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Abstract: Smart manufacturing optimizes productivity with the integration of computer control
and various high level adaptability technologies including the big data evolution. The evolution
of big data offers optimization through data analytics as a predictive solution in future planning
decision making. However, this requires accurate and reliable informative data as input for analytics.
Therefore, in this paper, the fusion features for apple classification is investigated to classify between
defective and non-defective apple for automatic inspection, sorting and further predictive analytics.
The fusion features with Decision Tree classifier called Curvelet Wavelet-Gray Level Co-occurrence
Matrix (CW-GLCM) is designed based on symmetrical pattern. The CW-GLCM is tested on two apple
datasets namely NDDA and NDDAW with a total of 1110 apple images. Each dataset consists of a
binary class of apple which are defective and non-defective. The NDDAW consists more low-quality
region images. Experimental results show that CW-GLCM successfully classify 98.15% of NDDA
dataset and 89.11% of NDDAW dataset. A lower classification accuracy is observed in other five
existing image recognition methods especially on NDDAW dataset. Finally, the results show that
CW-GLCM is more accurate among all the methods with the difference of more than 10.54% of
classification accuracy.

Keywords: smart manufacturing; vision sensor; big data; data analytics; image recognition;
fusion features

1. Introduction

Smart manufacturing is the advancement in manufacturing process through the integration of
computer control and various high level adaptability technologies to optimize productivity [1]. A huge
volume, variety and velocity of data in smart manufacturing or referred to as big data, offers an
opportunity not only for managing large amount of information, but also to improved diagnostics and
prognostics capabilities [2,3]. The analytics in the manufacturing process can shift from a reactionary
to a predictive practice [1,4,5] by improving the existing capabilities such as product defect detection
and supporting new capabilities for future planning and prediction [1,4,5]. In delivering high quality
predictive solution for future planning, the data quality is the most important big data factor [2].
The effective and accurate method is required to provide reliable information as the input for analytics
models to make a better decision [6].

In this paper, we investigate the reliability of fusion features as data input to classify between
defective and non-defective apple for automatic inspection and sorting processes. The defective and
non-defective information can be further used as the input for analytics model for future prediction.
The analytics synthesize, analyze the trends and identify the patterns based on the current production
data for future planning, decision making and actions to improve the apple growth and processing
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efficiency. In our prior work [1], a vision-based apple classification for smart manufacturing using
three image recognition methods which are Bag of Words (BOW), Spatial Pyramid Matching (SPM) and
Convolutional Neural Network (CNN) are studied. However, the performances of the dictionary-based
(BOW and SPM) and deep learning-based (CNN) methods in the prior work are limited by the number
of samples, computational power [1,7–10] and the presence of low-quality regions such as bright
features or flecks features on the non-defective apple skin. In apple classification, the detection
and extraction of features on low-quality region is important to differentiate between defective and
non-defective apples. Failure to detect these features may reduce the classification accuracy.

This research focuses on the detection of suitable features that able to increase the aforementioned
classification accuracy in small sample dataset even with low quality region images. A small sample
dataset of apple (550 and 560 images) were utilized in this research due to the particularities of minor
details apple images that contain low-quality apple skin region. In this research, it is challenging
to meet the large-scale datasets requirements of deep learning method such as ImageNet dataset.
ImageNet dataset consist of 3.2 million cleanly labeled images and aim to contain 50 million images in
the dataset [11]. The large-scale datasets or big data are normally harvested automatically from a large
users or crowds population using crawling techniques, crowd source or application programming
interface that provided by social media providers [12]. While in this research, a small dataset of
apple is mainly sampled by the authors as a proof-of-concept to classify defective and non-defective
apple. Despite apple having the highest production rate and had steadily increase over the year
as reported by United States Department of Agriculture (USDA) Foreign Agriculture Service [13],
the dataset of apple images are limited. Therefore, we mainly sampled the apple dataset for this
proposed concept. To suite the problem stated previously, we investigate the fusion features based on
Gray Level Co-occurrence Matrix (GLCM) method. The GLCM is chosen since it is one of the most
reliable texture-based method which can analyze and describe well the surface and the structure of the
images properties. However, this method is dependent on the images texture information [14], thus,
the features may not be effectively extracted from the low-quality region images. To solve this problem,
we investigate the effect of Curvelet and Wavelet transform on to the GLCM method to improve and
enhance the detection of features on the low-quality image region. We named our new method of
fusion features as CW-GLCM method, which fused the features of Curvelet and five GLCMs features
(entropy, contrast, correlation homogeneity and energy) based on Wavelet coefficient.

The CW-GLCM is classified using the Decision Tree classifier. The proposed method introduces
the Curvelet features to improve and enhance the low-quality region of the images. In addition,
the original GLCM method is modified using the Wavelet coefficient to improve the detection of texture
information in low-quality region.

To test the proposed method, two datasets of apple namely NDDA and NDDAW that consists of
1110 apple images from defective and non-defective category are created. The NDDA is created to
generally evaluate the capability to detect various defective and non-defective apple types. On the
other hand, the NDDAW is created particularly to include more images that contains low-quality
apple skin region. Then, the performances of the proposed method are compared with five existing
methods which are BOW [15], SPM [16], CNN [17], GLCM texture analysis [18] and CLAHE + GLCM +

ELM [19] in terms of precision, recall, accuracy and computational time using 10-fold cross-validation.
The rest of this paper is organized as follows: Section 2 presents the related works on the image

recognition methods. Section 3 described the details of the proposed method. The performance of the
proposed method is presented in Section 4; followed by the discussion in Section 5. The conclusions
and future works are finally made in Sections 6 and 7.

2. Related Works

The focus of this research is to investigate suitable feature that able to classify between defective
and non-defective apple. The classification will be used for automatic inspection and as input for
further analytics. The research falls under image recognition, where in computer vision, the image



Symmetry 2019, 11, 1194 3 of 26

recognition method is used to detect the instances of the object in digital image. The image recognition
method is divided into two main phases, feature extraction and feature classification. The feature
extraction phase is a key step to extract important elements of an object while the feature classification
is a phase to classify the object into classes based on their similarity. In the feature extraction phase,
it is important to define and select useful features to recognize the object [20]. The features are the
characteristic of the object that can be measured such as shape, color, texture and other representations
of features. This research will focus on the suitable selection of features and effective feature extraction
method in recognizing between defective and non-defective apple, which also includes apple images
with a low-quality region. Due to limited related works on apple classification, we also include other
related image recognition methods that suits the focus of this research in the following section.

In image recognition, the texture-based features had shown to be among the most successful
approach [21] to recognize image. Texture features are the property representing the surface and
structure of an image [22]. The texture-based method analyses the relations of the neighboring pixels or
sub regions for image representation. The widely used texture-based methods are Local Binary Patterns
(LBP), GLCM, Gabor and Haar-Like [14]. LBP is a texture descriptor proposed by Ojala et al. [23]. LBP
describes the texture in the images by using the histogram of label values that obtained the result
from the thresholding between the neighborhood pixels with the center pixel [24,25]. Although the
LBP operator was initially meant for the texture descriptor, it applicability has been extended and
applied in various recognition task by some modification [26]. However, one of the limitation of
the LBP operator is its inability to capture the dominant features of a large scale structures [27,28].
Thus, researchers had considered to incorporate other technique on the LBP method to improve the
capabilities. Al-Hammadi et al. [24] improved the LBP detection by using the Curvelet transform
while Abdulrahman et al. [27] had used Gabor Wavelet and Principal Component Analysis (PCA).
Though there are many version variations of local descriptor based on LBP method [25], the LBP shows
some weaknesses especially for rotation, translation and scale object even for specific LBP rotation
invariant version [28,29]. Thus, Papakostas et al. [26] introduced Moment-Based Local Binary Patterns
to improve the invariant behavior of LBP method towards rotation, translation and scaling conditions.
Their method was tested on face recognition cases. The results had shown that there’s significant factor
improvement in the method on the rotation, translation and scaling in pattern recognition problems.
Though LBP and its variants such as Classic LBP, Elliptical Local Binary Pattern (ELBP), Uniform ELBP,
Local Directional Pattern (LDP), Mean-ELP (M-ELBP) and others have shown the potential in many
applications [30], the methods may not work well in defective and non-defective apple classification
due to the presence of low-quality image region features on the apple skin. The LBP method capture the
pattern in the images based on circular pattern of the neighborhood. To detect the low-quality region
on the apple images, more specific spatial directional method is required so that it could extract the
texture at different directions and orientation covering the low-quality image region on the apple skin.

The most efficient texture-based method are GLCM method [31,32]. In GLCM, the features
were extracted from a co-occurrence matrix based on the selection of GLCM features to be observed
depending on the texture data encountered and their cases [33]. The GLCM method produces features
that are able to well describe the relationship of a neighboring pixels in the texture image. However,
this method will only useful and effective in recognizing objects with texture information [14]. Due to
this reason, Zhang et al. [34] proposed automatic lightness correction combine with GLCM, color and
statistical features that intended to improve the detection of the defect region in Fuji apple. Then,
in selecting the relevant features, I-RELIEF algorithm was used in their work. However, using the
I-RELIEF algorithm in the method introduced blind selection problem and increased the complexity.
Alternatively, the simplest approach to extract the texture features in the images is using the statistical
moments of gray level histogram [35]. Capizzi et al. [35] use statistical descriptor to extract texture
features from images. To improve the limitation of the texture-based method, they also use the hue,
saturation, and value (HSV) space to represent the color information of the images. Their method was
tested with an orange dataset using Radial Basis Probabilistic Neural Network (RBPNN) classifier.
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Though their method showed promising results to classify defective oranges, the method may not
work well with the presence of low-quality image region.

To strengthen the characteristics of the images, Fahrurozi et al. [33] use several edge detection
techniques from first and second order edge detection technique to extract the GLCM texture features.
The first order was chosen because of its simplicity, while the second-order because of its effectiveness.
The limitation of their works is that the researchers investigated the effect of several edge detection
technique only on one GLCM features, which is the energy. The selection of GLCM features is further
extended in [36] for apple diseases detection and classification using Particle Swarm Optimization
(PSO). However the implementation of PSO had increase the considerable convergence time and
computational complexity [37]. In other works, Moallem et al. [38] proposed a statistical, textural and
geometric features for golden delicious apple grading using the SVM classifier. They used the GLCM
method to extract the second order texture features, which are contrast, correlation, energy, homogeneity
and entropy; whereas the first order measures textural features are not considered. Although their
method was able to achieve convincing result (89.20%–92.50%) for grading golden delicious apple, the
success of classification rate decreases when the defective region is close to stem ends area. Conversely,
Olaniyi et al. [18] suggested a texture analysis method based on eight features from first order statistic
and second order statistic, which is, GLCM. The first order features used in their work are mean,
variance and standard deviation, while the second order are contrast, correlation, energy, homogeneity
and entropy. Their method was able to achieve more than 96.25% of the classification accuracy and
improved the result in [38] by utilizing the first order statistic features. However, as the method were
solely dependent to the texture-based method, the method may have difficulties in distinguishing
between objects that has quite similar texture [14,33]. Recently W.Li et al. [19] proposed CLAHE +

GLCM + ELM method using contrast-limited adaptive histogram equalization (CLAHE) and GLCM
with Extreme Learning Machine (ELM) classifier to address the limitations of GLCM. The CLAHE was
used in their work to depress the noises and to improve the local contrast while the ELM classifier
was used to reduce the time complexity. However, their method unable to perform well in terms of
sensitivity, specificity and accuracy [19].

Other representations of features that are extensively used in image recognition are the
keypoint-based features. These features describe the image by detecting the keypoint in the image and
locate keypoint descriptor patch at the center of the keypoint. In image recognition, the widely used
keypoint-based features are Harris corner detection [39], Scale Invariant Feature Transform (SIFT) [40],
Speeded up Robust Features (SURF) [41,42] and Features From Accelerated Segment Test (FAST) [43].
Harris detection is robust in matching, good stability and repeatability [44]. However, it is sensitive to
scale changes. SIFT detector and descriptor [40] are robust to affine distortion, illumination changes,
invariant to scale and rotation changes [40]. Although SIFT has shown high repeatability and accuracy,
SIFT descriptor has high computational cost [45]. This issue has been addressed in the SURF detector.
The SURF detector is faster than SIFT without degrading the quality and more robust to noise [46,47].
To improve on the computational time of earlier methods, Rosten et al. [43] introduce FAST. FAST
is faster than both SURF and SIFT method but this method is not invariant to scale [48]. Although
the keypoint-based features can be applied in almost all kinds of image recognition, these features
are limited; in which, due to noise or distortion where a different patch of contexts or scene may be
represented by the similar descriptor and different context or scene also can be presented by different
descriptors [49].

To overcome this limitation, a dictionary-based features is used for image recognition.
The dictionary-based approach utilized the keypoint patches or regular grid patches or
segmentation-based patches to extract a visual pattern (visual words) from the images. Then, the images
are represented by counting the number of occurrences patches of each visual words in the images and
used it as a feature to train the classifier. In the dictionary-based feature, the BOW method [15] is among
the well-known method. Although BOW method is easy to implement, robust to several parameters
such as occlusion, clutter, non-rigid deformation and viewpoint changes, this method disregards the
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spatial layout information in the visual words [50,51]. Disregarding this information may lead to
the missing spatial arrangement features on the image composition [50]. The aforementioned issue
was addressed by Lazebnik et al. [16] in the SPM method. In the SPM method, the spatial layout
information is included to improve image representation. This is because the spatial information is
important to discriminate the object, since a different object may have the same visual appearance
but in different spatial arrangement [52]. Despite the advantages of the SPM method, this method
generates a large numbers of feature redundancies [53]. In order to eliminate the redundancies and
select the representative keypoints, Lin et al. [50] and Li et al. [54] proposed a keypoint selection
technique to resolve this limitation. Similarly, Xie et al. [55] also proposed a new spatial partitioning
scheme to avoid feature redundancy by modifying the pyramid matching kernel.

In a more recent development, deep-learning based method such as CNN method has received
considerable attention in computer vision [56]. The CNN method has been implemented in many fields
of image recognition [10,17,57–59]. For instance, dos Santos Ferreira et al. [17] proposed CNN method
for weed detection and classification in soybean crops. In CNN method, there are few limitations in the
structure of the method. Many studies attempting to improve on this issue. One of the major issues is
the fixed-size input image required by the CNN method [8]. To address this issue, He et al. [8] proposed
a network structure (SPP-net) method that can generate a fixed-length representation regardless of
image size or scale. Another issue in the CNN method is the difficulties to train the neural network
when the network depth in the structure increases [10,60]. To improve the training for the deeper
network, a residual learning framework has been proposed by He et al. [60] that has reformulate the
network layers as learning residual functions. Other main issues in the CNN method are it requires
large number of training images to avoid over-fitting and are also computationally expensive [7,8,10].

From the above review, texture-based features were among the method that had been considered
in existing apple recognition. The GLCM texture-based features is seen as one of the most suitable
candidate for classifying defective and non-defective apple. The GLCM method is chosen as it will detect
any different property changes on the surface of the apple skin images. However, the GLCM method
is less effective in detecting significant features in low-quality image region. In apple classification,
failure to detect these features can lead to misclassification between defective and non-defective apples,
which consequently reduces the classification accuracy.

Therefore, in this research, we investigate the Wavelet and Curvelet image enhancement technique
on the GLCM method to improves the detection of features on low-quality region for apple images.
Though there are many image enhancement techniques, in apple classification, it is challenging to
enhance the low-quality region while at the same time reduce the uneven illumination effect on
images with less computational time and cost [61]. Some of the image enhancement technique such
as Adaptive Histogram Equalization (AHE) and CLAHE are unsuitable to be used for real-time
application due to high computational time [62,63]. It is also difficult to enhance the low-quality
region using traditional image enhancement technique such as frequency-domain. This is due to the
lower frequencies that resolved better in frequency, while the higher frequencies are resolved better
in time [64–66]. The traditional frequency-domain image enhancement technique does not provide
simultaneous spatial and spectral resolution.

On the other hand, the Wavelet transform image enhancement technique is capable to provide
both spatial resolution and frequency [61]. The Wavelet transform ensures a good frequency resolution
at lower frequencies and good spatial resolution at higher frequencies [61,64]. In the proposed method,
the Wavelet transform image enhancement is used to improve the quality of the texture of low-quality
region in the GLCM method. The Wavelet transform is one of the suitable image enhancement
technique for texture analysis [67]. However, its limitation lies in the curved region areas. To effectively
deals with a low-quality region area, we also used Curvelet transform image enhancement technique
in the proposed method since it has a better ability in capturing the directional edges of curves, corners
and profiles [68,69]. The Curvelet transform also provides richer information in both spatial and
spectral domains [70]. In the proposed method namely CW-GLCM, the extracted Curvelet features
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from Curvelet transform are then fused with the GLCM features based on the Wavelet transform to
produce a highly informative fusion feature.

As presented in the prior section, many of the image recognition methods discussed earlier are
mostly concerned in more general pattern recognition problems. None of the aforementioned methods
focused on the recognition and classification of image compromising low-quality region. Based on
the review, five methods which are BOW [15], SPM [16], CNN [17], GLCM texture analysis [18] and
CLAHE + GLCM + ELM [19] have been chosen to evaluate the proposed method. They are selected
due to their popularity and stability to represent the dictionary-based method, deep-learning based
method and texture-based method, respectively.

3. Proposed Method

The proposed CW-GLCM method for apple classification consist of two main phases, feature
extraction and feature classification as shown in Figure 1. The feature extraction phase concentrate on
the selection of fusion features based on GLCM method which is the key contribution of this research.
The GLCM method is chosen since it is able to well describe the relationship of adjacency among
pixels [4]. The Curvelet and Wavelet transform is introduced to enhance the apple images especially on
low-quality region by improving their texture information. In the feature extraction phase, the images
are subjected to the Curvelet transform to obtain the Curvelet features. The images are also subjected
to the Wavelet transform in order to obtain the Wavelet coefficient. From these Wavelet coefficients,
five GLCMs features which is entropy, contrast, correlation, homogeneity and energy are extracted.
In this phase, there are six different features in total which is Curvelet, entropy, contrast, correlation,
homogeneity and energy that are fused together forming a set of fusion features. The fusion features
obtained in the feature extraction phase are then transferred to the feature classification phase. In the
classification phase, six classifiers are utilized to select the most suitable classifier for the proposed
fusion features in classifying defective or non-defective apple images. With the use of the proposed
fusion features in feature extraction phase, the classification is expected to be more accurate than
solely dependent on GLCMs features especially with the presence of low-quality regions in the apple
images. The output from the classifier can be used for the data analytics and visualization to identify
the patterns and learn for future decision making and actions. The proposed CW-GLCM process flow
that comprises of two phases, will be discussed in the following subsections.
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3.1. Feature Extraction

The phase of the proposed method feature extraction comprises of three major methods, which are
Curvelet, Wavelet and GLCM method. The proposed method combines the Curvelet features with five
GLCMs features extracted based on the Wavelet coefficient. To retain the image information, the image
normalization step is skipped in the proposed method to deal with the low-quality region on the apple
skin images. This is to avoid misclassification between defective and non-defective apple.

3.1.1. Curvelet Transform

The main reason that the proposed method fuses the Curvelet features is to detect the
low-quality apple images region for curves, corners and profiles. As compared with other transform,
the performance of the Curvelet transform are extremely well in capturing the edges and other
singularities along the curves [71]. The Curvelet features will provide more information on low-quality
regions in the apple images. In the proposed method, the Curvelet transform based on wrapping
of specially selected Fourier samples (FDCT-Wrap) is used because it is the fastest and well-adapted
Curvelet transform algorithm to represent edges [72–74]. The FDCT-Wrap is applied to enhance the
image contrast of the low-quality region. The two consecutive regions between the low-quality regions
that has a different pixel value with the nearby region are likely to form “edges”. This edges are formed
based on the variation of pixel values allowing the FDCT-Wrap in the proposed method to detect this
edges information. In order to obtain the dominant features, the LL sub-bands filter is applied to set
the intensity elements of the FDCT-Wrap coefficient. Then, the inverse transformation is performed
on the extracted features from the FDCT-Wrap coefficient to produce the Curvelet transform value.
The steps of FDCT-wrap are as follows:

Step 1. Input the original image;
Step 2. Apply 2D Fast Fourier Transform (2DFFT) on the original image; produce a set of Fourier

sample f̂ [n1, n2];
Step 3. Resample a set of Fourier sample f̂ [n1, n2] at each pair of scale j and angle direction l in

frequency domain. The scale is from finest to coarsest scale with the angle direction start from the
top-left corner increases clockwise. This will produce the new sampling function as expressed in (1).

f̂ [n1, n2 − n1 tanθl], (n1, n2) ∈
{
(n1, n2), n1,0 ≤ n1 ≤ n1,0 + L1, j, n2,0 ≤ n2 < n2,0 + L2, j

}
, (1)

where n1,0 and n2,0 are the initial position of window function ũ j,l[n1, n2], L1, j and L2, j are parameter
of length 2 j and width 2 j/2 components of window function support interval. The window function
formula is defined in (2).

ũ j,l[n1, n2] = w1(w1, w2)v j

(
sθ . (2[ j/2]w2)

w1

)
,

w1(w1, w2 ) =
√
φ2

j+1 (w
2) −φ2

j (w
2),

φ j(w1, w2 ) = φ
(
2− jw1

)
φ
(
2− jw2

)
,

sθ1 =

 1 0

− tanθl 1

,
tanθl = l× 2b− j/2c, l = −2b− j/2c, . . . , 2b− j/2c

− 1

(2)

where w1 is a vertical axis but located near the horizontal axis of w2;
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Step 4. The new sampling function of f̂ [n1, n2 − n1, tanθl] are multiplied with the window
function ũ j,l[n1, n2]:

f̃ j,l[n1, n2] = f̂ [n1, n2 − n1 tanθl]ũ j,l[n1, n2]; (3)

Step 5. Then, the inverse 2DFFT is applied to each of f̃ j,l obtained in the previous step to produce
Curvelet transform value.

Finally, we extract feature vector of the Curvelet transform value and then fused them with the
GLCMs features calculate based on the Wavelet transform in the following step to accomplish defective
and non-defective apple classification.

3.1.2. Wavelet Transform

To improve the texture information extracted from the GLCM method, the proposed method also
modifies the existing GLCM method by extracting the GLCMs features based on the Daubechies 4
Wavelet coefficient. Daubechies 4 Wavelet is chosen as it is suitable for texture classification due to
their relations to multiresolution. The Wavelet coefficient will enhance the visibility of the low-quality
region in the apple images, especially on the apple skin by capturing the directional edges in different
resolution levels preserving the low and high frequency information. This leads the proposed method
to extract better texture information from the apple images. The Wavelet transform are calculated
using the wavelet function as follows:

W
[∫

(s, τ)
]
=

〈∫
,ψk

s,τ

〉
(4)

where s ∈ Z is parameter of scale resolution level, τ is translation, k ∈ {h, v, d} is the orientation and

ψk
s,τ =

(
1
√

s

)
ψk

(
x−τ

s

)
is a wavelet family. The orientation h, v and d parameter represent horizontal,

vertical and diagonal direction. The wavelet decomposition is achieved when the value of s = 2 j and
τ = 2 j.n, j, n ∈ Z.

The wavelet and scaling family are constructed using wavelet function ψ(x) and scaling function
ϕ(x) as expressed in (5).

ψk
j,n(x) =

1
√

2 j
ψk

(
x− 2 j.n

2 j

)
and ϕk

j,n(x) =
1
√

2 j
ϕk

(
x− 2 j.n

2 j

)
(5)

The two dimensional Wavelet transform are constructed based on the combination of high-pass
and low-pass digital filter banks and down-samplers. As the images is in 2D signal, separable function
Discrete Wavelet Transform is used in the configuration of DWT structure. The rows and columns of
the images are subjected to the 1D Wavelet Transform separately to produce the 2D-DWT. The output of
the decomposed images in 2D orthogonal wavelet representation resulting four orthogonal sub-bands
component which are Low-Low (LL), Low-High (LH), High-Low (HL) and High-High (HH) as
presented in Figure 2. The results shown in the figure is for one level decomposition. Every stage of
DWT requires high-pass and low-pass digital filter with two down sampling [75]. This process is further
continued and decomposed to another four sub-band components, forming two-level decomposition.
The wavelet decomposition at two resolution levels as illustrates in Figure 3.
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3.1.3. GLCM

The GLCMs texture features are extracted from GLCM based on the computed Wavelet coefficient
from the prior process in Section 3.1.2. The GLCMs features are included in the proposed method
to estimate the apple images texture properties. Instead of calculating the GLCMs features from
GLCM coefficient, the proposed method modifies the original GLCM implementation by using Wavelet
coefficient to calculate five of the GLCMs feature. The features are entropy, contrast, correlation,
homogeneity and energy. The entropy is a measure of levels disorderliness and randomness in the
images. It is the most dominant statistical features and widely used to measure variations between pixel
intensities [71]. This is important to symbolize texture that appear in the apple images. The contrast
measures the variation values and intensity contrast of the neighboring pixel in the gray level. The
correlation features are also selected since it measures the correlated pixels to the neighbors over the
whole image and determined the linear dependencies of the gray levels. Homogeneity features are
important to measure the uniform region in the images according to its gray level difference and the
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energy returns the sum value of the squared elements in the GLCM. To extract the texture features from
GLCM, the matrix must be symmetric [76]. In order to get a symmetric matrix, the GLCM is transposed
and added to the original GLCM. From the symmetrical GLCM, the texture features are extracted.
To compute the GLCM, the spatial relationship between two pixels is establish. The first one is the
reference pixel which is pixel-of-interest and the other pixel is a neighbor pixel. This process forming
the GLCM that contains different combination of pixel gray values. The number of gray levels (G) is
ranging from 0 to G− 1. The GLCM is highly dependent on two parameters which are distance between
the pixel pair (D) and their angular relationship (θ). In the proposed method, the GLCM is computed
based on the predefine distance of one pixel (D = 1) and θ are quantized in four parameter directions
which are 0

◦

, 45
◦

, 90
◦

and 135
◦

. The directionality of GLCM used in the proposed method illustrated as
in Figure 4. This forms four co-occurrences matrix. The GLCM are calculated in the corresponding
matrix by taking the absolute value of each resolution level of the Wavelet coefficient matrix obtained
using 2D-DWT in the prior section. Then, each of the GLCMs texture features are computed from the
details of the Wavelet coefficient matrix for various resolution level in the corresponding matrix.Symmetry 2019, 11, x FOR PEER REVIEW 10 of 26 
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The procedure of the extraction of GLCMs features based on the Wavelet Coefficient are as follows:
Step 1. Input the original image;
Step 2. Compute GLCM from the wavelet coefficient and calculate based on five GLCMs.

The formulations for each of the GLCMs features are computed as follows:

Entropy =
∑G−1

i=0

∑G−1

j=0
P(i, j) ∗ log(P(i, j)), (6)

Contrast =
∑G−1

i=0
n2


G∑

i=1

G∑
j=1

P(i, j)

,
∣∣∣i− j

∣∣∣ = n, (7)

Correlation =
G−1∑
i=0

G−1∑
j=0

{
i ∗ j

}
∗ P(i, j) −

{
µx ∗ µy

}
σx ∗ σy

, (8)

Homogeneity =
G−1∑
i=0

G−1∑
j=0

 P(i, j)

1 +
∣∣∣i− j

∣∣∣
 , (9)



Symmetry 2019, 11, 1194 11 of 26

Energy =
G−1∑
i=0

G−1∑
j=0

P(i, j)2, (10)

where P is a pixel, i is row j is column, n is line of neighborhood, G represents the number of gray levels
used, µx,µy, σx, σy are the mean and standard deviation value obtained from Px and Py respectively.
The Px and Py are the results obtained after summing the rows P(i, j);

Step 3. Acquire texture features according to (6), (7), (8), (9) and (10).
Finally, the Curvelet features obtained from the prior process in Section 3.1.1 are fused in the

texture features obtained in step 3 to produce highly informative fusion features. The parameter
settings of Curvelet, Wavelet and GLCM used in the proposed method are summarized in Table 1.

Table 1. Parameters setting of Curvelet, Wavelet and GLCM.

Algorithm Parameters Settings

Curvelet
scale ( j) 3

number of angles at the second coarsest level (l) 16
fine 2

Wavelet

level of decomposition (s) 2
number of minimum scale 7

number of vanishing moments 4
gray levels (G) 0 to G− 1

total number of directions 3

GLCM

angle (θ) 0
◦

, 45
◦

, 90
◦

and 135
◦

distance pixel (D) 1

texture features entropy, contrast, correlation,
homogeneity and energy

3.2. Classification

In the classification phase, the fusion features extracted in the previous phase are classified into
the defective and non-defective apples. One of the major challenges in classifying large number of
features is to determine the suitable classifier that able to achieve better classification accuracy [77].
Therefore, to ensure the optimal performance for the proposed features, six classifiers which are
K-Nearest Neighbors (KNN), Bayesian Network, Softmax, Decision Tree, Naïve Bayes and Support
Vector Machine (SVM) are tested. These classifiers are selected based on each of their specific advantage.
The KNN classifier is among the most widely used classifier for image classification task. This is
because of its simplicity and easy to be implemented [78]. In contrast, the Bayesian Network are the
classifier that based on their bias-variance trade-off network structure. The network structure models
will allow the Bayesian Network to precisely capture the fine details in the data [79]. Another simple
and fast classifier that can achieve accurate result in most cases are the Decision Tree Classifier [80].
Furthermore, it also works well with the noisy data [80]. The Naïve Bayes are also an efficient and
effective machine learning classifier [81–83], while Softmax classifier is one of the most commonly-used
logistic regressions classifier especially for multi-class classification [84,85]. Finally, the SVM classifier
are also selected due to it is well established technique in many image recognition tasks and its
high accuracy performance [78,86–89]. Their performance is evaluated and a test decision of the best
performing classifier on the proposed method determine the suitable classifier for the proposed method.

4. Experiments

To demonstrate the reliability of the proposed CW-GLCM method, a series of comprehensive
experiments is conducted in VLSI laboratory Faculty of Computer Science and Information Technology,
University of Malaya, Kuala Lumpur, Malaysia. All the experiments are conducted using MATLAB
R2017b (MathWorks, Natick, MA, USA) on a computer with the following specification: Windows
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10 Pro and an Intel Core i7-4770 CPU (3.4GHz) processor with 8.00 GB RAM. The details of the
experiments and evaluation are described in the subsections below.

4.1. Datasets

Instead of analyzing the performance only against defective and non-defective, we also evaluated
the method on low-quality region as well. Due to the shortage of defective and non-defective images
datasets that comprises low-quality region, two newly apple image datasets are created, namely
NDDA and NDDAW datasets. The NDDA generally consist of various types of apple images, while
the NDDAW consist of more apple images with low-quality region on its skin. Each of the dataset
are classified into two categories of non-defective and defective. The non-defective and defective
classification are verified by the agriculture practitioners from Malaysian Agricultural Research and
Development Institute (MARDI) and Pahang Agriculture Department. The datasets are collected
using vision sensors and some of the apple images were collected via the Google search engine with
several keywords such as “fresh + apple”, “healthy + apple”, “apple + disease”, “damage + apple”,
“defect + apple” and “low + grade + apple + fruit”. This is due to the difficulties in obtaining various
types of defective apple. Most of the apple images obtained from Google search engine are center,
clean and occupied most of the image without or very few cluttered environments. This is similar
to the data acquisition via vision sensor in the research that captures apple images placed on the
conveyor belt as illustrated in Figure 5. To ensure the quality of the images, the light sources are placed
near to the vision sensor and are uniformly distributed. This is done to reduce the effect of shadows
and glare. The image resolution of all the images captured using vision sensor are 900 × 700 pixel.
While the resolution of the images obtained via Google search engine may vary from 205 × 220 pixel to
552 × 512 pixel. Each of the images obtained from Google search engine in both datasets are rescaled
to 900 × 700 pixel following the resolution setting of the images captured via vision sensor. Datasets
are available online at https://github.com/AsIsmail/Apple-Dataset. The details of each dataset are
described in the following subsections.
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4.1.1. NDDA

This dataset consists of 550 apple images; in which 275 of the images are the non-defective apples
and 275 are the defective apples. For both categories in the dataset, the natural parts of the apple
are also included which are the stem end (370 images) and calyx (61 images). In this dataset, apples
with low-quality region on its skin are 76 images. The properties of this dataset are shown in Table 2.
The non-defective apple images were collected from five apple cultivars which are Red Delicious, Gala,

https://github.com/AsIsmail/Apple-Dataset
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Fuji, Honeycrisp and Granny Smith. While the defective category was collected from five groups of
defects which is Scab, Rot, Cork Spot, Blotch and Bruise. The defective category includes variations
severity of external defects, which is visible to the naked eyes with different location, region and size.
A sample images of the dataset is shown in Figure 6.

Table 2. Details of the characteristics in NDDA dataset.

Non-Defective Defective

Cultivars Total Types Total

Red Delicious 53 Scab 71
Gala 57 Rot 79
Fuji 58 Cork Spot 61

Honeycrisp 56 Blotch 32
Granny Smith 51 Bruise 32

Total 275 Total 275Symmetry 2019, 11, x FOR PEER REVIEW 13 of 26 
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4.1.2. NDDAW

On the other hand, the NDDAW dataset consists of 560 apple images classified into two categories
of non-defective and defective. The NDDAW dataset is composed of 280 non-defective apples and
280 defective apples. The overall setup of this dataset follows the NDDA dataset. However, the NDDAW
dataset are more complex compared to NDDA as it consists more apple images with low-quality region
on its skin (159 images), which intended to address the limitation of classifying low-quality image
region. In the dataset, a total of 248 apple images with stem end and 130 apple images with calyx are
also included. The properties and sample of NDDAW dataset are shown in Table 3 and Figure 7.

Table 3. Details of the characteristics in NDDAW apple dataset.

Non-Defective Defective

Cultivars Total Types Total

Red Delicious 44 Scab 42
Gala 16 Rot 55
Fuji 26 Cork Spot 27

Honeycrisp 59 Blotch 7
Granny Smith 135 Bruise 149

Total 280 Total 280
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4.2. Evaluation Metrics

In this research, K-fold cross-validation is used to evaluate the performance of the proposed
CW-GLCM method. The value of K strongly depend on the overall quantity of the data and the
suggested number of fold is between 5 to 10 fold [90,91]. Based on our prior work in [1], K parameter
of 10 yields the highest classification accuracy. Thus, the 10-fold cross-validation is used in this
experiment. The aforementioned performance evaluation technique is also considered in this research
since most of the work related to this domain from the literature use the 10-fold cross-validation to
evaluate performance measure in their work [30,90,92,93]. The classification performance is measured
in terms of precision, recall and accuracy. For 10-fold cross-validation, the dataset will be randomly
partitioned into ten number of folders in which every fold will have virtually the same number of class
distribution. One of the folders will be used for validation while the remaining nine folders will be
used for training. This process is repeated ten times until each of the folders is used exactly once as a
validation set. Finally, the average results from the ten experiments are calculated. The classification is
defined as follows:

Precision = TP/(TP + FP), (11)

Recall = TP/(TP + FN), (12)

Accuracy = (TN + TP) / (TP + FN + FP + TN), (13)

where TP, FP, TN and FN are defined in Table 4.

Table 4. Terminology and derivations of the evaluation metrics.

Terminology Derivations

TP (true positive) Defective apple is correctly classified as defective apple.
TN (true negative) Non-defective apple correctly classified as non-defective apple.
FP (false positive) Defective apple incorrectly classified as non-defective apple.
FN (false negative) Non-defective apple is incorrectly classified as defective apple.

In each of the experiments, the computational time is also recorded.

4.3. Performance Measure for Fusion Features

As highlighted in Section 3, the fusion features are the combination of Curvelet features and five
GLCMs features based on the Wavelet coefficient. This forming a set of fusion features which consist
of six features. They are the Curvelet features, entropy, contrast, correlation, homogeneity and energy.
In searching for the best fusion features, the fusion features are compared with the Curvelet features
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and each of the GLCMs features calculated from GLCM coefficient. Their performances are evaluated
and compared with our proposed fusion features on NDDA dataset using SVM classifier as shown in
Table 5. Based on the table, the results show that our proposed fusion features outperformed others
with 88.89% precision, 85.71% recall and 87.04% accuracy. Although the fusion features require the
longest time for training and testing, the results proved that the Curvelet and Wavelet transform can
improve the detection of the GLCM texture features.

Table 5. Comparative results (precision, recall, accuracy, training time and testing time) for the proposed
fusion features using SVM classifier on NDDA.

Features Precision (%) Recall (%) Accuracy (%) Training Time (s) Testing Time (s)

Curvelet 77.78 75.00 75.93 317.34 2.97
Contrast 58.57 54.67 55.00 103.29 1.51

Correlation 53.57 52.26 52.32 107.91 0.72
Energy 67.14 58.02 59.29 101.09 0.32

Homogeneity 56.07 55.28 55.36 100.73 0.37
Entropy 78.21 57.94 60.71 101.35 0.32

Fusion features
(proposed features) 88.89 85.71 87.04 364.51 3.12

A graphical comparison performance between the proposed fusion features with contrast,
correlation, energy, homogeneity, entropy and Curvelet using SVM classifier on NDDA dataset are
presented in Figure 8. Based on the Figure 8a, the proposed fusion features is shown to be able to obtain
the highest percentage for all measurement of precision, recall and accuracy compared to other features
with a minimum value of 85.71% on recall. However, it requires the longest time for the training and
testing as shown in Figure 8b. This is due to the reason that the fusion features incorporate three major
methods which is the Curvelet, Wavelet and the GLCM method. In addition, the normalization step is
skipped in the feature extraction phase to retain the information of a low-quality region on the apple
skin images. This will increase the time complexity and reduce the speed. Although the fusion features
show high computational time, from these results it can be seen that the fusion features of Curvelet
features with five GLCMs features calculated based on the Wavelet coefficient outperformed others in
term of the precision, recall and accuracy.
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To obtain the most suitable classifier, the fusion features utilize six classifiers and are tested on
NDDA dataset. The selections of classifiers are KNN, Bayesian Network, Softmax, Decision Tree,
Naïve Bayes and SVM. The results for each classifier are presented in Table 6.

Table 6. Comparison of the proposed fusion features with different classifiers on NDDA dataset.

Classifier
Fusion Features (Proposed Features)

Precision (%) Recall (%) Accuracy (%) Training Time (s) Testing Time (s)

KNN 70.37 73.08 72.73 386.19 23.55
Bayesian Network 70.37 76.00 74.07 385.97 0.57

Softmax 79.31 71.88 73.21 372.24 1.10
Decision Tree 96.30 100.00 98.15 344.17 0.25
Naïve Bayes 59.26 76.19 70.37 390.18 0.98

SVM 88.89 85.71 87.04 364.51 3.12

From the Table 6, the fusion features with Decision Tree classifier give the best performance
for all for the measurement of precision, recall and accuracy including the computational time.
The comparative results for different classifier are presented in Figure 9.
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Based on Figure 9, the Decision Tree classifier outperformed others with 96.30% of precision,
recall 100% and accuracy 98.15%. In contrast, Naïve Bayes classifier shows the lowest performance
for precision (59.26%) and accuracy (70.37%). This is because Naïve Bayes classifier make a very
strong assumption that all variables are mutually correlated and contribute towards classification.
Due to this assumption, it degrades the classification performance [80]. The lowest recall is observed in
Softmax classifier with 71.88%. The performance decrease in term of recall rate in the Softmax classifier
is due to overfitting from high-variance structure [84]. In terms of computational time among the
classifiers, Naïve Bayes takes the longest time for training (390.18 s), whereas KNN for testing (23.55 s).
The Naïve Bayes classifier is based on probabilistic that requires the knowledge of prior probability
distribution of the class and also data to be classified. This increased the training time in Naïve Bayes
classifier. Conversely, the KNN classifier is computationally intensive as it stores all the training data
and compares the extracted features on the test images with each training data for classification [78].
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In contrast, the Decision Tree classifier is the fastest classifier during the training (344.17 s) and testing
(0.25 s). The results also show that the Decision Tree classifier able to achieve the highest performance
for all measurements. This is due to the reason that different ranges of features in our fusion features
does not affect the Decision Tree. While in the SVM and other classifiers, each of the data instances is
represented in the form of real numbers vectors [1]. This transformation may affect the classification
performance. Since the data normalization step is skipped in our feature extraction stage, the Decision
Tree classifier is found to be more suitable to classify our fusion features. Therefore, in the proposed
method, the Decision Tree classifier is chosen.

4.4. Comparison with Existing Methods

To further evaluate the performance of the proposed method, five existing methods for image
recognition are compared with the proposed method. They are BOW [15], SPM [16], CNN [17], Texture
analysis [18] and CLAHE + GLCM + ELM [19]. The average results for 10-fold cross-validation of each
method are presented in Table 7.

Table 7. Comparison of confusion matrix for BOW [15], SPM [16], CNN [17], Texture analysis [18],
CLAHE + GLCM + ELM [19] and the proposed CW-GLCM method on NDDA dataset: Defective (D)
and Non-defective (N).

Class

Methods

BOW SPM CNN Texture
Analysis

CLAHE +
GLCM + ELM

CW-GLCM
(Proposed Method)

D N D N D N D N D N D N

D 24 3 26 1 25 2 20 7 22 5 26 1
N 4 23 0 27 1 26 4 23 11 16 0 27

Precision (%) 88.89 96.30 92.59 74.07 81.48 96.30
Recall (%) 85.71 100 96.15 83.33 66.67 100

Accuracy (%) 87.04 98.15 94.44 79.63 70.37 98.15
Training time (s) 402.94 150.97 149.13 135.12 1323.58 344.17
Testing Time (s) 3.92 0.13 0.08 1.38 0.02 0.25

Following the 10-fold cross-validation experiment on NDDA dataset, a total number of 275 images
from the defective class and 275 images from the non-defective class are divided into ten equal parts.
Each part consists of 28 or 27 images of the defective and non-defective classes. Nine parts are
used for training and one for testing. This process is repeated ten times until each of the folders
is used exactly once as a validation set. Then, the average value for all ten experiment are taken.
In Table 7, the classification performance is led by the proposed CW-GLCM and SPM method with
98.15% classification accuracy. Both methods correctly classified all 27 images of non-defective apples
followed by CNN (26 images), BOW and Texture analysis (23 images), while the lowest goes to CLAHE
+ GLCM + ELM (16 images). For the defective images, the proposed CW-GLCM and SPM method
correctly classified 26 out of 27 images of defective apples while CNN, BOW, CLAHE + GLCM + ELM
and Texture analysis correctly classified 25, 24, 22 and 20 respectively.

Overall, our proposed CW-GLCM and SPM method outperformed others in NDDA dataset with
the classification accuracy of 98.15%. This is followed by CNN with 94.44%, BOW 87.04%, Texture
analysis 79.63% and CLAHE + GLCM + ELM 70.37% as presented in Table 7. The proposed CW-GLCM
and SPM method also outperformed others with 96.30% precision and 100% recall rate. Among
the methods, CLAHE + GLCM + ELM take the longest time for training (1323.58 s) and the fastest
during testing (0.02 s). The CLAHE + GLCM + ELM method required the longest time for training
due to the computationally extensive of CLAHE approach in the method. The CLAHE approach
are usually used for image enhancement in off-line application [63]. In contrast to the training time,
the CLAHE + GLCM + ELM able to classify the dataset faster compared to other methods because
of the extremely fast learning speed of the Extreme Learning Machine (ELM) classifier used in the
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method [19]. This is followed by the CNN method with 0.08 s, SPM 0.13 s, proposed CW-GLCM 0.25 s,
texture analysis 1.38 s and BOW 3.92 s. The BOW requires the longest time for testing the NDDA dataset
because of the high computational cost in vector quantization step in BOW method [1]. In contrast to
BOW, the CNN method able to classify faster because of the input images to the CNN method were
rescaled from the original of 900 × 700 pixels to 227 × 227 pixels. This is due to the CNN requirement of
having fixed-size input images [7,8]. If the arbitrary sizes of the images are applied, the CNN method
will fit the images input to its fixed size via either cropping or warping the images [7,8,94,95]. Although
our proposed CW-GLCM requires a longer time to classify the dataset than the SPM method, the results
are still acceptable as it takes only less than 0.23 s longer than the CLAHE + GLCM + ELM, which is
the fastest method during testing to successfully classify all the non-defective apple images. Other
than that, the proposed CW-GLCM only misclassified one out of 27 defective apples. These results
indicate that our proposed method able to effectively classify between defective and non-defective
apple including the apple with a low-quality region on its skin. The examples of the low-quality region
on the non-defective apple images can be found in bright-skinned apple and apple with yellow-white
flecks as shown in Figure 10. In other methods, these types of apple may be misclassified as defective.
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4.5. Analysis of Classification Accuracy Against Low-Quality Region

Based on the analysis of the proposed method on the NDDA dataset, the results were further
explored. The proposed method is tested with NDDAW dataset in which the dataset was created
particularly to include more low-quality apple image region. This dataset consists of 159 apple images
with a low-quality region on its skin. The comparison average results for 10-fold cross-validation with
other methods are presented in Table 8.

Table 8. Confusion matrix for BOW [15], SPM [16], CNN [17], Texture analysis [18], CLAHE + GLCM +

ELM [19] and proposed CW-GLCM method on NDDAW dataset: Defective (D) and Non-defective (N).

Class

Methods

BOW SPM CNN Texture
Analysis

CLAHE +
GLCM + ELM

CW-GLCM
(Proposed Method)

D N D N D N D N D N D N

D 21 7 20 8 22 6 20 8 14 14 24 4
N 5 23 9 19 6 22 13 15 11 17 2 26

Precision (%) 75.00 71.43 78.57 71.43 50.00 86.79
Recall (%) 80.65 68.97 78.57 60.61 56.00 91.01

Accuracy (%) 78.50 69.64 78.57 62.50 53.36 89.11
Training time (s) 275.61 149.92 146.89 131.32 2075.93 386.63
Testing Time (s) 3.84 0.47 0.34 1.41 0.02 0.31

Following the 10-fold cross-validation for NDDAW dataset, a total number of 280 images from
the defective class and 280 images from the non-defective class are divided into ten equal parts.
Each part consists of 28 images of the defective and non-defective classes. Nine parts are used for
training and one for testing. This process is repeated ten times until each of the folders is used exactly
once as a validation set. Then, the average value for all ten experiment are taken. From Table 8,
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the classification performance is led by the proposed CW-GLCM method with 89.11% classification
accuracy. This is followed by CNN 78.57%, BOW 78.50%, SPM 69.64%, Texture analysis 62.50%
and CLAHE + GLCM + ELM 53.36%. The proposed CW-GLCM correctly classified 26 images out
of 28 non-defective apples while CNN (22 images), BOW (23 images), SPM (19 images), Texture
analysis (16 images) and CLAHE + GLCM + ELM (17 images). For the defective images, the proposed
CW-GLCM method correctly classified 24 images of defective apples followed by CNN (22 images),
BOW (21 images), SPM and Texture analysis (20 images) while CLAHE + GLCM + ELM (14 images).
In this dataset, the proposed CW-GLCM outperformed others whereas the CLAHE + GLCM + ELM
method recorded the lowest classification accuracy followed by Texture analysis method.

Overall, the CLAHE + GLCM + ELM method recorded the lowest classification accuracy
performance in both datasets tested. This is due to the drawbacks of the CLAHE approach that
sometimes may produce unwanted gray level artifact and creates an equal density in all the histogram
bins during the image enhancement process [62]. In contrast, the obvious accuracy performance
difference can be observed from the SPM method between NDDA and NDDAW dataset. Although
the SPM method achieved high percentage for the measurement of precision, recall and accuracy in
NDDA dataset, it presents lower performance in NDDAW dataset. This is because the NDDAW dataset
contains more apple images with low-quality region compared to NDDA dataset. The result shows
that the SPM method is less sensitive in detecting features in the low-quality region. On the other
hand, our proposed CW-GLCM method achieved the highest classification accuracy, precision and
recall in both datasets. This indicates that the proposed method is more robust in detecting features on
low-quality region. Figure 11a,b depicts the performance of precision, recall and accuracy for NDDA
and NDDAW. The training and testing time tested on each dataset are presented in Figure 11c,d.
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4.6. Performance Evaluation with Different Image Resolution

To evaluate the efficiency of the proposed method against different image resolution, the test
with three different image resolution (i.e., original, small and large) is conducted. The small and large
images are created by rescaling them with two parameters, 0.5 and 1.5. The comparative results of
their precision, recall, accuracy, training and testing time are presented in Table 9.
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Table 9. Comparative results (precision, recall, accuracy, training time and testing time) of the proposed
method for different resolution images.

Rescale Resolution
(Pixel)

Precision
(%)

Recall
(%)

Accuracy
(%)

Training
Time (s)

Testing
Time (s)

0.5 450 × 350 96.30 1.00 98.15 102.76 0.12
Original 900 × 700 96.30 1.00 98.15 344.15 0.25

1.5 1350 × 1050 96.30 1.00 98.15 550.74 0.31

From the results, it can be seen that the performance of the proposed CW-GLCM is not affected by
the resolution change. The only difference observed is in the computational time. The time taken for
training and testing is getting higher as the number of resolutions increased. The results proved that
the image resolution does not influence the precision, recall and accuracy of the proposed CW-GLCM.
Although the training and testing time are increased with the increment of image resolution, the
10-fold cross-validation experiment on the dataset shows that the proposed method are able to process
27 images within 0.25 s during testing on the original resolution (900 × 700 pixel). These results indicate
that the proposed CW-GLCM method can be used in real-time systems.

5. Discussion

Overall, the proposed CW-GLCM method outperformed others in detecting important features
on the low-quality apple image region. The proposed method performance exceeds 86.79% for all the
performance measures in both datasets tested. In contrast, a lower precision, recall and accuracy are
observed in the other five methods on NDDAW dataset with the maximum recall of 80.65% in BOW
method. The classification accuracy of BOW in NDDAW dataset is 78.50%, SPM 69.64%, CNN 78.57%,
Texture analysis 62.50% and CLAHE + GLCM + ELM 53.36%. The lower classification accuracy of
the BOW, SPM, Texture analysis and CLAHE + GLCM + ELM methods is influenced by the presence
of low-quality region on the apple images in NDDAW dataset. While the reasons that reduce the
classification accuracy of the CNN method is due to the small sample dataset utilized in the experiment.
The CNN deep learning method requires a large number of images for training in order to obtain a
desired classification accuracy result [1,7–10]. In contrast, the proposed CW-GLCM are able to achieve
more than 86.79% for precision, 91.01% recall and 89.11% accuracy for both datasets tested. This
indicates that the introduction of Curvelet features and Wavelet Coefficient in the GLCM method can
improve the results even with low quality region images in small sample dataset. This is possible since
the Curvelet and Wavelet transform able to enhance the apple images, especially on the low-quality
region. However, the detection failure can still be observed on the defective apple that had been
misclassified as non-defective apple. The example of the false positive classification in which defective
apple incorrectly classified as non-defective apple is shown in Figure 12. This blemish defect region
may be misclassified as stem ends or calyxes which are the natural parts of the apple that located at the
top and bottom of the apple. This is due to similarities exist between these features.
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6. Conclusions

The CW-GLCM method is proposed for apple classification to differentiate between defective
and non-defective apple. The proposed methods fused the Curvelet and Wavelet transform with
the GLCM method to improve its ability in detecting features on the low-quality region of apple
images. In apple classification, it is crucial to detect these features to enable the classifier to differentiate
and correctly classify between defective and non-defective apple. Comparative experiments have
been performed between the proposed CW-GLCM method with other five existing methods namely
BOW [15], SPM [16], CNN [17], Texture analysis [18] and CLAHE + GLCM + ELM [19]. Experimental
results show that the proposed CW-GLCM and SPM method attained higher classification accuracy in
NDDA dataset with the same precision (96.30%), recall (100%) and accuracy (98.15%). However, lower
classification accuracy is observed in SPM method when tested with NDDAW dataset with 71.43%
precision, 68.97% recall and 69.64% accuracy. In contrast, our proposed CW-GLCM able to achieve
86.79% precision, 91.01% recall and 89.11% accuracy. In comparison with other methods, our proposed
method presents the highest precision, recall and accuracy results in both datasets tested. The result
shows that the proposed CW-GLCM method are more robust and can effectively classify between
defective and non-defective apple including the apple images with low-quality region.

7. Future Works

This paper proposed a new method of fusion features namely CW-GLCM for apple classification
in smart manufacturing with a goal to optimize productivity. The optimization can be performed
using the data analytics and visualization that requires accurate and reliable informative data as the
input for analytics model. The result shows that the proposed CW-GLCM method able to effectively
classify the defective and non-defective apple including low-quality apple image region. Therefore,
it can be used in assisting the decision-making in apple manufacturing industry. Though the proposed
CW-GLCM method is superior to other existing methods and achieves more accurate classification in
both datasets tested, the method was shown to be less effective in detecting some of the defective apples
as shown in Section 5. In the future, we will concentrate on improving these drawbacks and also will
consider on increasing the diversity of apple images dataset using the data augmentation techniques
for more advanced deep learning method. However, the key challenge for the data augmentation is it
is very computationally expensive to generate enough samples for training on a large neural network.
Furthermore, due to particularities of various types of the defect, severity and cultivar of apple images
in this research, it will become a major challenge for the data augmentation. The overly augmented
and redundant augmentation may also introduce biases into the dataset and can slow down the
training [96,97]. These will become the focus area for our future work and extend its implementation
for multi-class classification. We intend to perform multi-class classification to classify different types
of defective apples for further data analytics. Based on the current production data of the defective
types in apple production, the data analytics process will identify the patterns and learns for future
planning and prediction to improve the apple growth.
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