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Abstract: The current paper is a technical work that is focused on Lorentz violation for Dirac fermions
as well as neutrinos, described within the nonminimal Standard-Model Extension. We intend to
derive two theoretical results. The first is the full propagator of the single-fermion Dirac theory
modified by Lorentz violation. The second is the dispersion equation for a theory of N neutrino
flavors that enables the description of both Dirac and Majorana neutrinos. As the matrix structure
of the neutrino field operator is very involved for generic N, we will use sophisticated methods of
linear algebra to achieve our objectives. Our main finding is that the neutrino dispersion equation
has the same structure in terms of Lorentz-violating operators as that of a modified single-fermion
Dirac theory. The results will be valuable for phenomenological studies of Lorentz-violating Dirac
fermions and neutrinos.

Keywords: Lorentz and CPT violation; Standard-Model Extension; Dirac fermions; Dirac neutrinos;
Majorana neutrinos; determinants of block matrices

1. Introduction

Neutrinos are both interesting and elusive particles. According to the Standard Model of particle
physics, there are three neutrino flavors that correspond to the flavors of the three charged leptons—the
electron neutrino νe, the muon neutrino νµ and the tau neutrino ντ. Neutrinos do not carry electric
charge and are only produced in processes mediated by the weak interaction [1]. When neutrinos
propagate a distance, the probability of detecting a certain flavor changes with time. These neutrino
oscillations are quantum mechanical in nature. They have their origin in the fact that the eigenstates
of the kinematic Hamiltonian and the flavor eigenstates produced in interactions do not correspond
to each other. Instead, these two distinct bases are related by the unitary PMNS matrix [2]. Neutrino
oscillations indicate that neutrinos have mass, although their mass is that tiny to not have been
measured directly, so far. Therefore, they practically propagate with the speed of light.

Measuring the CP-violating phase that is contained in the PMNS matrix is currently one of the hot
topics in neutrino physics. Apart from CP-violation, neutrinos may be subject to CPT violation due to
physics at the Planck scale such as strings [3,4]. Since they travel almost with the speed of light, they are
strongly boosted with respect to the Sun-centered equatorial frame [5] and CPT-violating effects may
accumulate over long distances. A violation of CPT symmetry implies a violation of Lorentz invariance
in the context of effective field theory [6], whereby it makes sense to use neutrinos as a testbed for the
search for Lorentz violation. To do so, a general comprehensive framework to parameterize Lorentz
violation is desirable. The latter is provided by the Standard-Model Extension (SME). Its minimal
version including field operators of mass dimensions 3 and 4 was developed in References [7,8].
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The nonminimal SME, which involves field operators of arbitrary mass dimensions, was constructed
in a series of papers [9–11] for photons, neutrinos and single Dirac fermions. Within this framework,
each Lorentz-violating contribution is a proper contraction of a field operator and a background field.
The latter are composed of preferred spacetime directions and controlling coefficients parameterizing
the strength of Lorentz violation.

Phenomenology in the SME neutrino sector has been performed in a large collection of
papers [12–33], where this list is not claimed to be complete. All constraints obtained for Lorentz
violation in the neutrino sector are compiled in the data tables [5]. Interestingly, it was also observed
that neutrino oscillations could be explained by Lorentz-violating massless neutrinos in certain models.

The current article must be considered as a technical work that can be the preparing base for
further forthcoming phenomenological investigations. We have two objectives. The first is to present
the general result for the propagator of a single Dirac fermion in the nonminimal SME. The second is to
obtain the dispersion equation of the nonminimal neutrino sector. The latter goal will be accomplished
with a powerful method to compute determinants of large matrices that decompose into smaller blocks.

A description of Lorentz violation in the neutrino sector based on the SME permits N neutrino
flavors and allows for both Dirac and Majorana neutrinos. Majorana neutrinos are characterized by
the property of being identical to their own antiparticles such that neutrino-antineutrino mixing can
occur. Therefore, the differential operator that appears in the field equations of the theory is not simply
a (4× 4) matrix in spinor space such as for a single Dirac fermion. For a set of N neutrinos of either
Dirac or Majorana type, it is a (8N × 8N) matrix instead. The determinant of this matrix directly
corresponds to the modified dispersion equation for neutrinos. Even for 3 flavors, its computation
is cumbersome.

In principle, it is possible to consider an observer frame with only a single nonzero coefficient
and to compute the determinant by brute force with computer algebra. Such a direct approach has
several disadvantages, though. First, an observer frame with a single nonzero controlling coefficient is
a very special case. Second, the result of the determinant is most probably still messy and its structure
is supposedly not very illuminating. Therefore, it would be desirable to employ a technique that
allows for a covariant and general treatment of the problem. Although the result is still expected to
be complicated due to the high dimensionality of the matrix, the method to be used can be applied
to obtain the dispersion equation for an arbitrary number of flavors. Thus, it may be of interest for
someone who wants to include sterile neutrinos in their analysis, which are beyond the scope of
the SME.

The paper is organized as follows. Section 2 gives a brief introduction to the SME fermion
sector. The properties most important to us are discussed and several definitions are introduced.
In Section 3 we derive the full propagator of the modified Dirac fermion sector. In Section 4 the
very base of the SME neutrino sector is described, as well as the algorithm that we intend to use to
obtain the neutrino dispersion equation. The individual steps of the calculation are carried out and
explained, too. We state the central result in Section 5 and discuss it subsequently, whereby some
properties of the first-order dispersion relations are obtained in Section 6. A brief comment on classical
Lagrangians in the neutrino sector follows in Section 7. Finally, all findings are summarized and
concluded on in Section 8. Relations and definitions that are not of primary interest to the reader are
relegated to Appendixes A and B. Natural units with the conventions h̄ = c = 1 will be used unless
otherwise stated.

2. Basic Properties of the SME Fermion Sector

The fermion sector of the SME describes a single Dirac fermion subject to Lorentz-violating
background fields that permit a construction of an observer Lorentz-invariant Lagrange density.
The minimal fermion sector was introduced in Reference [8] and its properties were investigated
in Reference [34]. The minimal framework was complemented by the nonminimal contributions in
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Reference [11]. Our analysis will be carried out within the nonminimal SME, whereby we take over
the notation of the latter reference and also mainly refer to formulas stated in that paper.

The framework rests on the Lagrange density of Equations (1) and (2) in [11]. The corresponding
modified Dirac equation reads

Dψ = 0 , D = �p−mψ14 + Q̂ , (1a)

Q̂ = Ŝ14 + iP̂γ5 + V̂µγµ + Âµγ5γµ +
1
2
T̂ µνσµν . (1b)

In the latter, ψ is a spinor, mψ the fermion mass, and γµ denote the usual Dirac matrices that satisfy
the Clifford algebra {γµ, γν} = 2ηµν14 with the Minkowski metric ηµν of signature (+,−,−,−).
Furthermore, 1n is the n-dimensional identity matrix, γ5 = γ5 ≡ iγ0γ1γ2γ3 is the chiral Dirac matrix
and σµν ≡ (i/2)[γµ, γν] involves the commutator of two Dirac matrices. The Lorentz-violating operator
Q̂ is decomposed in terms of the 16 matrices {ΓA} ≡ {14, γ5, γµ, iγ5γµ, σµν}. This set forms a basis
of (4× 4) matrices and the dual basis {ΓA} is obtained by lowering the Lorentz indices with the
Minkowski metric. The basis obeys an orthogonality relation of the form Tr(ΓAΓB) = 4δ B

A where
Tr denotes the trace in spinor space. Lorentz violation is contained in a scalar Ŝ , a vector V̂ , and a
two-tensor operator T̂ . Additionally, a pseudo-scalar P̂ and a pseudo-vector Â occur when the
behavior of the operators under parity transformations is taken into account. Tensors of higher rank
than these do not exist, as more complicated matrices in spinor space can always be mapped in some
way to the 16 matrices mentioned before by using identities such as those listed in Appendix A.

It is worth pointing out the structure of the operators contained in Q̂. They are constructed as
sums of operators of increasing mass dimension suitably contracted with controlling coefficients. In
momentum space they can be written as the following infinite sums:

Ŝ =
∞

∑
d=3
S (d)α1α2 ...αd−3 pα1 pα2 . . . pαd−3 , (2a)

P̂ =
∞

∑
d=3
P (d)α1α2 ...αd−3 pα1 pα2 . . . pαd−3 , (2b)

V̂µ =
∞

∑
d=3
V (d)µα1α2 ...αd−3 pα1 pα2 . . . pαd−3 , (2c)

Âµ =
∞

∑
d=3
A(d)µα1α2 ...αd−3 pα1 pα2 . . . pαd−3 , (2d)

T̂ µν =
∞

∑
d=3
T (d)µνα1α2 ...αd−3 pα1 pα2 . . . pαd−3 , (2e)

where d is the mass dimension of the field operator that a specific controlling coefficient such as
S (d)α1 ...αd−3 is contracted with. These decompositions can be extracted from Equation (3) in [11]. Each
controlling coefficient has a mass dimension of 4− d and is independent of the spacetime coordinates
to preserve energy and momentum.

Evaluating the determinant of the Dirac operator D leads to the dispersion equation for a single
fermion. The latter is given by Equation (39) of [11]:

∆ = 0 , ∆ = (Ŝ2
− − T̂ 2

−)(Ŝ2
+ − T̂ 2

+) + V̂2
−V̂2

+ − 2V̂− · (Ŝ−η + 2iT̂−) · (Ŝ+η − 2iT̂+) · V̂+ , (3a)
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with the definitions

Ŝ± ≡ −mψ + Ŝ ± iP̂ , V̂µ
± ≡ pµ + V̂µ ± Âµ , T̂ µν

± ≡
1
2
(T̂ µν ± i ˜̂T µν) , (3b)

and the dual of the two-tensor operator:

˜̂T µν ≡ 1
2

εµν$σT̂$σ . (3c)

The latter contains the totally antisymmetric Levi-Civita symbol εµν$σ based on the convention
ε0123 = 1. In the remainder of the paper, a definition of the observer scalars

X̂ ≡ 1
4
T̂µνT̂ µν , Ŷ ≡ 1

4
T̂µν

˜̂T µν , (4)

turns out to be fruitful. It is also beneficial to define the following combination of operators that we
will make frequent use of:

˜̂T µν
gen ≡ ˜̂T µν − 1

Ŝ −mψ

[
(p + V̂)µÂν − Âµ(p + V̂)ν

]
, T̂ µν

gen ≡
1
2

εµν$σ( ˜̂T gen)$σ . (5)

Note that the operator previously introduced reduces to the effective dual two-tensor operator
in Equation (25) of Reference [11] at first order in Lorentz violation, which is why we denote it by the
index “gen” standing for “generalized.”

3. General Modified Dirac Propagator

The investigations to be performed in the neutrino sector require an evaluation of the
single-fermion propagator (Green’s function in momentum space) S. This result has not been
obtained so far for the full nonminimal fermion sector, which is why we would like to state it
here. The propagator is directly connected to the inverse of the Dirac operator in momentum space:
DS = SD = 14. It must be possible to express the propagator in terms of the basis {ΓA}mentioned
before. Therefore, it can be written in the form

iS =
i
∆

(
Ŝ(p)14 + iP̂ (p)γ5 + V̂ (p)µγµ + Â(p)µγ5γµ +

1
2
T̂ (p)µνσµν

)
, (6)

where ∆ = det(D) and the index (p) of each individual contribution stands for “propagator.” Note
that we introduced a prefactor of i to follow the conventions of Reference [35]. The denominator ∆
corresponds to the left-hand side of Equation (3). The individual contributions can be obtained by
multiplying the inverse with each of the 16 Dirac matrices and computing the trace of the matrix
product. In addition, we make use of the orthogonality relation for these matrices, which leads to:

Ŝ (p) =
∆
4

Tr(14D−1) , P̂ (p) = −i
∆
4

Tr(γ5D−1) , V̂ (p)µ =
∆
4

Tr(γµD−1) , (7a)

Â(p)µ = −∆
4

Tr(γ5γµD−1) , T̂ (p)µν =
∆
4

Tr(σµνD−1) . (7b)

Now, these contributions are explicitly given by

Ŝ (p) = −(Ŝ −mψ)(2Θ− T̂µνT̂ µν
gen)− 2ŶP̂ , (8a)

P̂ (p) = −(Ŝ −mψ)(2Ŷ− T̂µν
˜̂T µν

gen) + 2ΘP̂ , (8b)
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V̂ (p)µ = 2
[
Θ(p + V̂)µ − T̂ µνT̂ν$(p + V̂)$ − (Ŝ −mψ)

˜̂T µν
genÂν + T̂ µνÂνP̂

]
, (8c)

Â(p)µ = 2
[
ΘÂµ − T̂ µνT̂ν$Â$ − (Ŝ −mψ)

˜̂T µν
gen(p + V̂)ν + T̂ µν(p + V̂)νP̂

]
, (8d)

T̂ (p)µν = 2
[
(Ŝ −mψ)

2T̂ µν
gen −ΘT̂ µν + Ŷ ˜̂T µν +

[
T̂ µ$(p + V̂)ν − (p + V̂)µT̂ ν$

]
(p + V̂)$

−(T̂ µ$Âν − ÂµT̂ ν$)Â$ − (Ŝ −mψ)P̂ ˜̂T µν
gen

]
. (8e)

For convenience, we defined the observer scalar

2Θ ≡ (p + V̂)2 − (Ŝ −mψ)
2 − Â2 − 2X̂− P̂2 , (8f)

which involves each of the five operators. Several remarks are in order. First, this result generalizes
the propagator obtained for the spin-degenerate operators Ŝ , V̂ in Reference [36] and that for
the spin-nondegenerate operators Â, T̂ in Reference [37]. It now applies to the full spectrum of
Lorentz-violating operators and is valid also for the nonminimal SME. The propagator reduces to the
special results published previously when the corresponding operators are set to zero. Second, all
operators of different types are coupled to each other and each contribution of Equation (8) transforms
consistently under parity transformations, as expected. For example, each term of P̂ (p) transforms as a
pseudoscalar. Third, for vanishing Lorentz violation, we have

2Θ = p2 −m2
ψ , Ŝ (p) = mψ(p2 −m2

ψ) , P̂ (p) = 0 , (9a)

V̂ (p)µ = (p2 −m2
ψ)pµ , Â(p)µ = 0 , T̂ (p)µν = 0 , ∆ = (p2 −m2

ψ)
2 , (9b)

whereupon Equation (6) reproduces the standard fermion propagator

iS|LV=0 =
i(�p + mψ14)

p2 −m2
ψ

, (10)

stated in [35].

4. Modified Neutrino Dispersion Equation

We consider N flavors of modified neutrinos and also include a description of Majorana neutrinos.
To do so, the spinor field ΨA is constructed as a 2N-dimensional multiplet of spinors

ΨA =

(
ψa

ψC
a

)
, (11)

where a ranges over N flavors and A labels the 2N components of the multiplet. Furthermore, ψC
a

is the charge conjugate of ψa [10]. Due to the form of the construction, there is a redundancy in Ψ
encoded in the relationship

ΨC = CΨ , C =
(

0 1N
1N 0

)
, (12)

where the (2N × 2N) matrix C is defined in terms of (N × N) blocks in flavor space. With this
information at hand, we present the Lagrange density that incorporates Lorentz and CPT violation
into the neutrino sector:

L =
1
2

ΨA(i�∂δAB −MAB + Q̂AB)ΨB + H.c. , (13)



Symmetry 2019, 11, 1197 6 of 16

with the flavor indices A, B. The corresponding Dirac operator Dν in momentum space is a (8N× 8N)

matrix that can be expressed in the form [10]

Dν = 12N ⊗ �p−M⊗ 14 + Q̂ , (14a)

where
Q̂ = Ŝ ⊗ 14 + iP̂ ⊗ γ5 + V̂µ ⊗ γµ + Âµ ⊗ γ5γµ +

i
2
T̂ µν ⊗ σµν . (14b)

Here, ⊗ denotes a tensor product of (2N × 2N) matrices in flavor space and matrices in
four-dimensional spinor space. Furthermore, M is the (2N × 2N) neutrino mass matrix. Both the
mass matrix and the Lorentz-violating operator Q̂ are expressed in the basis of flavor eigenstates.
Therefore, the mass matrix cannot simply be taken as diagonal. The operator Q̂ can be decomposed
as in Equation (2), but now we need to remember that the individual contributions also have a
flavor structure.

The dispersion equation corresponds to the determinant of the Dirac operator set equal to zero.
Therefore, the basic problem is to obtain this determinant and to express the result in a convenient
manner. It turns out to be very useful to treat the Dirac operator as a (2N × 2N) matrix in flavor space
where each of these entries on its own is a (4× 4) matrix in spinor space. Thus, the structure of this
operator is

Dν =

 D1,1 . . . D1,2N
...

. . .
...

D2N,1 . . . D2N,2N

 , (15a)

where

Di,j = δi,j�p−Mi,j14 + Q̂i,j , (15b)

Q̂i,j =

(
Ŝ14 + iP̂γ5 + V̂µγµ + Âµγ5γµ +

1
2
T̂ µνσµν

)
i,j

. (15c)

The indices stated explicitly are flavor indices, whereby spinor indices are suppressed, as usual.
Writing the Dirac operator in this form turns out to be advantageous to apply a sophisticated algorithm
for computing the determinant of a matrix in block form in a suggestive way [38]. The algorithm is a
recursive method that will be briefly described as follows.

The base is to define 2N sets of matrices α
(k)
i,j with k ∈ {0 . . . 2N− 1}. Each set for a fixed k contains

(2N)2 such matrices, i.e., we have i, j ∈ {1 . . . 2N}. To avoid confusion, we emphasize again that all
matrices are (4× 4), i.e., the indices are not spinor indices, but they label these matrices in flavor space.
Now, the first step of the recursion is to assign the Dirac block at the position (i, j) in flavor space to
the matrix α

(0)
i,j :

α
(0)
i,j ≡ Di,j . (16)

A recurrence relation is defined that allows for constructing new sets of matrices from previous
ones. Hence, for k ∈ {0 . . . 2N − 2} fixed, we obtain a new set of (4× 4) matrices {α(k+1)} from the set
{α(k)} via

α
(k+1)
i,j = α

(k)
i,j − α

(k)
i,2N−k(α

(k)
2N−k,2N−k)

−1α
(k)
2N−k,j , (17)

where A−1 denotes the inverse of the matrix A. Having these 2N sets of matrices at hand, the
determinant of the original block matrix in Equation (15a) is given by

detDν =
2N

∏
k=1

det(α(2N−k)
k,k ) . (18)
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Hence, to compute the determinant, only a subset of the matrices obtained before is necessary. This
procedure has a great advantage compared to a brute-force evaluation of the determinant. In virtue
of Equation (18), the determinant of the full Dirac operator including the flavor structure decomposes
into a product of determinants of matrizes that have the form of single-fermion Dirac operators.

Below, we intend to apply this powerful algorithm to the nonminimal neutrino sector. To simplify
our notation, we introduce a generic Lorentz-violating operator ÔX with a suitable Lorentz index
structure X. The latter can stand for one of the five possible operators: ÔX ∈ {Ŝ , P̂ , V̂µ, Âµ, T̂ µν}.
Now, the steps to be used for the algorithm are as follows:

1. Definition of initial operators:

According to Equation (16), the first step of the recursion is

α
(0)
i,j =

(
Ŝ14 + iP̂γ5 + V̂µγµ + Âµγ5γµ +

1
2
T̂ µνσµν

)(0)

i,j
, (19a)

with

Ŝ (0)i,j = −Mi,j + Ŝi,j , P̂ (0)
i,j = P̂i,j , V̂ (0)µi,j = pµδi,j + V̂

µ
i,j , (19b)

Â(0)µ
i,j = Âµ

i,j , T̂ (0)µν
i,j = T̂ µν

i,j . (19c)

2. Computation of inverse matrix:

The recurrence relation (17) requires the inverse of α
(k)
i,j , which has the form of a single-fermion

Dirac operator. Therefore, its inverse is linked to the fermion propagator obtained in
Equation (6) where

(α
(k)
2N−k,2N−k)

−1 = S|
ÔX=Ô(k)X

2N−k,2N−k
. (20a)

The denominator that appears in the latter expression is given by the left-hand side of the
dispersion Equation (3):

∆(k) ≡ det(α(k)2N−k,2N−k) = ∆|
ÔX=Ô(k)X

2N−k,2N−k
. (20b)

3. Product of the second and third factor of recurrence relation:

Keeping the previous result in mind, the product necessary to evaluate Equation (17) contains all
kinds of combinations of Dirac matrices. As the 16 matrices of the set ΓA form a basis of (4× 4)
matrices, these combinations can be completely expressed in terms of the 16 original matrices. To
do so, a slew of matrix identities are indispensable, which are to be found in Appendix A. The
result of the product then has the following form:

(α
(k)
2N−k,2N−k)

−1α
(k)
2N−k,j =

1
∆(k)

(
ˆ̄S + i ˆ̄P + ˆ̄Vµγµ + ˆ̄Aµγ5γµ +

1
2

ˆ̄T µνσµν

)(k)

2N−k,j
, (21)

according to the single-fermion result of Equation (3). A bar is added to the new operators that
follow from this product. These are explicitly given by

ˆ̄S (k)2N−k,j =

(
Ŝ (p)Ŝ − P̂ (p)P̂ + V̂ (p) · V̂ − Â(p) · Â − 1

2
T̂ (p) · T̂

)(k)

2N−k,j
, (22a)

i ˆ̄P (k)
2N−k,j =

(
iŜ (p)P̂ + iP̂ (p)Ŝ − V̂ (p) · Â+ Â(p) · V̂ + i[?(T̂ (p) ∧ T̂ )]

)(k)
2N−k,j

, (22b)
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ˆ̄V (k)µ2N−k,j =
(
Ŝ (p)V̂µ + V̂ (p)µŜ + i(V̂ (p) · T̂ + T̂ (p) · V̂)µ + i(P̂ (p)Âµ − Â(p)µP̂)

+[?(Â(p) ∧ T̂ + T̂ (p) ∧ Â)]µ
)(k)

2N−k,j
, (22c)

ˆ̄A(k)µ
2N−k,j =

(
Ŝ (p)Âµ + Â(p)µŜ + i(P̂ (p)V̂µ − V̂ (p)µP̂) + i(Â(p) · T̂ + T̂ (p) · Â)µ

+[?(V̂ (p) ∧ T̂ + T̂ (p) ∧ V̂)]µ
)(k)

2N−k,j
, (22d)

1
2

ˆ̄T (k)µν
2N−k,j =

(
1
2
(Ŝ (p)T̂ µν + T̂ (p)µνŜ)− 1

2
(P̂ (p) ˜̂T µν + ˜̂T (p)µνP̂)− i

2
V̂ (p)µ ∧ V̂ν

+
i
2
Â(p)µ ∧ Âν +

1
2
[?(Â(p) ∧ V̂ − V̂ (p) ∧ Â)]µν + i(T̂ (p) · T̂ )[µν]

)(k)

2N−k,j
, (22e)

where, for brevity, we omit the indices summed over. In the latter results, ∧ stands for the exterior
product (wedge product) of two tensors and ? is the Hodge dual of a tensor (cf. Appendix B for a
definition of these mathematical operations). We interpret the form of these expressions based on
the example of the vector operator of Equation (22c).

First, we will discuss the possible terms that occur. Only certain combinations of basic operators
are permitted. In particular, a vector operator can be formed from combinations of the scalar
Ŝ and the vector V̂ . Another possibility is to contract the vector V̂ with the tensor T̂ . The fact
that a combination of a pseudoscalar P̂ and a pseudovector Â transforms as a vector again,
explains the third term. Finally, the pseudovector Â can be contracted with the tensor T̂ to form a
pseudovector. The Hodge dual of the latter provides a vector.

Second, as one of the two operators of each term comes from the inverse (related to the propagator),
each of the previously discussed possibilities appears twice. In the second possibility, the roles of
the operators simply switch, i.e., what was the vector operator in the first possibility becomes the
scalar operator and vice versa.

4. Product of the first factor in recurrence relation and the result of step (3):

Now we can evaluate the product of the three matrices in Equation (17) completely,
which provides

α
(k)
i,2N−k(α

(k)
2N−k,2N−k)

−1α
(k)
2N−k,j =

1
∆(k)

(
ˆ̄̄S14 + i ˆ̄̄Pγ5 + ˆ̄̄Vµγµ + ˆ̄̄Aµγ5γµ +

1
2

ˆ̄̄T µνσµν

)(k)

i,j
. (23)

Following the same procedure as before, we obtain a set of new operators indicated by a double
bar. For example, the new vector operator is given by

ˆ̄̄V (k)µi,j =
(
Ŝ ˆ̄Vµ + V̂µ ˆ̄S + i(V̂ · ˆ̄T + T̂ · ˆ̄V)µ + i(P̂ ˆ̄Aµ − Âµ ˆ̄P)

+[?(Â ∧ ˆ̄T + T̂ ∧ ˆ̄A)]µ
)(k)

i,j
. (24)

We see that the structure of the latter result is the same as that of Equation (22c). The simple
difference is that the operators have to be renamed according to Ô(p)X 7→ ÔX and ÔX 7→ ˆ̄OX.
Analog replacements must be performed for the remaining operators.

5. Recursive step k 7→ k + 1:
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Now we have the ingredients to evaluate Equation (17):

α
(k+1)
i,j = α

(k)
i,j − α

(k)
i,2N−k(α

(k)
2N−k,2N−k)

−1α
(k)
2N−k,j

=

(
Ŝ14 + iP̂γ5 + V̂µγµ + Âµγ5γµ +

1
2
T̂ µνσµν

)(k+1)

i,j
. (25a)

Thus, the (k + 1)-th operators are expressed in terms of the k-th operators via

Ô(k+1)X
i,j = Ô(k)X

i,j − 1
∆(k)

ˆ̄̄O(k)X
i,j . (25b)

6. Express final operators in terms of inicial ones:

We insert Equation (25b) k times into itself successively to obtain

Ô(k+1)X
i,j = Ô(0)X

i,j −
k

∑
l=0

1
∆(l)

ˆ̄̄O(l)X
i,j . (26)

7. Final computation of determinant:

All the previous results are employed to compute the determinant according to Equation (18).
Doing so, it is reasonable to extract a product of denominators ∆(n) from the expression such that
the determinant itself is a polynomial instead of a sum of fractions of polynomials:

detDν =
2N

∏
k=1

det(α(2N−k)
k,k ) = det(α(2N−1)

1,1 )
2N

∏
k=2

∆(2N−k) =
det(α̃(2N−1)

1,1 )

(Π(2N−2)
∆ )3

, (27a)

with

Π(k)
∆ ≡

k

∏
n=0

∆(n) , (27b)

α̃
(2N−1)
1,1 ≡ Π(2N−2)

∆ α
(2N−1)
1,1 . (27c)

In the forthcoming section, the final result will be stated explicitly.

5. Full Dispersion Equation of Neutrino Sector

As the matrix α̃
(2N−1)
1,1 contained in the final form of the determinant in Equation (27a) has the same

structure as the single-fermion Dirac theory in Equation (1), we can directly compute the full dispersion
equation for the nonminimal SME neutrino sector based on the Dirac operator of Equation (14a). The
prefactors that we extracted from the determinant in Equation (27a) do not play a role any longer. So
neutrinos subject to any kind of Lorentz violation parameterized by the nonminimal SME obey the
dispersion equation

0 = (S̆2
− − T̆ 2

−)(S̆2
+ − T̆ 2

+) + V̆2
−V̆2

+ − 2V̆− · (S̆−η + 2iT̆−) · (S̆+η − 2iT̆+) · V̆+ , (28a)

with the operators

S̆± = (S̆ ± iP̆)(2N−1)
1,1 , (28b)

V̆µ
± = (V̆µ ± Ăµ)

(2N−1)
1,1 , (28c)
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T̆ µν
± =

1
2

[
T̆ µν ± i ˜̆T µν

](2N−1)

1,1
, (28d)

and
Ŏ(2N−1)X

i,j = Π(2N−2)
∆ Ô(2N−1)X

i,j . (28e)

The latter result is the central finding in the current paper. The interesting observation is that
the dispersion equation for N neutrino flavors (including the description of both Dirac and Majorana
neutrinos) subject to Lorentz violation has a form completely analog to the dispersion equation of the
single-fermion sector stated in Equation (3). In general, the coefficients appearing in the dispersion
equation are (lengthy) combinations of the neutrino coefficients that are given by a subsequent
application of Equations (22) and (24) (for the vector operator, in particular) and Equation (25b). This
procedure has to be repeated a sufficient number of times to be able to compute the final necessary
operator via Equation (26). The advantage of the result given by Equation (28a) is that it is covariant
and does not apply to only a specific observer frame. We think that this form is also suitable to be used
in a computer algebra system.

6. First-Order Behavior of Dispersion Relations

As Equation (28a) is, in general, a polynomial in p0 of high degree, it is challenging to obtain exact
dispersion relations from it. Thus, in the current section we intend to get some idea on the general
structure of modified neutrino dispersion relations at leading order in Lorentz violation. Since Ŝ (k)i,j

and V̂ (k)µi,j exhibit Lorentz-invariant parts, it is reasonable to decompose the latter operators into two
contributions to separate both pieces from each other. By doing so, we get

Ô(k)
i,j = Ô(0)

i,j −
k−1

∑
l=0

1

∆(l)
2N−l,2N−l

ˆ̄̄O(l)
i,j ≈ Ô

(k)
0;i,j + δÔ(k)

i,j . (29a)

The additional index “0” (without parentheses) denotes a Lorentz-invariant part. In an analog
manner, we generically expand the operators P̂ (k)

i,j , Â(k)µ
i,j and T̂ (k)µν

i,j in the form

Ô(k)
i,j = Ô(0)

i,j −
k−1

∑
l=0

1

∆(l)
2N−l,2N−l

ˆ̄̄O(l)
i,j ≈ δÔ(k)

i,j . (29b)

Here, the notation δ indicates that all leading-order Lorentz-violating contributions are included
(recall that P̂ , Â and T̂ must be expanded to second order). Later on we can substitute those parts by
the corresponding expansions. The expanded dispersion equation then takes the form

0 ≈
[
(Ŝ (k)0;i,j)

2 + 2Ŝ (k)0;i,jδŜ
(k)
i,j − (V̂ (k)0;i,j)

2 − 2V̂ (k)0;i,j · δV̂
(k)
i,j

]2

+ 2
[
(Ŝ (k)0;i,j)

2 − (V̂ (k)0;i,j)
2
]
(δP̂ (k)

i,j )2 − 4(δŶ (k)
i,j )2 , (30a)

with the spin-nondegenerate part

(δŶ (k)
i,j )2 = (V̂ (k)0;i,j · δÂ

(k)
i,j )

2 − 1
2

[
(V̂ (k)0;i,j)

2 + (Ŝ (k)0;i,j)
2
]
(δÂ(k)

i,j )
2 + 2Ŝ (k)0;i,jV̂

(k)
0;i,j · δ

ˆ̃T(k)
i,j · δÂ

(k)
i,j

+ V̂ (k)0;i,j · δ
ˆ̃T(k)
i,j · δ

ˆ̃T(k)
i,j · V̂

(k)
0;i,j +

1
4

[
(V̂ (k)0;i,j)

2 − (Ŝ (k)0;i,j)
2
]
(δ ˆ̃T(k)

i,j )2 . (30b)
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Note that the last term on the right-hand side of the latter equation vanishes for the single-fermion
sector. The leading-order expansion of the dispersion equation can be further expressed as

(V̂ (k)0;i,j)
2 − (Ŝ (k)0;i,j)

2 ≈ 2Ŝ (k)0;i,jδŜ
(k)
i,j − 2V̂ (k)0;i,j · δV̂

(k)
i,j

± 2

√
(δŶ (k)

i,j )2 − 1
2

[
(Ŝ (k)0;i,j)

2 − (V̂ (k)0;i,j)
2
]
(δP̂ (k)

i,j )2 . (31)

It shall be emphasized again that the Lorentz-invariant pieces are contained only in V̂ (k)0;i,j and Ŝ (k)0;i,j,

respectively. The term on the left-hand side of the equation above is a polynomial of order 8N in p0

and contains the pure-mass part. The standard dispersion relations for the case of an arbitrary number
of N flavors seem to follow the pattern

E(u)
0

?
=

√
p2 +

1
2N

[
M+ (m(u)

eff )
2
]

, u ∈ {1 . . . 2N} , (32a)

where p is the spatial momentum of pµ and

M = Tr(M2) =
2N

∑
i,j=1

Mi,j Mj,i . (32b)

Furthermore, (m(u)
eff )

2 for u fixed is a complicated polynomial of mass matrix coefficients that we
simply called an “effective mass squared.” The validity of Equation (32a) is challenging to proof for an
arbitrary N, though. Taking Lorentz violation into account, the first-order modification is given by

E(u) ≈ E(u)
0 +

1

2NE(u)
0 (m(u)

eff )
2

{
Ŝ (k)0;i,jδŜ

(k)
i,j − V̂

(k)
0;i,j · δV̂

(k)
i,j

±
√
(δŶ (k)

i,j )2 − 1
2

[
(Ŝ (k)0;i,j)

2 − (V̂ (k)0;i,j)
2
]
(δP̂ (k)

i,j )2

}
, (33)

with the operators defined in Equations (29a), (29b) and (30b). Here we see how the presence of
the spin-nondegenerate operators doubles the number of dispersion relations, as expected. In total,
there are then 8N modified dispersion laws, which corresponds to the degree of the polynomial in p0.
Furthermore, the pseudoscalar operator also leads to such a doubling. If the pseudo-scalar operator
is the only source for Lorentz violation, it contributes at second order, as δP̂ (k)

i,j is of second order in
Lorentz violation.

Special Case: N = 1

As even the general first-order expansion is quite complicated, it shall be exemplified as follows.
We consider the theory of a single neutrino flavor that can be of either Dirac or Majorana type. It is
reasonable to switch Lorentz violation off at first. The dispersion equation is then a polynomial of
fourth degree. (In principle, the polynomial on the right-hand side of the dispersion equation is raised
to the second power, that is, the degeneracy of all zeros is doubled.) It reads:

0 = p4 −Mp2 + M̃ , (34a)

where
M = Tr(M2) , M̃ = (det M)2 . (34b)
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Solving for p0 delivers two distinct energies:

E(1,2)
0 =

√√√√p2 +
M

2
±

√(
M

2

)2
− M̃ . (35)

Now, the neutrino energies modified by Lorentz violation are found to have the form

E(1,2)± = E(1,2)
0 − 1

2E(1,2)
0

(
Ŝ (1,2)

disp + p · V̂ (1,2)
disp ± δŶ

)
+ . . . , (36a)

with

Ŝ (1,2)
disp = MabŜba ±

(Maa + Mbb)MabŜba − (M2
aa + Maa Mbb − 2Mab Mba)Ŝaa√

(M11 −M22)2 + 4M12M21
, (36b)

V̂ (1,2)µ
disp = V̂µ

aa ±
2MabV̂

µ
ba −MaaV̂µ

bb√
(M11 −M22)2 + 4M12M21

, (36c)

(δŶ)2 =
1

(M11 + M22)2 [(M11 −M22)2 + 4M12M21]

×
{
(V̂0 · δÂ)2 − 1

2

[
(V̂0)

2 + (Ŝ0)
2
]
(δÂ)2 + 2Ŝ0V̂0 · δ ˆ̃T · δÂ

+V̂0 · δ ˆ̃T · δ ˆ̃T · V̂0 +
1
4

[
(V̂0)

2 − (Ŝ0)
2
]
(δ ˆ̃T)2

}(1)

1,1
. (36d)

Furthermore,

δÂ(1)µ
1,1 ≈ Â

(1)µ
1,1 = Â(0)µ

1,1 −
1

∆(0)
2,2

ˆ̄̄A(0)µ
1,1 , (37a)

δT̂ (k)µν
1,1 ≈ T̂ (1)µν

1,1 = T̂ (0)µν
1,1 − 1

∆(0)
2,2

ˆ̄̄T (0)µν
1,1 , (37b)

and

Ŝ0 = −M11 −
M12M22M21

p2 −M22
, (37c)

V̂µ
0 =

p2 −M12M21 −M2
11

p2 −M22
pµ . (37d)

The flavor indices in Equations (36b) and (36c) are understood to be summed over. Note that
in Equation (36a) two signs can be chosen at different positions independently from each other. The
first sign is indicated by the suffices (1,2) and appears in the Lorentz-invariant and spin-degenerate
parts of the dispersion relation. The second sign is marked by the additional index ± and is related to
the spin-nondegenerate coefficients only, which are incorporated in the quantity (δŶ)2. Hence, for
N = 1 there can be already 4 different dispersion relations. With spin-nondegenerate Lorentz violation
present, there are two distinct dispersion relations for each of the two neutrino types. The number of
modified dispersion laws is supposed to increase with the number of neutrino flavors.

7. Classical Lagrangians

As a final application of all the previous results, we want to map the neutrino field theory to a
theory of classical, relativistic, pointlike particles. The latter is described by a Lagrange function in
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terms of the four-velocity uµ. The technique to carry out such a mapping in the context of the SME was
developed in Reference [39] and has been subject to intense studies for the past ten years. Presently,
the procedure is well-known and has been applied to both the minimal and nonminimal SME fermion
sector. At leading order in Lorentz violation, it was demonstrated that a classical Lagrangian can be
obtained from the dispersion relation directly via a mapping procedure [40]. We will employ this
method for the case N = 1, which leads to the classical Lagrangians corresponding to this field theory
of modified neutrinos. The Lagrangians can be cast into the form

L(1,2)± = −M(1,2)
√

u2

1−
(Ŝ (1,2)

disp )∗ ± δŶ∗
2(M(1,2))2

−
u · (V̂ (1,2)

disp )∗

2M(1,2)
√

u2
+ . . .

 , (38a)

M(1,2) =

√√√√M

2
±

√(
M

2

)2
− M̃ , (38b)

with M and M̃ of Equation (34b). The quantities endowed with an asterisk emerge from the expressions
defined in Equation (36) in replacing each Lorentz-violating operator by a suitable contraction of the
corresponding controlling coefficients with four-velocities. Each contraction involves an additional
prefactor that depends on the mass dimension. For a generic Lorentz-violating operator of mass
dimension d, this contraction reads

(Ô(k)
i,j )∗ =

(
M(1,2)
√

u2

)d−3

O(k)α1 ...αd−3
i,j uα1 . . . uαd−3 . (39)

As there are four modified dispersion relations, there are also four classical Lagrangians. Each of
those describes a type of massive “classical neutrino.” For vanishing Lorentz violation, the Lagrangians
take the form L(1,2) = −M(1,2)

√
u2, which is analogous to the standard result L = −mψ

√
u2 for a single

Dirac fermion of mass mψ under the identification mψ = M(1,2). Here we see how the combinations
M(1,2) of mass matrix coefficients can be interpreted as something like a simple mass of the classical
neutrino analog. This behavior is a classical remnant of the quantum effect of neutrino mixing.
Furthermore, the classical Lagrangian can be checked to be positively homogeneous of degree 1 in uµ,
as expected.

Classical Lagrangians as those of Equation (38) are valuable in the description of Lorentz violation
for neutrinos in the presence of an external gravitational field. Since the current section serves only as
a demonstration of the basic procedure, we will not delve deeper into this interesting topic. Whenever
the neutrino masses are simply neglected, such classical Lagrangians simply lose their meaning.
Neutrino propagation in a gravitational background must then be described with a different formalism
such as the eikonal equation, which turned out to be fruitful for massless particles, e.g., photons [41].

8. Conclusions

In this paper we derived the full propagator of a single-fermion Dirac theory based on the
nonminimal SME as well as the full dispersion equation of modified neutrinos. Both results are
expressed in a covariant form. Although it is quite an essential tool in perturbation theory, the full
propagator of the nonminimal SME fermion sector has not been stated elsewhere, so far. The dispersion
equation is valid for the general case of N neutrino flavors with the description of both Dirac and
Majorana neutrinos included. Despite the additional flavor structure and the distinction between
Dirac and Majorana neutrinos, we found that the dispersion equation has a structure analogous to that
of a single Dirac fermion. However, it is also clear that the form of the Lorentz-violating operators
that occur in the neutrino dispersion equation is much more involved because of the additional flavor
structure. We also investigated the dispersion relations at leading order in Lorentz violation for
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basic configurations. Finally, we included a brief comment on classical Lagrangians in the context of
neutrinos. Our findings are technical, but they may be valuable in forthcoming phenomenological
works on Lorentz-violating Dirac fermions and neutrinos.
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Appendix A. Useful Relations for Dirac Matrices

For future reference, we think that it is a good idea to list the relations for Dirac matrices that we
used to obtain our results. First, it is difficult to find the whole set of relations at a particular place.
Second, in some works we even encountered typos. Therefore, the validity of the following relations
was checked explicitly and they are supposed to be correct, as they stand:

γµγν = ηµν14 − iσµν , (A1a)

σµνγ5 =
i
2

εαβµνσαβ , (A1b)

γµγνγ5 = ηµνγ5 +
1
2

εµναβσαβ , (A1c)

γµγνγλ = ηµνγλ + ηνλγµ − ηλµγν + iεµνλργργ5 , (A1d)

σµνγλ = i(ηνλγµ − ηλµγν)− εµνλργργ5 , (A1e)

γµσνλ = i(ηµνγλ − ηλµγν)− εµνλργργ5 , (A1f)

γ5σµνγλ = i(ηνλγ5γµ − ηλµγ5γν) + εµνλργρ , (A1g)

γ5γµσνλ = i(ηµνγ5γλ − ηλµγ5γν) + εµνλργρ , (A1h)

[σµν, σλα] = 2i(ηµλσαν − ηνλσαµ + ηνασλµ − ηµασλν) , (A1i)

{σµν, σλα} = 2
[
(ηανηλµ − ηαµηλν)14 + iεµνλαγ5

]
, (A1j)

σµνσλα = i(ηµλσαν − ηνλσαµ + ηνασλµ − ηµασλν) + (ηανηλµ − ηαµηλν)14 + iεµνλαγ5 . (A1k)

We employed these results mainly to obtain Equations (21) and (23).

Appendix B. Definition of Wedge Product and Hodge Dual

The wedge product and Hodge dual are concepts that are of wide use in algebra. They turned out
to be fruitful to express Equation (22) in a relatively compact form. We define the wedge product of
two (contravariant) tensors A and B as the antisymmetrized direct product of these tensors:

Na!Nb!
(Na + Nb)!

Aµν... ∧ Bαβ... ≡ A[µν...Bαβ... ] ≡ Cµν...αβ... , (A2)
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where Na,b is the number of indices of the tensor A and B, respectively. The latter product gives rise
to a new tensor C with the union of Lorentz indices of the tensors A and B. The definition of the
Hodge dual of a tensor depends on the number of dimensions of the space considered. As we work
in four-dimensional Minkowski spacetime, the Hodge dual of a covariant two-tensor A provides a
contravariant two tensor:

(?A)αβ ≡ 1
2

Aµνεµναβ . (A3)

On the other hand, the Hodge dual of a covariant three-tensor B gives a contravariant vector and
that of a four-tensor C is a scalar:

(?B)$ ≡ 1
3!

Bµνλεµνλ$ , ?C ≡ 1
4!

Cµνλαεµνλα . (A4)

Note that we follow the convention of the prefactors used in mathematics.
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