the anti-rolling beams and hanger rods inside the same suspension frame.
The suspension frame in the mid-low speed Maglev train is mainly analyzed in this paper, and the
analysis of the secondary system is similar to it.
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Figure 1. The suspension frame and secondary system in the mid-low speed Maglev train.

The exponential mapping of series mechanism [6,9] is adopted to establish the forward kinematics
model of the suspension frame. The front and rear anti-rolling mechanisms (including anti-rolling
beam and hanger rod) in the suspension frame of the mid-low speed Maglev train are functionally
symmetrical, forming a closed-chain parallel mechanism. Thus, the open-chain kinematics modeling
method cannot directly be applied because of symmetrical motion, one set of anti-roll mechanisms
can just be considered, and the motion of the other set of anti-roll mechanisms can be calculated
symmetrically by this group. A front view of the suspension frame of a set of anti-roll mechanisms is
shown as Figure 2.

Figure 2. The front view of the suspension frame.

As shown in Figure 2, the left module of the suspension frame is used as the base of the kinematic
chain, and the reference is fixed to the base. Then, the degrees of freedom of the active joint between
the left suspension module and the right suspension module are as follows:

(1) There is a rotational degree of freedom along the z-direction between base 0 and anti-roll beam
1, whose twist coordinate is ξ1. This degree of freedom can decouple the motion of the left and
right modules of the suspension frame in the running direction.

(2) The ball joint between the anti-roll beam 1 and the hanger rod 2, respectively, includes three
rotational degrees of freedom along x, y, and z. Considering the constraint relationship between
the two anti-roll beams, the rotational degree of freedom in the z-direction can be ignored. Thus,
the rotational degrees of freedom in the x- and y-directions are just considered, and the twists of
rotation are ξ3 and ξ2, respectively.

(3) The hanger rod 2 has a telescopic translational freedom, and its twist is ξ4.
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(4) The ball joint between the anti-roll beam 1 and the hanger 2 respectively includes three rotational
degrees of freedom. The degree of freedom in the z-direction is ignored, and the rotational
freedom in the x-direction is retained and the twist is ξ5.

(5) There is a rotational degree of freedom in the z-direction between the anti-roll beam 3 and the
right module 4, whose twist coordinates are ξ6.

The above definition is shown in Figure 3.

Figure 3. The helical coordinate chart.

According to the definition of spiral coordinates, ξi =

[
vi
ωi

]
∈ R6. There is vi = −ωi × qi for

rotary joints, where ωi is the unit rotation axis and qi is any point on the rotation axis. For translational
joints, ωi = 0, and vi is the unit translation axis. According to Figure 3, the quantities are listed

as: ω1 =
[

0 0 1
]T

, q1 =
[

0 0 0
]T

, ω2 =
[

0 −1 0
]T

, q2 =
[

0 0 0
]T

, ω3 =[
1 0 0

]T
, q3 =

[
0 −l1 0

]T
, ω4 =

[
0 0 0

]T
, q4 =

[
0 0 −1

]T
, ω5 =

[
1 0 0

]T
,

q5 =
[

0 −l1 −l2
]T

, ω6 =
[

0 0 1
]T

, q6 =
[

0 −l1 − l3 −l2
]T

. Then, the speed spiral
coordinates of each link can be calculated. Let the rotation angle or translation distance of each joint be
θi, and the corresponding exponential mapping eξ̂θ can be calculated from the exponential mapping of
the spiral coordinates:

eξ̂θ =

[
eω̂θ

(
I− eω̂θ

)
· (ω× v) + ωωTvθ

0 1

]
. (1)

It can be seen from Figure 3 that the initial posture of the right module T of the suspension frame
relative to the reference frame J0 is:

gJT(0) =


1 0 0 0
0 1 0 −l1 − l3
0 0 1 −l2
0 0 0 1

 . (2)

Thus, the forward kinematics equation for the suspension frame from the left module to the right
module is

gJT(θ) = eξ̂1θeξ̂2θ2 eξ̂3θ3 eξ̂4θ4 eξ̂5θ5 eξ̂6θ6 gJT(0). (3)

Equation (3) is called the forward kinematics equation of the suspension frame, which is a 4× 4 matrix:

gJT(θ) =


n11 n12 n13 p1

n21 n22 n23 p2

n31 n32 n33 p3

0 0 0 1

 . (4)
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Then, each element in Equation (4) through calculation is shown in Appendix A.
When the motion amount θi of the joint in the suspension frame is known, the relative position

and posture relationship between the left/right modules of the suspension frame can be calculated by
Equation (3). On the contrary, the motion of each joint can also be calculated according to Equation (3)
when the relative position and posture relationship between the left/right modules of the suspension
frame is known. It is a basic tool for the design, analysis and verification of the suspension frame.

3. Solution of Reverse Motion of a Mid-Low Speed Maglev Train

The inverse solution of the kinematics is more important for the analysis and verification of
the rationality of mechanism design. From the forward kinematics equation described by the
exponential product and initial conditions, the inverse kinematics problem can be solved by two
methods: the sub-problem method of exponential mapping [3,4] and the inverse transformation
method of the robot kinematics solution [2]. The basic idea of these two methods is the same, that is,
how to simplify the expressions on both sides of the equation and make the concise terms correspond
equally. The ability to obtain an analytical form of kinematic inverse is a tricky job and requires certain
conditions. In this paper, the inverse kinematics problem [10] of the suspension frame of the mid-low
speed Maglev train is introduced.

The forward kinematics equation of the suspension frame in the Maglev train is formulated
as Equation (3). Assuming that the relative relationship between the left and right modules of the
suspension frame is determined, in other words, the elements of the pose matrix GJT(θ) in Equation (4)
are known. Let GJT(θ) = GJT . There are

eξ̂1θ1 eξ̂2θ2 eξ̂3θ3 eξ̂4θ4 eξ̂5θ5 eξ̂6θ6 = GJT · g−1
JT (0). (5)

The right side of Equation (5) is known. The transformation of Equation (5) is

eξ̂1θ1 eξ̂2θ2 eξ̂3θ3 eξ̂4θ4 eξ̂5θ5 = GJT · [gJT(0)]−1(eξ̂6θ6)−1. (6)

Let the first three rows of elements in the first column on the left side of the equation be equal to
the corresponding elements on the right side, and the following equation is obtained:

cos θ1 cos θ2 = n11 cos θ6 − n12 sin θ6,

sin θ1 cos θ2 = n21 cos θ6 − n22 sin θ6,

sin θ2 = n31 cos θ6 − n32 sin θ6.

(7)

According to Equation (5), the following equation can be obtained:

eξ̂3θ3 eξ̂4θ4 eξ̂5θ5 eξ̂6θ6 = (eξ̂1θ1 eξ̂2θ2)−1GJT · [gJT(0)]−1. (8)

According to the equal of the fourth column elements in the first row on the left and right sides in
Equation (8), the equation can be obtained as follows:

− (l1 + l3) sin θ6 = p3 sin θ2 + p1 cos θ1 cos θ2 + p2 sin θ1 cos θ2. (9)

According to Equations (7) and (9), it can be found out

θ6 = arctan
(

p1n11 + p2n21 + p3n31

p1n12 + p2n22 + p3n32 − l1 − l3

)
. (10)

By substituting θ6 into Equation (7), it can be concluded that

θ1 = arctan
(

n21 cos θ6 − n22 sin θ6

n11 cos θ6 − n12 sin θ6

)
, (11)
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θ2 = arcsin (n31 cos θ6 − n32 sin θ6) . (12)

According to Equation (7), we can obtain

eξ̂3θ3 eξ̂4θ4 eξ̂5θ5 eξ̂6θ6 = (eξ̂1θ1 eξ̂2θ2)−1GJT · [gJT(0)]−1

∆
=


n′11 n′12 n′13 p′1
n′21 n′22 n′23 p′2
n′31 n′32 n′33 p′3
0 0 0 1

 .
(13)

Thus, the variables θ3, θ4 and θ5 are obtained

θ3 = arctan
(

l1n′22 − l2n′32 − p′2 − l1
p′3 − l1n′32 − l2n′22

)
, (14)

θ5 = arcsin
{

1
2
[(

n′32 − n′23
)

cos θ3 −
(
n′22 + n′33

)
sin θ3

]}
, (15)

θ4 = l1 sin θ5 + l2 (cos θ5 − 1)− p′3 cos θ3 +
(
l1 + p′2

)
sin θ3. (16)

Thus far, the analytical solution of the motion θ1 ∼ θ6 of the suspension frame is calculated.
Therefore, the relative position and posture of the left and right modules in the suspension frame
are used to obtain rotation or translation motion θ1 ∼ θ6 of six degrees of freedom in the internal
anti-rolling mechanism.

4. The Relationship of the Vehicle/Track Position–Posture on the Transition Curve Track

4.1. Parametric Description of the Transition Curve

The transition curve is the transition section between the straight track and the circular track,
usually in the form of gyration curve or sinusoidal curve. The main parameters which describe the
transition curve are the curvature ρ(s) and transverse slope angle θ(s). In addition, the total length of
the transition curve S0, the maximum transverse slope angle θ0 and the minimum radius R0 of the
transition curve are the boundary conditions of the transition curve.

The curvature and transverse slope angle of the gyration curve are linear functions of the track
mileage s. The acceleration of the gyration curve is discontinuous. The vehicle has lateral impact at the
end of the curve, which is suitable for the low-speed section.

The equation describing the transition curve is as follows:
ρ(s) =

s
R0S0

,

θ(s) = θ0
s

S0
.

(17)

The curvature and transverse slope angle are defined, and the space equation of the center line of
the transition curve can be given 

dϕ(s)
ds

= ρ(s),

dx(s)
ds

= cos ϕ(s),

dy(s)
ds

= sin ϕ(s),

(18)

where ϕ(s) is the direction angle of the transition curve, and (x(s), y(s)) is at the orbital mileage s and
the plane coordinate in the reference coordinate system whose coordinate origin is the starting point of
the center line of the transition curve.
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According to Equation (18), the algebraic equation of transition curve is obtained as follows:
y =

x3

6S0R0
+

x7

80S3
0R3

0
+ O(x8),

s = x +
x5

40S2
0R2

0
+ O(x8).

(19)

Taking the first three approximations, the cubic parabolic approximation equation of the cycloid
is obtained as follows: 

x = s,

y =
x3

6S0R0
.

(20)

The rail surface formed by the transition curve is complex, and the center line is a kind of plane
curve. In order to accurately describe the spatial posture of the transition curve, the coordinate
system is defined as follows:The reference coordinate system O is located at the starting point of the
center line of the transition curve. A moving coordinate system T1 is set up on the track center line,
which can move along the track center line. The other is the track reference coordinate system T0,
which corresponds to the vehicle’s central coordinate system V0 and has a relatively fixed position.
The orbital mileage of their origins is respectively s1 and sT0 .

In order to get the posture matrix of the orbital coordinate system TR(i), the posture matrix
of T1 relative to T0 is calculated firstly. The auxiliary coordinate systems o1 and oT0 respectively
corresponding to T1 and T0 are established. The origin of o1 is located on the y-negative half axis
of the T1, and the projection distance from the origin of T1 is equal to the curvature radius R1 at T1.
The x-axis of o1 is parallel to the x-axis of T1, and the z-axis is parallel to the z-axis of o1. In addition,
the angle between the y-axis of T1 and the y-axis is the transverse slope angle θ1. The definition of the
coordinate system oT0 is similar to that of o1. The coordinate systems are shown in Figure 4.

Figure 4. The definition of the transition curve coordinate system.

When the mileage s1 is known, the coordinates of the origin of T1 can be obtained from
Equation (20):

T1 = [x1, y1, z1]
T = [s1,

s3
1

6S0R0
, 0]T . (21)
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Considering that the orbit center line is a plane curve and parallel to the horizontal plane,
the position vector of the coordinate origin of o1 in the reference system O can be obtained from
Figure 5:

O
o1

P =

 p1x
p1y
p1z

 =

 x1 − Rc1 sin ϕ1

y1 − Rc1 cos ϕ1 cos θ1

−Rc1 cos ϕ1 sin θ1

 , (22)

where Rc1 = R1/ cos θ1, R1 is the radius of the curve at the origin of T1 and ϕ1 is the direction angle.
Since the z-axis of coordinate system o1 is parallel to the z-axis of coordinate system O, the attitude

of o1 is formed by rotating ϕ1 clockwise around the z-axis, so it has:

O
o1

R = Rot(z, −ϕ1) =

 cos ϕ1 sin ϕ1 0
− sin ϕ1 cos ϕ1 0

0 0 1

 . (23)

Then, the posture matrix of o1 relative to O is obtained as follows:

O
o1

J =

[
O
o1

R O
o1

P
0 1

]
=


cos ϕ1 sin ϕ1 0 p1x
− sin ϕ1 cos ϕ1 0 p1y

0 0 1 p1z
0 0 0 1

 . (24)

Similarly, the posture matrix of oT0 to O is obtained as follows:

O
oT0

J =


cos φT0 sin φT0 0 pT0x
− sin φT0 cos φT0 0 pT0y

0 0 1 pT0z
0 0 0 1

 . (25)

Furthermore, the equation of the posture matrix of o1 to oT0 is obtained as follows:

oT0
o1 J = (O

oT0
J)−1O

o1
J

=


cos(φT0 − φ1) − sin(φT0 − φ1) 0 −(pT0x − p1x) cos φT0 + (pT0y − p1y) sin φT0

sin(φT0 − φ1) cos(φT0 − φ1) 0 −(pT0x − p1x) sin φT0 − (pT0y − p1y) cos φT0

0 0 1 −(pT0z − p1z)

0 0 0 1

 .
(26)

After setting the auxiliary coordinate systems o1 and oT0 , the posture matrix of T1 in coordinate
system o1 can be easily obtained:

o1
T1

J =


1 0 0 0
0 cos θ1 − sin θ1 R1

0 sin θ1 cos θ1 R1 tan θ1

0 0 0 1

 . (27)

Similarly, the posture matrix of T1 in coordinate system oT0 can be obtained:

oT0
T0

J =


1 0 0 0
0 cos θT0 − sin θT0 RT0

0 sin θT0 cos θT0 RT0 tan θT0

0 0 0 1

 . (28)
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According to Equations (26)–(28), the posture matrix of the coordinate system T1 to the fixed
coordinate system T0 can be obtained:

T0
T1

J = (
oT0
T0

J)−1 · oT0
o1 J · o1

T1
J. (29)

The relative posture relations of T1 and T0 cannot directly reflect the posture relations of both
sides of the track. For this reason, the coordinate system TL1 is established on the left track of the
transition curve corresponding to the center line coordinate system T1, and the coordinate system TR1

is established on the right track. The characteristics of the transition curve determine that the origins
of TR1 and TL1 are located on the y-axis of the T1 coordinate system, and the distance from the origin
of T1 is, respectively, ± 1

2 D (D is gauge). The coordinate system is shown in Figure 6.

Figure 5. The definition of a left/right track coordinate system.

Figure 6. The attitude relation of the coordinate system on the left/right track.

As for attitude, the x-axis of TR1 is along the tangent direction of the right side rail and the x-axis
of TL1 is along the tangent direction of the left side rail. There is an angle between them and the x-axis
of T1. The spatial relationship is shown in Figure 5.

The angle γ can be approximated to the ratio between the track super high h and the mileage s:

γ =
h

sT1

=
D
2 sin θ1

sT1

≈
D
2 θ1

sT1

=
D
2

θ0sT1
S0

sT1

=
Dθ0

2S0
. (30)
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When the parameters of the transition curve are determined, h is a constant. Thus, the posture
matrix of TR1 relative to T1 can be obtained as follows:

T1
TR1

J =


cos γ 0 sin γ 0

0 1 0 − 1
2 D

− sin γ 0 cos γ 0
0 0 0 1

 . (31)

By combining Equation (29) with Equation (31), it can be obtained:

T0
TR1

J = T0
T1

J · T1
TR1

J. (32)

Similarly, the posture matrix T1
TL1

J of TL relative to T1 is obtained:

T1
TL1

J =


cos γ 0 − sin γ 0

0 1 0 1
2 D

sin γ 0 cos γ 0
0 0 0 1

 . (33)

By combining Equation (29) with Equation (33), it can be obtained:

T0
TL1

J = T0
T1

J · T1
TL1

J. (34)

Equations (32) and (34) are the posture matrices of the track coordinate system relative to the
track reference coordinate system.

4.2. The Track Coordinate System on the Transition Curve

The left/right tracks of the transition curve are not coplanar, and their common role determines
the motion of the vehicle. At the same time, the radius of curvature and the transverse slope angle of
each point on the transition curve are different. When the track is close to the end of the circular curve,
its radius of curvature is the smallest and the angle of transverse slope is the largest, which is the part
that requires more stringent vehicle structure. Therefore, this paper puts the vehicle at this end for
analysis.

Generally speaking, the length of the electromagnet is about several meters, while the radius of
the transition curve and circular curve is about 100–1000 m. Therefore, the error of replacing the arc
length (mileage) of the track with the space distribution length of the electromagnet can be neglected.
Figure 7 shows the spatial relationship between the electromagnets on both sides of the vehicle and
the track.

Figure 7. The spatial relationship between electromagnet and track.

In Figure 7, l is the length of the electromagnet and δx is the distance between adjacent suspension
frames. Taking the right side as an example, with the first coordinate system TR(1) as the starting
point, the distance between 10l and TR(1) is as follows:

sT(i) =
1
2

l × (i− 1) + δx× ceil(
i− 2

2
) i = 1, 2, · · · , 10, (35)

where i denotes the label of the coordinate system TR(i) and ceil(·) is the upward rounding function.
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The parameter i = 10 is brought into Equation (35), and the span between the coordinate system
TR(1) and TR(10) is calculated as svehicle = 4.5l + 4δx. If the total length of the transition curve is S0,
the starting point of the mileage of T(1) is set to S0 − svehicle. Thus, the mileage of each T(i) relative to
the reference system O becomes:

sT(i) =
1
2

l × (i− 1) + δx× ceil(
i− 2

2
) + S0 − svehicle i = 1, 2, · · · , 10. (36)

On the right side of the vehicle, the mileage of five electromagnet midpoints to the reference
system O becomes:

sM(k) = (l + δx)× (k− 1) + l/4 + S0 − svehicle k = 1, 2, · · · , 5. (37)

The track reference coordinate system T0 is located at the midpoint of the vehicle body span
mileage on the track center line. Its mileage is:

sT0 = 2(l + δx) + l/4 + S0 − svehicle = S0 − 2.25l − 2δx. (38)

According to Equations (36) and (37), the position vector of T(i) relative to T0 can be obtained as
follows:

T0 P(i) = (p1x − pT0x)cφT0 − (p1y − pT0y)sφT0 + R1s(φ(i)− φT0)

(p1z − pT0z)sθT0 + [(p1x − pT0x)sφT0 + (p1y − pT0y)cφT0 + R1c(φ(i)− φT0)]cθT0 + R1sθT0 tθ(i)− RT0 /cθT0

(p1z − pT0z)cθT0 − [(p1x − pT0x)sφT0 + (p1y − pT0y)cφT0 + R1c(φ(i)− φT0)]sθT0 + R1cθT0 tθ(i)

 .
(39)

By introducing Equations (37) and (38) into Equation (29), the posture matrix of the mid-point of
five electromagnets is obtained as follows:

T0 R(k) =

 c(φ(k)− φT0) s(φ(k)− φT0)cθT0 −s(φ(k)− φT0)sθT0

−s(φ(k)− φT0)cθT0 sθ1sθT0 + c(φ(k)− φT0)cθ1cθT0 cθ1sθT0 − c(φ(k)− φT0)sθ1cθT0

s(φ(k)− φT0)sθT0 sθ1cθT0 − c(φ(k)− φT0)cθ1sθT0 cθ1cθT0 + c(φ(k)− φT0)sθ1sθT0

 . (40)

By Equations (39) and (40), the posture matrix of T(i) relative to track reference coordinate system
T0 is obtained as follows:

T0 T(i) =

[
T0 R(k) T0 P(i)

0 1

]
i = 1, · · · , 10; k = ceil(

i
2
). (41)

Similarly, the posture matrix of TR(i) relative to track reference coordinate system T0 can be
expressed as:

T0
TR(i)

J = T0 T(i) · T1
TR1

J =

[
T0 R(k) T0 P(i)

0 1

]
· T1

TR1
J i = 1, · · · , 10; k = ceil(

i
2
). (42)

Thus, the posture matrix of TR(i) relative to track reference coordinate system T0 can be also
expressed as:

T0
TL(i)

J = T0 T(i) · T1
TL1

J =

[
T0 R(k) T0 P(i)

0 1

]
· T1

TL1
J i = 1, · · · , 10; k = ceil(

i
2
). (43)

The posture relationship of the right track coordinate system with respect to the left track
coordinate system is:

TL(i)
TR(i)

J =
(

T0
TL(i)

J
)−1T0

TR(i)
J. (44)
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4.3. The Posture Matrix of Train Reference System V0 Relative to Track Reference System T0

The curvature of the transition curve changes with the length gradually, and the relative
relationship between the front/rear of the train body and the track is asymmetric. However, the relative
motion of electromagnet and train body in the horizontal direction (y-direction) is limited by the
rotating sliding table between the suspension frames 1(4) and suspension frames 2(5) on the train body.
This paper analyses the movement of the vehicle to the large curvature end of the transition curve.
The relative relationship between the train and the transition curve is shown in Figure 8.

Figure 8. The posture relation between train and track on the transition curve.

In Figure 8, the length of AB can be calculated from the structure of the vehicle:

LAB = 3l + 3δx. (45)

According to Equation (38), the mileage of A and B are:

sA = sT0 −
1
2 LAB = S0 − 3.75l − 3.5δx, (46)

sB = sT0 +
1
2 LAB = S0 − 0.75l − 0.5δx. (47)

The position vectors PA = (xA, yA, zA)
T and PB = (xB, yB, zB)

T of A and B can be obtained by
using Equation (29). At the same time, the body reference system V0 is located at the midpoint of the
line segment AB, so the position vector of V0 in T0 is:

PV0 = (
xA + xB

2
,

yA + yB
2

,
zA + zB

2
+ h0)

T . (48)

Note: The nominal height h0 of the secondary system with the difference in the z-direction
between V0 and T0 is directly added to the third term of Equation (48).

Because of the balance of forces, it is generally believed that the posture of the body reference
system is the same as that of the track reference system. Therefore, the posture matrix of V0 in T0 can
be obtained as follows:

T0
V0

J =

[
I3×3 PV0

0 1

]
. (49)

Thus far, the posture matrix of the train body constrained coordinate system VR(i) and VL(i)
relative to the track constrained coordinate system TR(i) and TL(i) are obtained:

TR(i)
VR(i)

J = TR(i)
T0

J × T0
V0

J × V0
VR(i)

J = [T0
TR(i)

J]−1 × T0
V0

J × V0 VR(i), (50)

TL(i)
VL(i)

J = TL(i)
T0

J × T0
V0

J × V0
VL(i)

J = [T0
TL(i)

J]−1 × T0
V0

J × V0 VL(i). (51)
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In Equations (50) and (51), T0
TR(i)

J and T0
TL(i)

J are determined by Equations (42) and (43), T0
V0

J is

determined by Equation (49), and V0 VR(i) and V0 VL(i) can be obtained by the posture matrix of the
coordinate system in the left/right sliding table relative to that of the reference coordinate system in
the train body.

The posture matrix
TR(i)
VR(i)

J and
TL(i)
VL(i)

J describes the posture relationship from the train-constrained
coordinate system to the track-constrained coordinate system, and also determines the motion of
the suspension frame and the secondary system. Using these pose matrices, the motion range of the
secondary system, suspension frame and other parts in the train can be calculated, which provides an
accurate basis for the design.

5. The Motion Analysis of the Maglev Train

The inverse kinematics equations of suspension frame and secondary system are established in
Section 3, and the constraint matrix from the body coordinate system to track coordinate system is
established. In this section, the motion of suspension frame in the Maglev train on the transition curve
is taken as an example, and the calculation results of specific motion range are given.

The reference coordinate systems J0 and T0 of the kinematics equation of the suspension frame
are set at the first joint of the anti-rolling beam group (the connection between the left module and
the anti-rolling beam) and the last joint (the connection between the right module and the anti-rolling
beam). They do not coincide with the track coordinate system TL(i) and TR(i). Therefore, it is necessary
to design the transformation matrix so as to transform the train–track constraint relation to the reference
system of the inverse kinematics solution.

The spatial relationship between the suspension module and the electromagnet corresponding to
a suspension frame is shown in Figure 9.

Figure 9. The relation between suspension frame and track constraint coordinate system.

It can be seen in Figure 9 that the postures of the reference coordinate system and the terminal
coordinate system of the suspension frame are the same as that of the orbit coordinate system, but the
origin does not coincide.

h0 : The distance from the origin of the track coordinate system TL(i) TR(i) on the center line of
the electromagnet polar surface to the cross section of the anti-rolling beam group (x-direction of the
reference system);

h1 : The vertical distance from the pole surface of the electromagnet to the upper hinge (z-direction
of the reference system);

l0 : The distance from the polar axis of the electromagnet to the anti-roll beam and the module
hinge (y-axis of the reference system);
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The definitions of l1, l2 and l3 are given in Section 2 of the kinematic modeling of the suspension
frame.

The parameters of the transition curve and the Maglev train are shown in Table 1.

Table 1. The parameters of the transition curve and the Maglev train.

Parameters Value Parameters Value

Minimum Curve Radius R0 1000 m h0 0.4625 m
Maximum transverse slope angle θ 6◦ h1 0.501 m
Gauge D 2 m h1 0.765 m
The length of electromagnet l 2.65 m l0 0.431 m
The distance between adjacent magnets δx 0.09 m l1 0.441 m
The distance of the air spring on the same module lair 2.25 m l2 0.264 m
The distance of adjacent air springs δxair 0.49 m The length of transition curve S0 36 m

As can be seen from Figure 9, for the right module of the suspension frame, the transformation
matrix from the terminal coordinate system T0 of the suspension frame to the track coordinate system
TR(i) is as follows:

TR(i)
T0(i)

J =


1 0 0 (−1)ih0

0 1 0 l0
0 0 1 h1 − l2
0 0 0 1

 . (52)

In Equation (52), the −l2 is the height difference between the terminal coordinate system and the
reference coordinate system.

On the left module, the transformation matrix from the reference coordinate system J0 to the orbit
coordinate system TL(i) is as follows:

TL(i)
J0(i)

J =


1 0 0 (−1)ih0

0 1 0 −l0
0 0 1 h1

0 0 0 1

 . (53)

Thus, the posture transformation relationship from the right track coordinate system to the left
track coordinate system is as follows:

TL(i)
TR(i)

J = TL(i)
J0(i)

J × J0(i)
T0(i)

J × T0(i)
TR(i)

J (54)

so
J0(i)
T0(i)

J =
(

TL(i)
J0(i)

J
)−1
× TL(i)

TR(i)
J × TR(i)

T0(i)
J. (55)

In Equation (55), the first term is determined by Equation (53), the second is decided by Equation
(44), and the third is determined by Equation (52). The Jo(i)

To(i)
J calculated on the left side is the constraint

matrix of the posture relationship between the two ends of the suspension frame, which is brought
into the inverse kinematics equation of the suspension frame to calculate the motion of each joint of
the anti-rolling beam group.

According to the parameters of transition curve, the joint motion of 10 anti-rolling beam groups
on five suspension frames of vehicle is simulated as shown in Table 2.

From the data in Table 2, it can be seen that the range of motion joints in the anti-rolling beam
group changes: |θ1| ≤ 0.6◦, |θ2| ≤ 0.5◦, |θ3| ≈ 0◦, |θ4| ≤ 6 mm, θ5 ≈ 0◦, |θ6| ≤ 0.6◦. It can be seen
that, under the premise that the suspension module follows the track strictly, when the suspension
frame passes through the transition curve (the minimum radius is 100 m, the maximum superelevation
is 6 degrees), the suspension frame hanger rod needs about 6 mm expansion. The data obtained
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by the simulation can provide reliable data for the design of the suspension frame, and can carry
out quantitative analysis and calculation, which greatly improves the reliability and stability of the
design structure.

Table 2. The motion of joints in anti-rolling beam groups.

Number θ1(degree) θ2(degree) θ3(degree) θ4(mm) θ5(degree) θ6(degree)

1 0.42 −0.33 −0.00 −5.58 0.01 −0.42
2 −0.29 −0.33 0.00 5.59 −0.00 0.29
3 0.46 −0.33 −0.00 −5.58 0.01 −0.46
4 −0.33 −0.33 −0.00 5.59 −0.00 0.33
5 0.50 −0.33 −0.00 −5.58 0.01 −0.50
6 −0.37 −0.33 −0.00 5.59 −0.00 0.37
7 0.54 −0.33 −0.00 −5.57 0.01 −0.54
8 −0.41 −0.33 −0.00 5.59 −0.00 0.41
9 0.58 −0.33 −0.01 −5.57 0.01 −0.58

10 −0.44 −0.33 −0.00 5.59 −0.00 0.44

From the data in Table 2, it can be seen that the range of motion joints in the anti-rolling beam
group changes: |θ1| ≤ 0.6◦, |θ2| ≤ 0.5◦, |θ3| ≈ 0◦, |θ4| ≤ 6 mm, θ5 ≈ 0◦, |θ6| ≤ 0.6◦. It can be seen
that, under the premise that the suspension module follows the track strictly, when the suspension
frame passes through the transition curve (the minimum radius is 100 m, the maximum superelevation
is 6 degrees), the suspension frame hanger rod needs about 6 mm expansion. The data obtained
by the simulation can provide reliable data for the design of the suspension frame, and can carry
out quantitative analysis and calculation, which greatly improves the reliability and stability of the
design structure.

6. Conclusions

In this paper, the differentiable manifold, Lie group, Lie algebra and screw theory in the field
of rigid body motion are applied to the kinematics modeling and analysis about Maglev train and
track for the first time, which provides a systematic and scientific theoretical framework for the
kinematics/dynamics modeling and analysis in the Maglev traffic. The method introduced in this
paper can study the kinematics of the system from the macroscopic point of the train and track. It can
change the status that the design and analysis is from bottom to top for many years, and hopefully raise
the technology of Maglev transportation to the scientific level. Based on the research and development
experience of Maglev transportation technology for many years, the conclusions obtained in this
paper have been verified by practice, which proves the effectiveness and superiority of the proposed
theoretical method.
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Appendix A

Appendix A.1. Each Element in Equation (4)

n11 = cθ1cθ2cθ6 − sθ6 [cθ5 (sθ1cθ3 + cθ1sθ2sθ3)− sθ5 (sθ1sθ3 − cθ1sθ2cθ3)] , (A1)

n12 = −cθ1cθ2sθ6 − cθ6 [cθ5 (sθ1cθ3 + cθ1sθ2sθ3)− sθ5 (sθ1sθ3 − cθ1sθ2cθ3)] , (A2)

n13 = cθ5 (sθ1cθ3 − cθ1sθ2cθ3) + sθ5 (sθ1cθ3 + cθ1sθ2sθ3) , (A3)
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p1 = l1sθ1 − (l2 + θ4)sθ1sθ3 + l2cθ1sθ2cθ3 + l3sθ1 (cθ3sθ5 − sθ3sθ5) + θ4cθ1sθ2cθ3 + l3cθ1sθ2 (cθ3sθ5 + sθ3cθ5) , (A4)

n21 = sθ1cθ2cθ6 − sθ6 [cθ5 (cθ1cθ3 − sθ1sθ2sθ3)− sθ5 (cθ1sθ3 − sθ1sθ2cθ3)] , (A5)

n22 = −sθ1cθ2sθ6 + cθ6 [cθ5 (cθ1cθ3 − sθ1sθ2sθ3)− sθ5 (cθ1sθ3 + sθ1sθ2cθ3)] , (A6)

n23 = −cθ5 (cθ1sθ3 + sθ1sθ2cθ3)− sθ5 (cθ1cθ3 − sθ1sθ2sθ3) , (A7)

p2 = l1cθ1 + (l2 + θ4)cθ1sθ3 + l2sθ1sθ2cθ3 − l3cθ1 (cθ3sθ5 − sθ3sθ5) + θ4sθ1sθ2cθ3 + l3sθ1sθ2 (cθ3sθ5 + sθ3cθ5) , (A8)

n31 = sθ2cθ6 + sθ6 (cθ2cθ3sθ5 + cθ2sθ3cθ5) , (A9)

n32 = −sθ2sθ6 + cθ6 (cθ2cθ3sθ5 + cθ2sθ3cθ5) , (A10)

n33 = cθ2c(θ3 + θ5), (A11)

p3 = −cθ2 (l3s(θ3 + θ5) + l2cθ3 + θ4cθ3) . (A12)
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