
symmetryS S

Article

eCLASS: Edge-Cloud-Log Assuring-Secrecy Scheme
for Digital Forensics

Junyoung Park and Eui-Nam Huh *

Department of Computer Science and Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu,
Yongin-si, Gyeonggi-do 17104, Korea; parkhans@khu.ac.kr
* Correspondence: johnhuh@khu.ac.kr; Tel.: +82-31-201-3778

Received: 30 August 2019; Accepted: 19 September 2019; Published: 22 September 2019
����������
�������

Abstract: User activity logs are important pieces of evidence in digital forensic investigations. In
cloud forensics, it is difficult to collect user activity logs due to the fact of virtualization technologies
and the multitenancy environment, which can infringe upon user privacy when collecting logs.
Furthermore, the computing paradigm is shifting from conventional cloud computing toward edge
computing, employing the advances of 5G network technology. This change in the computing
paradigm has also brought about new challenges for digital forensics. Edge nodes that are close to
users are exposed to security threats, and the collection of logs with limited computing resources
is difficult. Therefore, this study proposes a logging scheme that considers log segmentation and
distributed storage to collect logs from distributed edge nodes and to protect log confidentiality by
taking into account edge-cloud characteristics. This scheme protects the integrity of log data collected
by a multi-index chain network. To demonstrate the performance of the proposed scheme, edge
nodes with three different capacity types were used, and the proposed log-segmentation method
performed 29.4% to 64.2% faster than the Cloud-Log Assuring-Secrecy Scheme (CLASS) using 2048
bit Rivest-Shamir-Adleman (RSA) in three types of edge nodes for log-confidentiality protection.
The log segmentation of edge CLASS (eCLASS) reduced the log size to approximately 58% less than
CLASS log encryption, and edge-node CPU usage was also reduced from 14% to 28%.

Keywords: security; edge cloud; digital forensics; integrity; confidentiality

1. Introduction

According to International Telecommunications Union Telecommunication (ITU-T) Study Group
13 (SG13) [1] that is a group of international standardization organization that establishes cloud
computing related standard technologies, an edge cloud is defined as “cloud computing deployed to
the edge of the network accessed by cloud service customers (CSCs) with small-capacity resources
enabling cloud service”. The edge cloud, which provides various computing services based on the
advantages of edge computing, has recently received considerable attention as a new computing
paradigm. Gartner, the world’s leading research and advisory company, mentioned “cloud to the edge”
as one of its top 10 strategic technology trends for 2018 and included “empowered edge” in its 2019
list. The emergence of the edge-cloud paradigm has generated active efforts to redesign the network,
increase coverage, boost network capacity, and cost-effectively bring content closer to the user.

The edge cloud, which brings services close to customers, is less manageable and secure than
conventional cloud-computing environments because edge nodes are closer to users than edge-cloud
managers. For example, malicious users or attackers might attack edge nodes, man-in-the-middle
(MITM) attacks enable information modulation and deletion, and Rogue Gateway and Rogue Data
Center attacks are disguised as normal edges between data center and users [2–4]. In fact, in 2017,
attackers hacked into a thermometer installed in the aquarium of a casino hotel and then infiltrated the

Symmetry 2019, 11, 1192; doi:10.3390/sym11101192 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-8481-8701
https://orcid.org/0000-0003-0184-6975
http://www.mdpi.com/2073-8994/11/10/1192?type=check_update&version=1
http://dx.doi.org/10.3390/sym11101192
http://www.mdpi.com/journal/symmetry

Symmetry 2019, 11, 1192 2 of 27

casino network. In May 2018, a company website was suspended for four days after an Internet of
Things (IoT) device containing routers, security cameras, and digital video recorders was attacked.
The number of hacking attempts through these service end-points is increasing, and the collection of
forensic data for the enhanced security of end-points and the investigation of security incidents has
become important.

1.1. Problem Statement

Digital forensics in the edge cloud has gained importance, as edge nodes have become the target
of security attacks [5]. As a result, digital-forensic experts need a forensic-data-collection system for
edge-cloud environments because edge nodes are intercepted, manipulated, and deleted by attackers,
which makes it difficult to collect forensic data from edge nodes. However, since the standardized
architecture and definitions for the edge cloud and the form of services for the edge cloud have not
yet been clearly defined, the structure of edge-cloud services should be defined before proposing a
logging system for digital forensics for those services.

Edge-cloud services are actually provided by using edge nodes unlike a conventional cloud
service. The edge nodes that provide services are weak on security management because they are
geographically separated from the cloud. This geographic separation of management is an attack
target from malicious users or attackers, and it is difficult to safely keep and manage the log data of
edge nodes, as shown in Figure 1. In addition, edge nodes with limited computing resources have
potential problems on log-data collection, such as log-generation failures and incorrect logging by
computing overhead.

Symmetry 2019, 11, x FOR PEER REVIEW 2 of 27

attackers hacked into a thermometer installed in the aquarium of a casino hotel and then infiltrated

the casino network. In May 2018, a company website was suspended for four days after an Internet

of Things (IoT) device containing routers, security cameras, and digital video recorders was attacked.

The number of hacking attempts through these service end-points is increasing, and the collection of

forensic data for the enhanced security of end-points and the investigation of security incidents has

become important.

1.1. Problem Statement

Digital forensics in the edge cloud has gained importance, as edge nodes have become the target

of security attacks [5]. As a result, digital-forensic experts need a forensic-data-collection system for

edge-cloud environments because edge nodes are intercepted, manipulated, and deleted by attackers,

which makes it difficult to collect forensic data from edge nodes. However, since the standardized

architecture and definitions for the edge cloud and the form of services for the edge cloud have not

yet been clearly defined, the structure of edge-cloud services should be defined before proposing a

logging system for digital forensics for those services.

Edge-cloud services are actually provided by using edge nodes unlike a conventional cloud

service. The edge nodes that provide services are weak on security management because they are

geographically separated from the cloud. This geographic separation of management is an attack

target from malicious users or attackers, and it is difficult to safely keep and manage the log data of

edge nodes, as shown in Figure 1. In addition, edge nodes with limited computing resources have

potential problems on log-data collection, such as log-generation failures and incorrect logging by

computing overhead.

Figure 1. Attack and investigation scenario in edge cloud.

Existing cloud logging systems encrypt and store log data generated in the cloud, and a cloud

service provider (CSP) manages the log data. Because these logging systems are stored and managed

by the CSP, malicious CSPs can modify log data at any time. In addition, non-cooperation with

forensic-data collection for security-incident investigations increases the difficulty in investigating

incidents. Therefore, a logging system is needed to collect log data without cooperation from the CSP.

1.2. Contributions

Figure 1. Attack and investigation scenario in edge cloud.

Existing cloud logging systems encrypt and store log data generated in the cloud, and a cloud
service provider (CSP) manages the log data. Because these logging systems are stored and managed
by the CSP, malicious CSPs can modify log data at any time. In addition, non-cooperation with
forensic-data collection for security-incident investigations increases the difficulty in investigating
incidents. Therefore, a logging system is needed to collect log data without cooperation from the CSP.

Symmetry 2019, 11, 1192 3 of 27

1.2. Contributions

In edge-cloud environments, logging systems need to identify and solve these problems. Therefore,
we proposed a new logging system that takes into account the characteristics of the edge cloud to solve
these problems and our contributions are as follows.

• We propose a new secure logging scheme in consideration of the edge-cloud environment. This
logging scheme provides log-data confidentiality and integrity using log-data segmentation,
distributed storage, and multi-index-chain (MIC) techniques for solving edge-node problems such
as low computing resources and the geographically separated management from the owner eCSP.

• We introduce the MIC technique and distributed-storage cluster to acquire forensic data without
the cooperation of the corresponding service provider. The index files include information of
the distributed log block being shared with MIC peers through the MIC network. Therefore,
investigators can collect the related log blocks based on the index files and distributed-storage
cluster (DSC).

• We outline a security analysis and performance evaluation that prove that the security of our
scheme improved upon existing logging schemes, and that our scheme could reduce the log
processing time and required storage size.

The remainder of this paper is organized as follows: Section 2 discusses related work; Sections 3 and 4
define threat models, security properties, and propose an edge-cloud logging scheme for digital
forensics; Section 5 verifies the proposed logging scheme through performance and security evaluation;
finally, Section 6 concludes the paper and outlines plans for future work.

2. Related Work

This chapter provides an overview of recent definitions of the edge-cloud environment and
structure. Moreover, the logging system and logging services used for digital forensics in traditional
cloud computing are examined.

2.1. Edge Cloud

The roots of the edge cloud go back to the late 1990s when Akamai [6] introduced content delivery
networks (CDNs) to accelerate web performance. A CDN uses nodes at an edge close to users to
prefetch and cache web content. These edge nodes can also perform content customization, such as
adding location-relevant advertising and video content. The edge cloud generalizes and extends the
CDN concept by leveraging the cloud-computing infrastructure.

The edge cloud aims to quickly provide cloud services to users through near edge nodes. According
to the standard draft of ITU-T SC13 [1], the edge cloud is defined as follows:

“The edge cloud is deployed at the edge of the network accessed by CSCs, and has small
resource capacity. The edge cloud requires specialized hardware resource on purpose, and
resources in the edge cloud are constrained due to limitations of space or power.”

The edge cloud defined by the standard draft is one of the distributed cloud architectures that
consist of a core cloud and an edge cloud. The edge cloud provides services to edge nodes that are
close to the user by launching user-demanded services. Moreover, if there is no service request, the
launched services of the edge node are deleted or suspended so the limited computing resources of the
edge node are effectively managed.

The edge cloud provides services through edge nodes, and most service logs are also recorded in
edge nodes. Therefore, in an edge-cloud environment, collecting logs for digital forensics requires
working around edge nodes, while limited computing resources mean less computing load for
log collection.

Symmetry 2019, 11, 1192 4 of 27

2.2. Conventional Cloud Logging Systems

Various studies on logging systems in cloud computing are underway in the area of digital forensics.
Among them, Secure Logging-as-a-Service (SecLaaS) [7–10] and the Cloud-Log Assuring-Soundess
and Secrecy Scheme (CLASS) [11] are representative cloud logging systems, taking into account cloud
forensic challenges such as data volatility, multitenancy in the cloud, and ensuring user privacy.

Secure Logging-as-a-Service collects data on the basis of network logs to identify potential
intrusions into virtual machines (VMs) within the cloud; it utilizes log accumulators to ensure the
integrity of log data with log-chain technology. In addition, by using the proposed Bloomtree technology
in SecLaaS, the accumulated hashed log values are quickly retrieved, showing faster performance than
existing logging technologies. However, privacy issues occur because SecLaaS allows investigators
to access and read user logs. Log-chain technology ensures integrity by sequentially accumulating
log entries, which can cause performance degradation during large log-entry creation and, thus, does
not provide multiple log sources, such as a mobile edge cloud [12–16] and fog computing [13,17].
Furthermore, Bloomtree [8] has a low probability of false positives, which are inherent in search failure.

By applying content-concealment technology, CLASS has complemented user privacy and CSP
trust issues, which are the limitations of SecLaaS. The user can check logs generated by the CSP, and
sensitive information is encrypted with the user’s public key. The CSP then publishes proof of past log
(PPL) through the log accumulator based on encrypted logs to ensure the integrity of log data and user
privacy. However, in the process of storing the log entry, the user should encrypt the log entry with
their public key, but CLASS has multiple log-source and false-positive issues, like SecLaaS.

Therefore, since SecLaaS and CLASS cannot support multiprocessing for multiple edge nodes and
do not take into account edge-cloud vulnerabilities, we need a logging system that takes into account
the edge-cloud environment and can be used as forensic data. This study proposes an edge-cloud
logging system for digital forensics, taking into account the characteristics of the edge cloud, such as
weak security and edge nodes with limited computing resources.

2.3. Data Protection Techniques

In digital forensics, protection forensics data and data integrity are one of most important methods.
To protect log data in a logging system, almost all logging systems encrypt log data using an encryption
key, such as Advanced Encryption Standard (AES), Data Encryption Standard (DES), and RSA. Raja
Sree [10] suggested a secure logging scheme for forensic analysis in a cloud. The scheme also encrypts
log data using 2048 bit RSA. Numerous studies [18–20] have attempted to protect user privacy based
on asymmetric encryption in a cloud logging system. However, data encryption needs enough
computing resources.

Lei Yang [21] and Selvakumar [22] suggested a new cloud logging system using a data partitioning
method for digital forensics. However, they used data partitioning to improve the processing of data
streams and to protect the security of data stored in the cloud storage.

Yasir Karam [23] and Muhammad Asim [24] designed access control for an objective-driven
programming model through provisioning assurance auditing (PAA) which provides a secured
separated abstraction layer for cloud users. Urmi Priyadarshani Das [25] proposed an intrusion
detection system for cloud and fog computing. To protect user data, the system provides decoy
data to intruders and decrypted data to normal users after a user identification procedure. Ximeng
Liu [26] addressed identity/attribute-based cryptography, security, and privacy challenges, user-privacy
preservation, and data-protection methods for the IoT and fog computing. However, addressed methods
such as asymmetric encryptions and full homomorphic encryption, cause high computing overhead.

2.4. Ensuring Data Integrity Technique

To ensure data integrity, most logging systems have a log accumulator or blockchain network.
Conventional logging systems, such as SecLaaS and CLASS, use a log accumulator for log integrity. EI

Symmetry 2019, 11, 1192 5 of 27

Ghaouani [27] suggested a blockchain and multiagent system using a blockchain network for data
integrity. Konstantinos Rantos [28] addressed blockchain-based consent management for personal
data processing in the IoT ecosystem. Noshina Tariq [29] researched security challenges in fog-enabled
IoT applications, including blockchain. These studies ensure the integrity of sensitive and big data in
the cloud. We needed to redesign the blockchain network to consider features of edge computing.

3. Edge-Cloud Threat Model and Security Properties

This section presents terms and their definitions, and edge-cloud service models to help understand
how log data are collected for digital forensics in the edge cloud. Security threats to log data and
security features used for protection are described below.

3.1. Terms and Definitions

Table 1 shows the description of Edge-Cloud-Log Assuring-Secrecy Scheme (eCLASS) terms.

Table 1. Description of Edge-Cloud-Log Assuring-Secrecy Scheme (eCLASS) terms.

Terms Description

Log (Log entry)
The log is a network log, process log, registry log, application
log, or any customized text that meets the requirements of being
stored for digital forensics.

Index

An index is created by storing segmented logs in a
distributed-storage cluster and aggregating the stored
information. Users and investigators can recover distributed and
stored segmented logs based on information in the index.

Multi-index (MI) A MI is a set of uploaded indices collected by the investigator
during a certain period of time.

MI chain (MIC)

An MIC is information that prevents deletion and exchange of,
and tampering with, specific indexes. MICs share information
with participants in a multi-index network to ensure the integrity
of data in the multi-index. A new MIC is created including
previously published MIC information.

Edge cloud service provider (eCSP) An edge-cloud service provider is a service provider that uses an
edge node to deliver cloud services.

Edge node

An edge node deploys cloud services from an eCSP and provides
services to users and Internet of Things (IoT) devices. An edge
node is close to users and IoT devices, and has limited
computing resources.

Edge-cloud service user An edge-cloud service user is an end-user who receives services
through edge nodes.

Investigator
An investigator can conduct forensic investigations into security
accidents in the event of a security accident. Moreover,
investigators manage and control multi-index chain networks.

Distributed-storage cluster(DSC)
A DSC is a group of storage services that can store segmented
logs and provide storage services through secure application
programming interfaces (APIs).

3.2. Edge-Cloud Service Models

An eCSP can provide edge services to users with various service models. For example, eCSP
supports the mobility of users and devices by using edge nodes with limited computing capacity. As
shown in Figures 2–5, edge service models are defined and described as four types of service models
that can be provided to users in an edge-cloud environment.

Symmetry 2019, 11, 1192 6 of 27

Symmetry 2019, 11, x FOR PEER REVIEW 6 of 27

An eCSP can provide edge services to users with various service models. For example, eCSP

supports the mobility of users and devices by using edge nodes with limited computing capacity. As

shown in Figures 2–5, edge service models are defined and described as four types of service models

that can be provided to users in an edge-cloud environment.

Figure 2. General model.

Figure 3. Mobility-support model.

Figure 2. General model.

Symmetry 2019, 11, x FOR PEER REVIEW 6 of 27

An eCSP can provide edge services to users with various service models. For example, eCSP

supports the mobility of users and devices by using edge nodes with limited computing capacity. As

shown in Figures 2–5, edge service models are defined and described as four types of service models

that can be provided to users in an edge-cloud environment.

Figure 2. General model.

Figure 3. Mobility-support model. Figure 3. Mobility-support model.Symmetry 2019, 11, x FOR PEER REVIEW 7 of 27

Figure 4. Service-extension model.

Figure 5. Edge-federation model.

3.2.1 General Model

As shown in Figure 2, the general model (GM) is a conventional edge-cloud service model. If a

user requests a cloud service on the nearest edge node, and the service is not launched in the edge

node, the edge node requests the user’s service from the eCSP, and then downloads and launches the

service to provide the service to the user. If the requested service is already launched, it quickly

provides the service to the user without requesting it from the eCSP. In such cases, log information

is recorded only on edge nodes.

3.2.2. Mobility-Support Model (MSM)

As shown in Figure 3, the MSM is a service model that provides seamless cloud services to

mobile users or devices. When a user or device is moved from Edge Node 1 to Edge Node 2 to

efficiently realize a service, the edge node that is providing the service is replaced by a close edge

Figure 4. Service-extension model.

Symmetry 2019, 11, 1192 7 of 27

Symmetry 2019, 11, x FOR PEER REVIEW 7 of 27

Figure 4. Service-extension model.

Figure 5. Edge-federation model.

3.2.1 General Model

As shown in Figure 2, the general model (GM) is a conventional edge-cloud service model. If a

user requests a cloud service on the nearest edge node, and the service is not launched in the edge

node, the edge node requests the user’s service from the eCSP, and then downloads and launches the

service to provide the service to the user. If the requested service is already launched, it quickly

provides the service to the user without requesting it from the eCSP. In such cases, log information

is recorded only on edge nodes.

3.2.2. Mobility-Support Model (MSM)

As shown in Figure 3, the MSM is a service model that provides seamless cloud services to

mobile users or devices. When a user or device is moved from Edge Node 1 to Edge Node 2 to

efficiently realize a service, the edge node that is providing the service is replaced by a close edge

Figure 5. Edge-federation model.

3.2.1. General Model

As shown in Figure 2, the general model (GM) is a conventional edge-cloud service model. If a
user requests a cloud service on the nearest edge node, and the service is not launched in the edge
node, the edge node requests the user’s service from the eCSP, and then downloads and launches
the service to provide the service to the user. If the requested service is already launched, it quickly
provides the service to the user without requesting it from the eCSP. In such cases, log information is
recorded only on edge nodes.

3.2.2. Mobility-Support Model (MSM)

As shown in Figure 3, the MSM is a service model that provides seamless cloud services to mobile
users or devices. When a user or device is moved from Edge Node 1 to Edge Node 2 to efficiently
realize a service, the edge node that is providing the service is replaced by a close edge node to ensure
quality of service (QoS). In this case, logs are written to multiple edge nodes depending on the path of
the user and device.

3.2.3. Service-Extension Model

As shown in Figure 4, the service-extension model (SEM) is a service model that simultaneously
processes across multiple edge nodes when the network environment is proper and computing
resources of the requested service are higher than one edge node. For example, when a user uses a
virtual-reality (VR) service on a 5G network, the eCSP can divide it into three VR screens and provide
images from each of the three edge nodes because network speed is sufficient but exceeds edge-node
performance. In this model, a service log is generated in every edge node.

3.2.4. Edge-Federation Model

As shown in Figure 5, the edge-federation model (EFM) is a service model that provides services
by dividing tasks into different edge nodes and integrating the result into the main edge node (Edge
Node 2) because the computing resources of a single edge node are lower than the computing resources
of the requested service. This model handles task distributions, such as SEM, but does not directly
connect all edge nodes to the user (or device). Only Edge 2 directly provides the requested service to
the user, but Edge Nodes 1 and 3 are only connected with Edge 2. In this case, because log information
for Edge Nodes 1, 2, and 3 is different, additional information is required to identify logs of the same
service for Edge Nodes 1, 2, and 3.

Symmetry 2019, 11, 1192 8 of 27

3.3. Threat Models

The proposed scheme was designed on the basis of the “zero-trust network” policy. This scheme
does not trust any party from eCSPs, investigators, DSCs, and users. In addition, the proposed scheme
requires functions for privacy protection and forensic data.

In an edge-cloud environment for forensic data, logging systems need to consider potential
security threats, such as log corruption and forensic-data contamination, based on the characteristics of
the edge-cloud environment. In an edge-cloud environment used by various users, malicious users can
undermine or tamper with log data, thereby disrupting forensic investigations. Models that threaten
the integrity of these logs should be defined as follows, as well as countermeasures on edge-cloud
logging systems. Moreover, Table 2 shows the comparison of threat models among SecLaaS, CLASS,
and eCLASS.

Table 2. Comparison of threat models among SecLaaS, CLASS, and eCLASS.

Threat Models SecLaaS CLASS eCLASS

Log modification O O O
Privacy violation O O O

Ownership repudiation O O O
CSP service confidentiality violation X X O

Edge-node tempering X X O
Computing overhead in edge node X X O

Log modification: A dishonest CSP can modify logs generated by edge nodes before the log-data
verification process takes place. In addition, malicious investigators may conduct log collusion
with users and CSPs to modify relevant logs in order to deny or mitigate cybercrimes. These log
modifications include adding invalid entries, deleting important entries, modifying existing entities,
and arranging log entries. These modified logs may mislead investigators or hide some misbehavior.
In edge clouds, because edge nodes are geographically separated from CSPs when logs generated by
edge nodes are sent to CSPs, an attacker can change normal logs through a log-modulation attack,
such as an MITM attack.

Privacy violation: Leakage of a log file can reveal privacy-related information that includes
user identity. Even with cryptography, cloud employees and dishonest investigators who have key
decryption can transfer the log to an entity, which is how privacy is violated.

Ownership repudiation: Because cloud servers have information about a large number of users,
malicious cloud users can submit to other users’ activity logs. It can also be denied that the CSP did
not record the investigated logs. In some logging systems, the CSP creates and stores logs for all users,
but users cannot figure the logs out. As a result, this increases users’ suspicion about log integrity and
reliability and the CSP can deny the log.

The CSP service confidentiality: In some cloud logging systems, logs created on cloud servers
should be read to users and the service provider only, but other CSPs, users, and investigators can
easily access logs that include service information, user status, and user-access rate and area. Because
the service log is also confidential CSP information and an asset, access by other parties (other users,
CSPs, investigators) violates the confidentiality of the service.

Edge-node tempering: Geographically outside the scope of CSP management, malicious users or
attackers can physically access and manipulate stored log information.

Computing overhead in edge nodes: As edge nodes have limited computing resources, they can
be overloaded by providing many functions on edge nodes. This overload can cause service logging
delay, incorrect logging, and non-logging.

3.4. Security Properties

Correctness: Logging systems for digital forensics should have accurate logging of services, and
log information should prove that there has not been any tampering. Distributed logs should show

Symmetry 2019, 11, 1192 9 of 27

that they are related to each other and should record which actions the requested service handled on
which edge node. Finally, it is necessary for users, investigators, and auditors to verify that logs are
correctly recorded.

Tamper resistance: In CLASS and SecLasS, encrypted log DB, PPL, and an accumulator are kept
by the CSP so logs can be modified at any time in collusion with malicious users. In addition, log
modulation and regeneration are possible even after PPL if CSPs, malicious users, and investigators
collude. Therefore, it is necessary to store separately encrypted log DB and PPL, and check modulation
even if CSPs, users, and investigators are involved.

Verifiability: Since the proposed scheme generates logs from distributed edge nodes in a zero-trust
network, verification steps are necessary to ensure log accuracy, consistency, and integrity. An
edge-cloud logging system should thus be able to verify data modulation and corruption through
verification of generated logs.

Confidentiality and privacy: Logs are information about the services that eCSP provides to users.
The information about eCSP services and users’ personal information may be exposed if log information
generated by the eCSP is easily accessed by investigators, auditors, and other users. Therefore, only
authorized users should be able to access authorized log information. In addition, low-overhead
data-protection methods are needed to protect confidentiality and privacy, considering the limited
computing resources of the edge cloud.

Admissibility: Logs generated in edge clouds should be utilized as forensic data and should be
acceptable in court. For legal admissibility, it should be possible to verify that there has not been
any log tampering, corruption, or omission in the process of log-data generation, management, and
verification. Moreover, log collection for edge clouds should be done on a legitimate security-policy
basis because illegal log-data collection violates admissibility.

4. Proposed Scheme: eCLASS

As shown in Figure 6, eCLASS consists of an eCSP, users, investigators who conduct forensic
investigations after a security incident and manage the MIC network, and DSC for storing the
segmented log data.

Symmetry 2019, 11, x FOR PEER REVIEW 10 of 27

Figure 6. Overview of eCLASS.

4.1. Overview

The eCLASS ensures log-data integrity and protects user privacy/service confidentiality for logs

generated in edge nodes outside the geographic management scope. The eCLASS uses log

segmentation and a distributed-storage technique instead of log encryption, taking into account the

computing resources of limited edge nodes. It also ensures log-data integrity by sharing the index

(including log segmentation and distributed-storage path information) with private network

participants for distributed-storage logs.

The following part of the paper describes each role and performance capability of edge nodes,

eCSPs, investigators, and distributed-storage clusters.

Edge nodes: As edge nodes provide services using a deployment service image close to users

based on virtualization technologies such as containers and virtual machines, logs for cloud services

are generated in the edge nodes. Logs generated in edge nodes do not keep logs in edge nodes

because of the manageable vulnerability of edge nodes, and perform log segmentation and

distributed storage for the sake of confidentiality and privacy.

Existing logging systems protect data confidentiality by storing encrypted logs and local

repositories. However, edge nodes have limited computing resources, which cause overload issues

due to the fact of log encryption. Therefore, log segmentation is performed with units that are

unrecognizable to protect the confidentiality of log data and upload the group of log-segmentation

blocks to DSCs over secure APIs. In addition, since recovering log data from edge nodes can result

in tampering and loss by attackers, the edge node creates an index file that includes the information

of segmented logs stored in a DSC.

The generated index file is encrypted with users’ public key to protect service confidentiality

and user privacy from malicious investigators and other DSCs. The encrypted index file is sent to the

investigator who can preserve data integrity. The delivered encrypted index file is managed as an MI

group through the MIHeader, which is issued for a certain period of time. This process leaves no log

files and index files on edge nodes, and allows log segmentation and distributed storage to protect

the confidentiality and privacy of data from attackers.

Figure 6. Overview of eCLASS.

Symmetry 2019, 11, 1192 10 of 27

4.1. Overview

The eCLASS ensures log-data integrity and protects user privacy/service confidentiality for logs
generated in edge nodes outside the geographic management scope. The eCLASS uses log segmentation
and a distributed-storage technique instead of log encryption, taking into account the computing
resources of limited edge nodes. It also ensures log-data integrity by sharing the index (including
log segmentation and distributed-storage path information) with private network participants for
distributed-storage logs.

The following part of the paper describes each role and performance capability of edge nodes,
eCSPs, investigators, and distributed-storage clusters.

Edge nodes: As edge nodes provide services using a deployment service image close to users
based on virtualization technologies such as containers and virtual machines, logs for cloud services
are generated in the edge nodes. Logs generated in edge nodes do not keep logs in edge nodes because
of the manageable vulnerability of edge nodes, and perform log segmentation and distributed storage
for the sake of confidentiality and privacy.

Existing logging systems protect data confidentiality by storing encrypted logs and local
repositories. However, edge nodes have limited computing resources, which cause overload issues
due to the fact of log encryption. Therefore, log segmentation is performed with units that are
unrecognizable to protect the confidentiality of log data and upload the group of log-segmentation
blocks to DSCs over secure APIs. In addition, since recovering log data from edge nodes can result in
tampering and loss by attackers, the edge node creates an index file that includes the information of
segmented logs stored in a DSC.

The generated index file is encrypted with users’ public key to protect service confidentiality and
user privacy from malicious investigators and other DSCs. The encrypted index file is sent to the
investigator who can preserve data integrity. The delivered encrypted index file is managed as an MI
group through the MIHeader, which is issued for a certain period of time. This process leaves no log
files and index files on edge nodes, and allows log segmentation and distributed storage to protect the
confidentiality and privacy of data from attackers.

The eCSPs: An eCSP manages its own edge nodes, cloud services, and service images to launch
services on edge nodes that are close to the user. An eCSP communicates with edge nodes over a
metropolitan area network (MAN).

Investigators: Investigators have the right to investigate security accidents and collect log data
regarding services and users from eCSPs if there is a search-and-seizure warrant related to a security
incident. An investigator manages the MIC network, collects an encrypted index file from distributed
edge nodes, publishes an MI that groups several encrypted index files on the MIC network, and
then shares the MI with all network participants to ensure the integrity of encrypted index files. In
addition, if log collection is required for a security-incident investigation, the investigator can collect
distributed stored segmented logs, receive the user’s private key, and recover those segmented log files.
Investigators share the MIC that includes information of many indices with MIC network participants
over a wide area network (WAN).

DSCs: DSCs are repositories where logs generated from each edge node are stored distributed,
and the segmented logs are stored through secure APIs. These logs should be viewed by anyone as
read only.

4.2. eCLASS Specification

This section describes the log-data collection process and the verification process of collected logs
based on edge-cloud characteristics. Table 3 describes the notation for the proposed scheme.

Symmetry 2019, 11, 1192 11 of 27

Table 3. Notation summary.

Notations Description

eLEi
n the i-th log entry in the n-th edge node

H(eLEi
n): hash file of the i-th log entry in the n-th edge node

fs function for segmentation of eLEi
n+H(eLEi

n)
fp function for patitioning segmentation blocks

SBj
set of n-th segmentation block of a log entry
SB={SBj|j=1, ...,w}

GSBk
set of lth group of segmentation blocks
GSB={GSBk|k=1, ...,l}

SBIm information on m-th partition block for log recovery
IDXm file that includes SBIm and PathGSBs

EIDXm encrypted file of IDXm
PathGSBk path information that GSBk has stored in a DSC

MIg g-th multi-index block including g-th MIHeader, EIDXs, g-th MIC.
MIHeaderg identification value of MIk

4.2.1. Log Collection Procedure

The process of collecting logs from the proposed eCLASS and ensuring log integrity through an
MIC network is described in the process flow of Figure 7 below.Symmetry 2019, 11, x FOR PEER REVIEW 12 of 27

Figure 7. Process flow of eCLASS in edge cloud.

 Log Entry Generation

The logger collects logs stored in a specific directory on an edge node. The logs are stored in a

specific format, and contain service information for digital forensics. For eCLASS, eCSP ID (eCSP_ID),

edge node IP (Edge_IP), user information (User_Device_IP, User_Device_MAC, User_ID), log time

(LT), and service information (Service_URL) are used.

eLEik = ith log entry generated in the kth edge node.

eLEik = <eCSP_ID, Edge_IP, User_Device_IP, User_Device_MAC, User_ID, LTi, Service_URIi>

 Log Entry Segmentation

To protect the confidentiality and privacy of eLEin delivered by the logger, the existing logging

system performs log encryption, but considering the low capacity of the edge node, log-segmentation

technology is used. Log segmentation divides data into blocks that cannot be identified as

information by a person. In addition, it is impossible to identify two or more blocks, as they are listed

non-continuously as shown in Figure 8. Data-segmentation methods include the round-robin, range-

segmentation, hash-segmentation, and list-segmentation methods.

𝑓𝑠(𝑒𝐿𝐸𝑖
𝑛 + H(𝑒𝐿𝐸𝑖

𝑛)) = {𝑆𝐵1||𝑆𝐵2||, … , ||𝑆𝐵𝑗} (1)

𝑓𝑝({𝑆𝐵1||𝑆𝐵2||, … , ||𝑆𝐵𝑗}) = {𝐺𝑆𝐵1||𝐺𝑆𝐵2||, … , ||𝐺𝑆𝐵𝑘}

where, 𝐺𝑆𝐵𝑘 = {A group of 𝑓𝑝(𝑆𝐵1||SB2||, … , ||SB𝑗)}, 1 ≤ 𝑘 ≤ 𝑗

(2)

Figure 7. Process flow of eCLASS in edge cloud.

• Log Entry Generation

The logger collects logs stored in a specific directory on an edge node. The logs are stored in a
specific format, and contain service information for digital forensics. For eCLASS, eCSP ID (eCSP_ID),
edge node IP (Edge_IP), user information (User_Device_IP, User_Device_MAC, User_ID), log time
(LT), and service information (Service_URL) are used.

eLEi
k = ith log entry generated in the kth edge node.

eLEi
k = <eCSP_ID, Edge_IP, User_Device_IP, User_Device_MAC, User_ID, LTi, Service_URIi>

Symmetry 2019, 11, 1192 12 of 27

• Log Entry Segmentation

To protect the confidentiality and privacy of eLEi
n delivered by the logger, the existing logging

system performs log encryption, but considering the low capacity of the edge node, log-segmentation
technology is used. Log segmentation divides data into blocks that cannot be identified as information by
a person. In addition, it is impossible to identify two or more blocks, as they are listed non-continuously
as shown in Figure 8. Data-segmentation methods include the round-robin, range-segmentation,
hash-segmentation, and list-segmentation methods.

fs
(
eLEn

i + H
(
eLEn

i

))
=

{
SB1||SB2||, . . . ,

∣∣∣∣∣∣SB j
}

(1)

fp
({

SB1||SB2||, . . . ,
∣∣∣∣∣∣SB j

})
= {GSB1||GSB2|| , . . . ,

∣∣∣∣∣∣∣∣GSBk
}

where, GSBk =
{
A group of fp

(
SB1||SB2||, . . . ,

∣∣∣∣∣∣SB j
)}

, 1 ≤ k ≤ j
(2)

Symmetry 2019, 11, x FOR PEER REVIEW 13 of 27

Figure 8. Process of log segmentation and partitioning.

 Sending to DSCs

Log segmentation transfers the segmented log data (𝑆𝐵𝑗) to the contracted DSC and stores the

segmented log data (𝑆𝐵𝑗) in each storage cluster.

 Response to Storage Complete

The storage that stores the segmented logs sends the storage path (𝑃𝑎𝑡ℎ𝐺𝑆𝐵𝑘) to the

corresponding edge node. The edge node that receives the storage path generates an index file (𝐼𝐷𝑋)

with segmented log information (SBIm). An index file, including SBI and a distributed-storage path,

is shown below.

𝐼𝐷𝑋𝑚 = {𝑆𝐵𝐼𝑚 || 𝑃𝑎𝑡ℎ𝐺𝑆𝐵1|| 𝑃𝑎𝑡ℎ𝐺𝑆𝐵2|| … ||𝑃𝑎𝑡ℎ𝐺𝑆𝐵𝑘} (3)

 Index Generation

To ensure the integrity of index files, index files are shared with other users. Moreover, log

recovery is possible with shared index files and segmented data blocks. Therefore, an index file is

encrypted by using the user’s public key to protect user privacy and service-provider confidentiality,

and to access logs for that user. In addition, user ID and generation time of the index file (denoted to

𝑇𝐿𝑚) are recorded together to facilitate retrieval:

𝐸𝐼𝐷𝑋𝑚 = {UserID || 𝑇𝐿𝑚 || 𝐸𝑛𝑐𝑝𝑘𝑢𝑠𝑒𝑟
(𝐼𝐷𝑋𝑚)} (4)

 Uploading EIDXm to an Investigator

In traditional cloud logging systems SecLaaS and CLASS, cloud service providers own an

accelerator, encrypted log data, and PPL. However, eCLASS shares index information with MIC

network participants to prevent the service provider from tampering, and malicious loss. In addition,

even if it is modulated or deleted, EIDX can be used to recover modulation verification through EIDX

stored by other participants. Thus, edge nodes are uploaded to investigators for the integrity of EIDX.

 Multi-Index Generation

Investigators combine several EIDXs received over a period of time to publish a multi-index and

include the hash values (MIC) of the previous multi-index to verify its modulation:

𝑀𝐼𝑔 = {𝑀𝐼𝐻𝑒𝑎𝑑𝑒𝑟𝑔 ||(𝐸𝐼𝐷𝑋𝑚 + 𝐸𝐼𝐷𝑋𝑚+1 …)||𝑀𝐼𝐶𝑔} (5)

 Multi-Index Publication

Through ordering, the investigator publishes 𝑀𝐼𝑘 and shares it with the MIC network to ensure

value integrity, and enable users to search and view their EIDX through a nearby MIC network

participant.

As shown in Figure 9, the log-collection procedure of eCLASS can be divided into two main

phases, as in CLASS. However, subprocedures are totally different. The first is to segment the log

data and the other is to share the index file with the MIC network. The first algorithm (Algorithm 1)

shows how to divide log entries into unidentifiable sizes and how to partition them to be non-

continuous. This algorithm is intended to ensure the confidentiality of log entries, and requires fewer

Figure 8. Process of log segmentation and partitioning.

• Sending to DSCs

Log segmentation transfers the segmented log data (SB j) to the contracted DSC and stores the
segmented log data (SB j) in each storage cluster.

• Response to Storage Complete

The storage that stores the segmented logs sends the storage path (PathGSBk) to the corresponding
edge node. The edge node that receives the storage path generates an index file (IDX) with segmented
log information (SBIm). An index file, including SBI and a distributed-storage path, is shown below.

IDXm = {SBIm || PathGSB1|| PathGSB2||. . .||PathGSBk} (3)

• Index Generation

To ensure the integrity of index files, index files are shared with other users. Moreover, log
recovery is possible with shared index files and segmented data blocks. Therefore, an index file is
encrypted by using the user’s public key to protect user privacy and service-provider confidentiality,
and to access logs for that user. In addition, user ID and generation time of the index file (denoted to
TLm) are recorded together to facilitate retrieval:

EIDXm =
{
UserID || TLm || Encpkuser(IDXm)

}
(4)

Symmetry 2019, 11, 1192 13 of 27

• Uploading EIDXm to an Investigator

In traditional cloud logging systems SecLaaS and CLASS, cloud service providers own an
accelerator, encrypted log data, and PPL. However, eCLASS shares index information with MIC
network participants to prevent the service provider from tampering, and malicious loss. In addition,
even if it is modulated or deleted, EIDX can be used to recover modulation verification through EIDX
stored by other participants. Thus, edge nodes are uploaded to investigators for the integrity of EIDX.

• Multi-Index Generation

Investigators combine several EIDXs received over a period of time to publish a multi-index and
include the hash values (MIC) of the previous multi-index to verify its modulation:

MIg =
{
MIHeaderg

∣∣∣∣∣∣(EIDXm + EIDXm+1 . . .)
∣∣∣∣∣∣MICg

}
(5)

• Multi-Index Publication

Through ordering, the investigator publishes MIk and shares it with the MIC network to
ensure value integrity, and enable users to search and view their EIDX through a nearby MIC
network participant.

As shown in Figure 9, the log-collection procedure of eCLASS can be divided into two main
phases, as in CLASS. However, subprocedures are totally different. The first is to segment the log data
and the other is to share the index file with the MIC network. The first algorithm (Algorithm 1) shows
how to divide log entries into unidentifiable sizes and how to partition them to be non-continuous.
This algorithm is intended to ensure the confidentiality of log entries, and requires fewer computing
resources than encryption. The second algorithm (Algorithm 2) is the MIC network sharing method
for index files. This method allows encrypted index files to be shared with network participants that
can check if the index is tampered with; it also serves to prevent malicious index addition and deletion.

Symmetry 2019, 11, x FOR PEER REVIEW 14 of 27

computing resources than encryption. The second algorithm (Algorithm 2) is the MIC network

sharing method for index files. This method allows encrypted index files to be shared with network

participants that can check if the index is tampered with; it also serves to prevent malicious index

addition and deletion.

Figure 9. Comparison of CLASS and eCLASS log processing.

Algorithm 1. LogCollection pseudocode for log confidentiality

Input : eLE, H(eLE)

Output : SBI, PathGSB1 to K

LogCollection(edge log entry eLEs, H(eLEs))

Int s = LogSegmentation size;

Int d = The number of DSCs;

foreach edge node do

ELE = eLE + H(eLE);

/*log segmentation part*/

for (i = 1, length(ELE), i + s)

SB[i] = logSegmenation(ELE, s); /*segment the ELE by LogSegmentation size*/

end for;

/*log partitioning and distribution storage part*/

for (k = 1, d, i + 1)

GSB[k] = Partitioning(SB[], d);

/* partition the SB[] by the number of DSCs according to the partitioning method*/

Generate SBI ← add.info.Partitioning(SB[], d);

send GSB[k] to DSCs over Secure API;

get PathGSBk from corresponding the DSC;

 end for;

 end foreach;

end;

Figure 9. Comparison of CLASS and eCLASS log processing.

Symmetry 2019, 11, 1192 14 of 27

Algorithm 1. LogCollection pseudocode for log confidentiality

Input : eLE, H(eLE)
Output : SBI, PathGSB1 to K

LogCollection(edge log entry eLEs, H(eLEs))
Int s = LogSegmentation size;
Int d = The number of DSCs;

foreach edge node do
ELE = eLE + H(eLE);

/*log segmentation part*/
for (i = 1, length(ELE), i + s)
SB[i] = logSegmenation(ELE, s); /*segment the ELE by LogSegmentation size*/
end for;

/*log partitioning and distribution storage part*/
for (k = 1, d, i + 1)
GSB[k] = Partitioning(SB[], d);
/* partition the SB[] by the number of DSCs according to the partitioning method*/

Generate SBI← add.info.Partitioning(SB[], d);
send GSB[k] to DSCs over Secure API;
get PathGSBk from corresponding the DSC;
end for;
end foreach;
end;

LogCollection of Time Complexity: T(n)
T(n) = each edge node(log segmentation part + log partitioning and distribution storage part)
= 2 + n(2n + 1 + 2n + 3) + 1 = 4n2 + 4n + 4

T(n) = O(N2)

LogCollection of Space Complexity: S(n)
S(n) = each edge node(log segmentation part + log partitioning and distribution storage part)
= 2 + n(1 + n + 1 + n + 1 + n) = 2 + n(3n + 3) = 3n2 + 3n + 2

S(n) = O(N2)

Symmetry 2019, 11, 1192 15 of 27

Algorithm 2. IndexSharing pseudocode to generate and share multi-index

Input : SBI, PathGSB1 to K
Output : MI

IndexSharing(Segemtation info SBI, PathGSB1 to K)

// Encrypted Index generation part
foreach edge node do
IDX = (SBI || PathGSB1 to k);
EIDX = UserID + TL + encrypt(IDX).using_user’s_publickey;
send EIDX to Investigator;
end foreach;

// MI generation and sharing part
for investigator do
MI = MIHeader+Ordering(EIDX1, EIDX2, ... , EIDXn) + MIC(Hash(MICprevious+MIHeader));
Publish MI;
end for;
end;

IndexSharing of Time Complexity: T(n)
T(n) = each edge node(Encrypted Index generation part) + MI generation and sharing part
= n(3 + 2) = 5n

T(n) = O(N)

IndexSharing of Space Complexity: S(n)
S(n) = each edge node(Encrypted Index generation part) + MI generation and sharing part
= n(1 + 1) + n = 3n

S(n) = O(N)

The LogCollection and IndexSharing algorithms are the most important algorithms in eCLASS.
The log collection algorithm describes the process of log data segmentation and distribution storage to
protect the confidentiality of log data. Also, the IndexSharing algorithm describes the index generation
and multi-index sharing methods to ensure the integrity of log data. Since eCLASS operates on
distributed edge nodes, the time/space complexity of the LogCollection and IndexSharing algorithms
are O(N2) and O(N). As a result, as the number of edge nodes increase, time/spatial complexity increases.

4.2.2. Log Verification Procedure

In the event of a traditional cloud security incident, an investigator with investigative authority
first requests an integrity-based log from the CSP in order to collect forensic data and analyze the
logs. If the integrity of the logs is not verified, they cannot be recognized as forensic data and are not
legally valid.

However, this system ensures log integrity using the hash function and verifies the integrity of
indices and segmented logs through a distributed-storage cluster and an MIC network. The following
paragraphs describe how to verify the integrity of log data and the MI sequence.

• Log Monitoring by Users

Users can check their logs after using edge-cloud services. The eCLASS provides edge-cloud
services through edge nodes and encrypts segmented and stored log information through user public
keys so it can be stored and shared on the MIC network. Therefore, users can search for and download
their own encrypted index information through participants in the MIC network. In addition, log
recovery can be performed through the decrypt index using the user’s private key to check user logs.

Symmetry 2019, 11, 1192 16 of 27

• Log- and Index-Integrity Verification

Edge nodes generate hash values H(eLE) for eLE with eLE generation to ensure the integrity
of generated logs. Therefore, eLE and H(eLE) are created to perform log segmentation and
distributed storage.

To verify the integrity of log data, investigators collect distributed segmented data, as shown in
Figure 10, and recover log data through an index. Since the recovered data consist of eLE and H(eLE),
recovered data eLE are hashed to check if they match H(eLE). If these data match, the integrity of the
log data and index file can be verified.

Symmetry 2019, 11, x FOR PEER REVIEW 16 of 27

In the event of a traditional cloud security incident, an investigator with investigative authority

first requests an integrity-based log from the CSP in order to collect forensic data and analyze the

logs. If the integrity of the logs is not verified, they cannot be recognized as forensic data and are not

legally valid.

However, this system ensures log integrity using the hash function and verifies the integrity of

indices and segmented logs through a distributed-storage cluster and an MIC network. The following

paragraphs describe how to verify the integrity of log data and the MI sequence.

 Log Monitoring by Users

Users can check their logs after using edge-cloud services. The eCLASS provides edge-cloud

services through edge nodes and encrypts segmented and stored log information through user public

keys so it can be stored and shared on the MIC network. Therefore, users can search for and download

their own encrypted index information through participants in the MIC network. In addition, log

recovery can be performed through the decrypt index using the user’s private key to check user logs.

 Log- and Index-Integrity Verification

Edge nodes generate hash values H(eLE) for eLE with eLE generation to ensure the integrity of

generated logs. Therefore, eLE and H(eLE) are created to perform log segmentation and distributed

storage.

To verify the integrity of log data, investigators collect distributed segmented data, as shown in

Figure 10, and recover log data through an index. Since the recovered data consist of eLE and H(eLE),

recovered data eLE are hashed to check if they match H(eLE). If these data match, the integrity of the

log data and index file can be verified.

Figure 10. Process of log-integrity verification.

 Multi-Index Sequence Verification

Figure 11 illustrates the MI order verification process, where we verified whether the current MI

actually came after the previous MI in the original sequence of MI publication. In Figure 11, MI

Header 1 denotes the MI header of the first multi-index and MI Header 2 represents the same for the

second MI header.

To verify the correct order, the auditor calculates the MI chain (MIChaina) from the first MI chain

(MIChain1) and the second MI header (MIHeader2) according to the following equation:

MIChaina = H(MIHeader2, H(MIChain1))

If MIChaina matches the second MI chain (MIChain2), then the auditor accepts the MI; otherwise,

the auditor rejects it.

Figure 10. Process of log-integrity verification.

• Multi-Index Sequence Verification

Figure 11 illustrates the MI order verification process, where we verified whether the current MI
actually came after the previous MI in the original sequence of MI publication. In Figure 11, MI Header
1 denotes the MI header of the first multi-index and MI Header 2 represents the same for the second
MI header.
Symmetry 2019, 11, x FOR PEER REVIEW 17 of 27

.

Figure 11. Process of multi-index sequence verification.

5. Performance and Security Evaluation

This section describes the security evaluation of the proposed scheme based on the security

properties in an edge-cloud environment. In addition, the proposed scheme performs evaluation of

log collection because it collects logs by employing log-segmentation and partitioning methods,

taking into account edge nodes of limited computing capacity.

5.1. Implementation

As shown in Figure 12, edge-cloud environments are implemented using the Virtual Box

virtualization program. Edge nodes with limited computing resources evaluate the usage of

computer resources to protect the confidentiality of logs. Edge-node types are classified into three

categories: low-, medium-, and high-capacity. Each edge node runs an OS with Ubuntu 18.04 LTS 64

version, and the computing-resource specifications are as follows.

Figure 12. Performance evaluation environment for eCLASS/CLASS log processing.

 Host machine hardware configuration: Intel Core i5-8400 hexa-core CPU, 16 GB RAM, 500 GB

SSD, Windows 10 Education used as host operating system.

 Network configuration: The host machine and storage server were configured with an internal

network using a 100 M network switch.

 Virtual Box 6.0.0 r0127566 for Windows 10.

 Low-capacity edge node: one core of Intel Core i5-8400 CPU 2.80 GHz, 2 GB RAM, 40 GB

 Local storage.

 Medium-capacity edge node: two cores of Intel Core i5-8400 CPU 2.80 GHz, 4 GB RAM, 40 GB

 local storage.

 High-capacity edge node: four cores of Intel Core i5-8400 CPU 2.80 GHz, 4 GB RAM, 40 GB

Figure 11. Process of multi-index sequence verification.

Symmetry 2019, 11, 1192 17 of 27

To verify the correct order, the auditor calculates the MI chain (MIChaina) from the first MI chain
(MIChain1) and the second MI header (MIHeader2) according to the following equation:

MIChaina = H(MIHeader2, H(MIChain1))

If MIChaina matches the second MI chain (MIChain2), then the auditor accepts the MI; otherwise,
the auditor rejects it.

5. Performance and Security Evaluation

This section describes the security evaluation of the proposed scheme based on the security
properties in an edge-cloud environment. In addition, the proposed scheme performs evaluation of
log collection because it collects logs by employing log-segmentation and partitioning methods, taking
into account edge nodes of limited computing capacity.

5.1. Implementation

As shown in Figure 12, edge-cloud environments are implemented using the Virtual Box
virtualization program. Edge nodes with limited computing resources evaluate the usage of computer
resources to protect the confidentiality of logs. Edge-node types are classified into three categories:
low-, medium-, and high-capacity. Each edge node runs an OS with Ubuntu 18.04 LTS 64 version, and
the computing-resource specifications are as follows.

Symmetry 2019, 11, x FOR PEER REVIEW 17 of 27

.

Figure 11. Process of multi-index sequence verification.

5. Performance and Security Evaluation

This section describes the security evaluation of the proposed scheme based on the security

properties in an edge-cloud environment. In addition, the proposed scheme performs evaluation of

log collection because it collects logs by employing log-segmentation and partitioning methods,

taking into account edge nodes of limited computing capacity.

5.1. Implementation

As shown in Figure 12, edge-cloud environments are implemented using the Virtual Box

virtualization program. Edge nodes with limited computing resources evaluate the usage of

computer resources to protect the confidentiality of logs. Edge-node types are classified into three

categories: low-, medium-, and high-capacity. Each edge node runs an OS with Ubuntu 18.04 LTS 64

version, and the computing-resource specifications are as follows.

Figure 12. Performance evaluation environment for eCLASS/CLASS log processing.

 Host machine hardware configuration: Intel Core i5-8400 hexa-core CPU, 16 GB RAM, 500 GB

SSD, Windows 10 Education used as host operating system.

 Network configuration: The host machine and storage server were configured with an internal

network using a 100 M network switch.

 Virtual Box 6.0.0 r0127566 for Windows 10.

 Low-capacity edge node: one core of Intel Core i5-8400 CPU 2.80 GHz, 2 GB RAM, 40 GB

 Local storage.

 Medium-capacity edge node: two cores of Intel Core i5-8400 CPU 2.80 GHz, 4 GB RAM, 40 GB

 local storage.

 High-capacity edge node: four cores of Intel Core i5-8400 CPU 2.80 GHz, 4 GB RAM, 40 GB

Figure 12. Performance evaluation environment for eCLASS/CLASS log processing.

• Host machine hardware configuration: Intel Core i5-8400 hexa-core CPU, 16 GB RAM, 500 GB
SSD, Windows 10 Education used as host operating system.

• Network configuration: The host machine and storage server were configured with an internal
network using a 100 M network switch.

• Virtual Box 6.0.0 r0127566 for Windows 10.
• Low-capacity edge node: one core of Intel Core i5-8400 CPU 2.80 GHz, 2 GB RAM, 40 GB
• Local storage.
• Medium-capacity edge node: two cores of Intel Core i5-8400 CPU 2.80 GHz, 4 GB RAM, 40 GB
• local storage.
• High-capacity edge node: four cores of Intel Core i5-8400 CPU 2.80 GHz, 4 GB RAM, 40 GB
• Local storage.

Log generation, data segmentation, and RSA encryption were implemented with Python 3.7.3.
The log-confidentiality tools used were 1024 and 2048 bit RSA public-key encryption, and 5 and 10 byte
data-segmentation methods.

Symmetry 2019, 11, 1192 18 of 27

5.2. Performance Analysis

This section presents the performance evaluation of how log confidentiality is protected on edge
nodes for eCLASS. Because eCLASS aims to collect log data in an edge-cloud environment with
forensically available data, fast data processing and proof of data integrity are important. In addition,
an edge node needs to measure the computing overhead of the log-processing phase on edge nodes
because of limited computing resources.

5.2.1. Logging Processing Time

There are two main differences between eCLASS and the CLASS scheme. First, to prevent log
contamination, CLASS incorporates asymmetric encryption with an individual user’s public key to
avoid data leakage. The eCLASS, however, applies a data-segmentation method to divide and partition
log data into 5 or 10 bytes for protecting the log data. This study took 10 KB of the log file with almost
200 log entries. The used log files were 10, 50, 100, 150, 200, 250, and 300 KB.

Figure 13 shows the performance analysis of log processing time with RSA encryption and
the log-segmentation method. It was found that, for low- and medium-capacity edge nodes, the
log-segmentation method was faster than RSA encryption. However, RSA encryption was similar to or
better than high capacity and a large log file.

Symmetry 2019, 11, x FOR PEER REVIEW 18 of 27

 Local storage.

Log generation, data segmentation, and RSA encryption were implemented with Python 3.7.3.

The log-confidentiality tools used were 1024 and 2048 bit RSA public-key encryption, and 5 and 10

byte data-segmentation methods.

5.2. Performance Analysis

This section presents the performance evaluation of how log confidentiality is protected on edge

nodes for eCLASS. Because eCLASS aims to collect log data in an edge-cloud environment with

forensically available data, fast data processing and proof of data integrity are important. In addition,

an edge node needs to measure the computing overhead of the log-processing phase on edge nodes

because of limited computing resources.

5.2.1. Logging Processing Time

There are two main differences between eCLASS and the CLASS scheme. First, to prevent log

contamination, CLASS incorporates asymmetric encryption with an individual user’s public key to

avoid data leakage. The eCLASS, however, applies a data-segmentation method to divide and

partition log data into 5 or 10 bytes for protecting the log data. This study took 10 KB of the log file

with almost 200 log entries. The used log files were 10, 50, 100, 150, 200, 250, and 300 KB.

Figure 13 shows the performance analysis of log processing time with RSA encryption and the

log-segmentation method. It was found that, for low- and medium-capacity edge nodes, the log-

segmentation method was faster than RSA encryption. However, RSA encryption was similar to or

better than high capacity and a large log file.

(a)

(b)

Figure 13. Cont.

Symmetry 2019, 11, 1192 19 of 27
Symmetry 2019, 11, x FOR PEER REVIEW 19 of 27

(c)

Figure 13. Log processing-time comparison: (a) low computing capacity; (b) medium computing

capacity; (c) high computing capacity.

5.2.2. Computing Resource Allocation

This study performed a comparative evaluation of CLASS RSA encryption and the data

segmentation of the log-collection phase in edge nodes. This performance evaluation compared CPU

storage usage for the log collection of CLASS and eCLASS.

The CPU allocation rate: The study compared the total CPU used for the data-collection phase

from 10–500 KB log sizes. As shown in Figure 14, CLASS encryption and eCLASS data segmentation

had similar performance in high capacity. However, at low capacity, eCLASS was more efficient: 5

byte segmentation used 19.77% less CPU than CLASS (RSA 2048). In addition, at medium capacity,

10 byte segmentation used 28.78% less CPU than CLASS (RSA 1024), providing a more reliable and

cost-effective logging service.

Figure 14. CPU usage comparison for each capacity.

Storage allocation rate: Data size actually increases with data encryption. As shown in Figure 15,

CLASS log encryption results in approximately three times larger files and requires more storage. As

a result, CLASS needs storage capacity for as long as data increase. In eCLASS, the size of the log

data does not increase because eCLASS uses the log-segmentation and partition methods. When

segmentation information is included, log data are increased by about 1.3 times.

Figure 13. Log processing-time comparison: (a) low computing capacity; (b) medium computing
capacity; (c) high computing capacity.

5.2.2. Computing Resource Allocation

This study performed a comparative evaluation of CLASS RSA encryption and the data
segmentation of the log-collection phase in edge nodes. This performance evaluation compared
CPU storage usage for the log collection of CLASS and eCLASS.

The CPU allocation rate: The study compared the total CPU used for the data-collection phase
from 10–500 KB log sizes. As shown in Figure 14, CLASS encryption and eCLASS data segmentation
had similar performance in high capacity. However, at low capacity, eCLASS was more efficient:
5 byte segmentation used 19.77% less CPU than CLASS (RSA 2048). In addition, at medium capacity,
10 byte segmentation used 28.78% less CPU than CLASS (RSA 1024), providing a more reliable and
cost-effective logging service.

Symmetry 2019, 11, x FOR PEER REVIEW 19 of 27

(c)

Figure 13. Log processing-time comparison: (a) low computing capacity; (b) medium computing

capacity; (c) high computing capacity.

5.2.2. Computing Resource Allocation

This study performed a comparative evaluation of CLASS RSA encryption and the data

segmentation of the log-collection phase in edge nodes. This performance evaluation compared CPU

storage usage for the log collection of CLASS and eCLASS.

The CPU allocation rate: The study compared the total CPU used for the data-collection phase

from 10–500 KB log sizes. As shown in Figure 14, CLASS encryption and eCLASS data segmentation

had similar performance in high capacity. However, at low capacity, eCLASS was more efficient: 5

byte segmentation used 19.77% less CPU than CLASS (RSA 2048). In addition, at medium capacity,

10 byte segmentation used 28.78% less CPU than CLASS (RSA 1024), providing a more reliable and

cost-effective logging service.

Figure 14. CPU usage comparison for each capacity.

Storage allocation rate: Data size actually increases with data encryption. As shown in Figure 15,

CLASS log encryption results in approximately three times larger files and requires more storage. As

a result, CLASS needs storage capacity for as long as data increase. In eCLASS, the size of the log

data does not increase because eCLASS uses the log-segmentation and partition methods. When

segmentation information is included, log data are increased by about 1.3 times.

Figure 14. CPU usage comparison for each capacity.

Storage allocation rate: Data size actually increases with data encryption. As shown in Figure 15,
CLASS log encryption results in approximately three times larger files and requires more storage.
As a result, CLASS needs storage capacity for as long as data increase. In eCLASS, the size of the
log data does not increase because eCLASS uses the log-segmentation and partition methods. When
segmentation information is included, log data are increased by about 1.3 times.

Symmetry 2019, 11, 1192 20 of 27
Symmetry 2019, 11, x FOR PEER REVIEW 20 of 27

Figure 15. Comparison of data size according to confidentiality-protection methods.

5.2.3. Operation Cost

Operation cost is cost evaluation of computing cost and storage cost in edge service modes with

CLASS (1024 and 2048 bits) and eCLASS (5 and 10 bytes). The edge service models are GM, MSM,

SEM, and EFM. The GM consists of one edge node, MSM consists of two edge nodes, and SEM and

EFM consist of three edge nodes. These test factors are as follows:

 Log size generated of each edge node: 200 kb.

 Computing cost (Amazon EC2 [30]): Low capacity($0.0116/hour, t2.micro), medium capacity

($0.0464/hour, t2.medium), high capacity ($0.1856/hour, t2.xlarge).

 Storage cost (Amazon S3 [31]): $0.023/GB.

As shown in Figures 16–18, GM has the lowest operation cost of the three capacities, while SEM

and EFM have the highest; eCLASS is more efficient than CLASS in an edge cloud. In the GM, using

5 byte segmentation in low capacity costs $0.00000657. It is approximately 169% more efficient than

CLASS using RSA (1024; $0.0000177). Consequentially, we verified that eCLASS is a more economic

logging system in edge computing than CLASS.

Figure 15. Comparison of data size according to confidentiality-protection methods.

5.2.3. Operation Cost

Operation cost is cost evaluation of computing cost and storage cost in edge service modes with
CLASS (1024 and 2048 bits) and eCLASS (5 and 10 bytes). The edge service models are GM, MSM,
SEM, and EFM. The GM consists of one edge node, MSM consists of two edge nodes, and SEM and
EFM consist of three edge nodes. These test factors are as follows:

• Log size generated of each edge node: 200 kb.
• Computing cost (Amazon EC2 [30]): Low capacity($0.0116/hour, t2.micro), medium capacity

($0.0464/hour, t2.medium), high capacity ($0.1856/hour, t2.xlarge).
• Storage cost (Amazon S3 [31]): $0.023/GB.

As shown in Figures 16–18, GM has the lowest operation cost of the three capacities, while SEM
and EFM have the highest; eCLASS is more efficient than CLASS in an edge cloud. In the GM, using
5 byte segmentation in low capacity costs $0.00000657. It is approximately 169% more efficient than
CLASS using RSA (1024; $0.0000177). Consequentially, we verified that eCLASS is a more economic
logging system in edge computing than CLASS.

Symmetry 2019, 11, x FOR PEER REVIEW 20 of 27

Figure 15. Comparison of data size according to confidentiality-protection methods.

5.2.3. Operation Cost

Operation cost is cost evaluation of computing cost and storage cost in edge service modes with

CLASS (1024 and 2048 bits) and eCLASS (5 and 10 bytes). The edge service models are GM, MSM,

SEM, and EFM. The GM consists of one edge node, MSM consists of two edge nodes, and SEM and

EFM consist of three edge nodes. These test factors are as follows:

 Log size generated of each edge node: 200 kb.

 Computing cost (Amazon EC2 [30]): Low capacity($0.0116/hour, t2.micro), medium capacity

($0.0464/hour, t2.medium), high capacity ($0.1856/hour, t2.xlarge).

 Storage cost (Amazon S3 [31]): $0.023/GB.

As shown in Figures 16–18, GM has the lowest operation cost of the three capacities, while SEM

and EFM have the highest; eCLASS is more efficient than CLASS in an edge cloud. In the GM, using

5 byte segmentation in low capacity costs $0.00000657. It is approximately 169% more efficient than

CLASS using RSA (1024; $0.0000177). Consequentially, we verified that eCLASS is a more economic

logging system in edge computing than CLASS.

Figure 16. Comparison of operation cost between edge service models in low capacity.

Symmetry 2019, 11, 1192 21 of 27

Symmetry 2019, 11, x FOR PEER REVIEW 21 of 27

Figure 16. Comparison of operation cost between edge service models in low capacity.

Figure 17. Comparison of operation cost between edge service models in medium capacity.

Figure 18. Comparison of operation cost between edge service models in high capacity.

5.3. Summary

We compared the proposed eCLASS and CLASS, cloud logging systems, from three perspectives

(log processing time, computing-resource usage, and operation cost from three perspectives), and

configured three types of computing capacity of an edge node; low-, medium-, and high-capacity.

Moreover, from an operation-cost perspective, we compared eCLASS and CLASS by total operation

cost (including log processing cost and storage cost) and four types of edge service models.

The eCLASS’s log-data-segmentation and distributed-storage method was faster in log

processing time than CLASS’s RSA encryption method (eCLASS 10 bytes and CLASS 1024 bit RSA,

low capacity (249%), medium capacity (139%), high capacity (8%)) However, as edge-node

computing capacity increased, the gap in processing time between data encryption and log

partitioning decreased. For this reason, it was important to verify the size of the identifiable

segmentation log and find the appropriate segmentation size for edge-node performance. These

results can also be seen from a computing-usage (CPU) perspective. In computing usage (storage),

CLASS, which performs RSA encryption, needed more storage space than eCLASS, which segments

only log data and generates index files. Therefore, we verified that eCLASS is more efficient than

Figure 17. Comparison of operation cost between edge service models in medium capacity.

Symmetry 2019, 11, x FOR PEER REVIEW 21 of 27

Figure 16. Comparison of operation cost between edge service models in low capacity.

Figure 17. Comparison of operation cost between edge service models in medium capacity.

Figure 18. Comparison of operation cost between edge service models in high capacity.

5.3. Summary

We compared the proposed eCLASS and CLASS, cloud logging systems, from three perspectives

(log processing time, computing-resource usage, and operation cost from three perspectives), and

configured three types of computing capacity of an edge node; low-, medium-, and high-capacity.

Moreover, from an operation-cost perspective, we compared eCLASS and CLASS by total operation

cost (including log processing cost and storage cost) and four types of edge service models.

The eCLASS’s log-data-segmentation and distributed-storage method was faster in log

processing time than CLASS’s RSA encryption method (eCLASS 10 bytes and CLASS 1024 bit RSA,

low capacity (249%), medium capacity (139%), high capacity (8%)) However, as edge-node

computing capacity increased, the gap in processing time between data encryption and log

partitioning decreased. For this reason, it was important to verify the size of the identifiable

segmentation log and find the appropriate segmentation size for edge-node performance. These

results can also be seen from a computing-usage (CPU) perspective. In computing usage (storage),

CLASS, which performs RSA encryption, needed more storage space than eCLASS, which segments

only log data and generates index files. Therefore, we verified that eCLASS is more efficient than

Figure 18. Comparison of operation cost between edge service models in high capacity.

5.3. Summary

We compared the proposed eCLASS and CLASS, cloud logging systems, from three perspectives
(log processing time, computing-resource usage, and operation cost from three perspectives), and
configured three types of computing capacity of an edge node; low-, medium-, and high-capacity.
Moreover, from an operation-cost perspective, we compared eCLASS and CLASS by total operation
cost (including log processing cost and storage cost) and four types of edge service models.

The eCLASS’s log-data-segmentation and distributed-storage method was faster in log processing
time than CLASS’s RSA encryption method (eCLASS 10 bytes and CLASS 1024 bit RSA, low capacity
(249%), medium capacity (139%), high capacity (8%)) However, as edge-node computing capacity
increased, the gap in processing time between data encryption and log partitioning decreased. For this
reason, it was important to verify the size of the identifiable segmentation log and find the appropriate
segmentation size for edge-node performance. These results can also be seen from a computing-usage
(CPU) perspective. In computing usage (storage), CLASS, which performs RSA encryption, needed
more storage space than eCLASS, which segments only log data and generates index files. Therefore,
we verified that eCLASS is more efficient than CLASS in an edge cloud. Finally, with regard to
operation-cost evaluation of CLASS and eCLASS in the edge service models, cost evaluation was

Symmetry 2019, 11, 1192 22 of 27

related to CPU usage time and stored log data size. Storage cost was the same, but costs depend on
VM computing capacity. In GM, when conducting log processing of 200 kb of log entries, the cost is
$0.0000177 in low capacity, but $0.0000225 in high capacity. This confirmed that the same process was
carried out at a 52% increase in high capacity.

Thus, in an edge cloud, the log-segmentation and distributed-storage methods of eCLASS are
faster at log processing, but log processing time is similar as computing capacity increases. In addition,
high capacity in terms of cost has high CPU cost, so high capacity is more expensive than low capacity
for the same logging processing.

5.4. Security Analysis

Correctness: For log accuracy, SecLaaS and CLASS create a PPL after a user checks the logs. The
eCLASS allows users to check their logs at any time via the MIC network and, in the event of an
incorrect log, requests log correction from the CSP, investigator, or auditor. Therefore, users can check
logs at any time in order to prevent incorrect logging.

Tamper resistance: In CLASS and SecLaaS, CSPs keep encrypted log DBs and PPLs. For this reason,
users, CSPs, and investigators could manipulate encrypted log databases and PPLs if they conspired.
However, since eCLASS shares relevant indices with MIC network participants by segmentation and the
distributed storage of logs generated from edge nodes, modifying the logs requires the participation of
CSPs, investigators, users, and a large number of MIC participants. The collusion of many participants
is very difficult and becomes impossible as the number of MIC participants increases.

Verifiability: eCLASS consists of several processing steps, such as log collection, log segmentation,
distributed storage, and recovery. Methods for verifying each of these steps were developed. Log- and
index-integrity verification was performed, and the integrity of the MIC network was verified through
MIC sequence verification. Users could also check the integrity of their logs at any time through MIC
network participants.

Confidentiality and privacy: To protect log confidentiality and user privacy, eCLASS prevents
information disclosure by dividing logs into sizes that make it difficult to extract information, and
by non-continuously arranging logs. It also performs distributed and overlaid storage for different
storage providers, preserving log confidentiality and safety. Finally, the index is encrypted using the
user’s public key to protect privacy.

Admissibility: eCLASS legally collects log data and performs the verification of log modulation
for log collection. It also ensures the integrity of log data. Log files in eCLASS are thus acceptable
in court and can be checked for data modulation through MIC network participants. Even if all
participants (CSP, users, and investigators) of eCLASS are in collusion, data recovery is possible by
using MIC network participants, even if it is intentionally deleted. The eCLASS was designed to meet
all of the previously addressed security properties, and it is able to overcome some of the limitations
inherent in CLASS. The limitations and how eCLASS can overcome each of them are described below.

• Logging scheme that takes into account the security environment of edge nodes

Edge nodes in edge-cloud environments are installed in no-trust zones with traditional cloud
environments, enabling physical and logical intrusion. Therefore, because log modulation is possible
at any time prior to the segmentation and distributed-storage phases, eCLASS was designed to hash
copies with log generation to check the modulation of logs during the log-verification phase.

• Preventing log contamination due to the collusion between owner CSP, users, and investigators

Because both the encrypted log DB and PPL storage were kept by CSPs, there was no way to
prevent or verify if users, investigators, and CSPs colluded to tamper with the log DB and PPL. In
eCLASS, it is not possible to change all MI values for all MIC network participants because eCLASS
shares encrypted index values with participants over the MIC network.

Symmetry 2019, 11, 1192 23 of 27

• Independent digital forensic system from CSP

As mentioned in the previous paragraph, CLASS allows CSPs to delete encrypted log DB and
PPL storage and destroy relevant servers for malicious purposes so that they cannot submit data to the
court. The CLASS protects the log data using methods such as encryption and content concealment,
but is too dependent on the corresponding CSP. In eCLASS, all relevant logs can be collected without
cooperation with the corresponding CSP because eCLASS splits and stores segmented log data, and
preserves index values over the MIC network, as shown in Figure 19. In addition, Table 4 suumarizes
the comparison between CLASS and eCLASS for the security analysis.

Symmetry 2019, 11, x FOR PEER REVIEW 23 of 27

the court. The CLASS protects the log data using methods such as encryption and content

concealment, but is too dependent on the corresponding CSP. In eCLASS, all relevant logs can be

collected without cooperation with the corresponding CSP because eCLASS splits and stores

segmented log data, and preserves index values over the MIC network, as shown in Figure 19. In

addition, Table 4 suumarizes the comparison between CLASS and eCLASS for the security analysis.

Figure 19. Procedure of log-data recovery for digital investigation.

Table 4. Comparison summary between CLASS and eCLASS.

Challenge/ Threat CLASS eCLASS

1. Modification of logs after

publishing PPL/MI
Detected Detected

2. Log-tampering resistance of

collusion with CSP,

investigator, and users

Undetected
Detected through MIC network

participants

3. Log repudiation by CSP,

investigator, and users
Detected Detected

4. User-privacy violation by

collusion between CSP and

investigator

Privacy preserved Privacy preserved

5. Log processing interruption

by users

Possible; user should

encrypt user log by user

public key

Impossible; user can check user

log after publishing MI

6. Edge-cloud-environment

compatibility

Supports accumulator with

single processing

Supports distributed edge nodes

and multiprocessing of several

indices

7. Users or investigators can

recover logs without

cooperation with CSP

Unrecoverable Recoverable

Figure 19. Procedure of log-data recovery for digital investigation.

Table 4. Comparison summary between CLASS and eCLASS.

Challenge/ Threat CLASS eCLASS

1. Modification of logs after
publishing PPL/MI Detected Detected

2. Log-tampering resistance of
collusion with CSP, investigator,

and users
Undetected Detected through MIC network

participants

3. Log repudiation by CSP,
investigator, and users Detected Detected

4. User-privacy violation by
collusion between CSP and

investigator
Privacy preserved Privacy preserved

5. Log processing interruption by
users

Possible; user should encrypt user
log by user public key

Impossible; user can check user
log after publishing MI

6. Edge-cloud-environment
compatibility

Supports accumulator with single
processing

Supports distributed edge nodes
and multiprocessing of several

indices
7. Users or investigators can

recover logs without cooperation
with CSP

Unrecoverable Recoverable

5.5. eCLASS Quality of Service

Since eCLASS is a scheme that guarantees the integrity and confidentiality of logs generated at
edge nodes that provide services, QoS for eCLASS is also based on edge-node data security. Other types

Symmetry 2019, 11, 1192 24 of 27

of QoS, fog computing, MEC computing, and cloud computing are measured in various ways, and QoS
criteria are defined according to service characteristics [32,33]. The QoS of eCLASS, QoS_eCLASSlevel,
and the QoS of an edge node, QoS_Edgelevel are defined as below, considering three aspects, log-data
integrity (Ilevel), confidentiality (Clevel) with the log-segmentation method, and resource usage (Rlevel) of
edge nodes.

QoS_eCLASSlevel =
∑

all o f QoS_Edgelevel (6)

QoS_Edgelevel = Ilevel + Clevel + Rlevel (7)

Integrity level (denoted to Ilevel) was increased linearly by the number of integrity checks (denoted
to Check_Count); that means that, when the number of integrity checks is high, the integrity level is
also high.

Ilevel = A1∗Check_Count + A2 (8)

where Check_Count is the number of integrity checks, and both A1 and A2 are determined by the
technique complexity of the integrity checks.

Confidentiality level(denoted to Clevel) is mainly determined by the size of a segmentation block
(denoted to Block_Size). In eCLASS, the log-segmentation and partitioning method is used to protect
log-data confidentiality for considering the limit of edge-node computing resources. Moreover, the
smaller the size of a segmentation block is, the more it improves log confidentiality, because it becomes
more difficult to recognize and recover data. The security level is directly proportional to the size of a
segmentation block. Therefore, Clevel is defined as follows with References [34,35]:

Clevel = B1 ∗ Block_Size + B2 (9)

where Block_Size is the size of the segmentation block for ensuring log confidentiality, e.g., 5 or 10 bytes.
Both B1 and B2 are determined by the type of log data, e.g., character, number and size of
overlapping segmentation.

Resource level (denoted to Rlevel) is the amount of available resources except for the total amount
of resources used (denoted to Rused) for services, default security functions, and management functions
at the amount of resource of edge node (denoted to Rtotal). As resource usage increases, the collection
and confidentiality protection of log data at the edge nodes is delayed. For this reason, data security at
the edge nodes is vulnerable because attackers can easily access data for data tampering and theft.
Thus, resource level is also closely related to QoS of eCLASS. The resource level is defined as below. In
eCLASS, only CPU usage was considered as a resource for QoS:

Rlevel = Rtotal − Rused (10)

Therefore, the QoS of each edge node is measured according to the three above criteria, and the
QoS of eCLASS can be checked by QoS sum or average of the related edge nodes.

6. Conclusions

In this paper, we proposed a secure logging scheme in edge clouds for digital forensics with
features that facilitate the preservation of user privacy and confidentiality, ensure log data with a MIC
network, and take into account the characteristics of edge-node security.

We also defined service models, threat models, and security properties of the edge cloud and
help to understand the structure and logging procedure of the proposed eCLASS. Moreover, we
proposed the log-data-segmentation and distributed-storage method for edge nodes that have limited
computing resources. The problem of dependent CSP for digital forensics was solved by the eCLASS
MIC network that can collect log data without the cooperation of a CSP, and a user can also check
log data at any time through MIC network participants without CSP cooperation. Moreover, our

Symmetry 2019, 11, 1192 25 of 27

implementation on a virtual box demonstrated the feasibility and practicality of the proposed eCLASS.
Through the performance and security evaluation of eCLASS, we verified that the log-segmentation
and distributed-storage methods are efficient in low capacity, and we calculated the operating costs
according to the edge-cloud service models.

This paper presented a new logging scheme in edge clouds for digital forensics. However, there
were several limitations to this study. So, potential future extensions include the following:

• In the proposed eCLASS, we focused on computing overhead and operation cost in edge nodes.
However, eCLASS consisted of three major entities: edge node (including eCSP), investigators,
and DSCs. Thus, we need to design an authentication and access-control scheme for eCLASS that
is composed of three entities, such as the one in Reference [36].

• Commonly, service logs are low-level data and hard for the common user to understand. In addition,
many service providers use different log-data formats. Thus, we will explore standardization of
the log format to cover most service-log data.

• Designing and implementing a prototype of the proposed scheme in collaboration with real-world
eCSPs, storage-service providers, and forensic investigators with the aim of evaluating its utility
in a real-world environment.

Author Contributions: Conceptualization, E.-N.H. and J.P.; methodology, J.P.; software, J.P.; validation, E.-N.H.
and J.P.; formal analysis, E.-N.H. and J.P.; investigation, J.P.; resources, E.-N.H. and J.P.; data curation, E.-N.H. and
J.P.; writing—original draft preparation, J.P.; writing—review and editing, E.-N.H.; visualization, J.P.; supervision,
E.-N.H.

Funding: This research received no external funding

Acknowledgments: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
ICT Consilience Creative program (IITP-2019-2015-0-00742) and "Service mobility support distributed cloud
technology" (No.2017-0-00294) supervised by the IITP(Institute for Information & communications Technology
Planning & Evaluation).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Huh, E.-N.; HE, X. Draft new Recommendation ITU-T Y.3508 (formerly Y.ccdc-reqts): “Cloud
computing—Overview and high-level requirements of distributed cloud”—for consent. ITU-T SG13
2019, 1–27. Available online: https://www.itu.int/rec/T-REC-Y.3508/en (accessed on 29 August 2019).

2. Wang, Y.; Uehara, T.; Sasaki, R. Fog Computing: Issues and Challenges in Security and Forensics. In
Proceedings of the IEEE 39th Annual International Computers, Software, and Applications Conference,
Taichung, Taiwan, 1–5 July 2015; pp. 53–59.

3. Roman, R.; Lopezm, J.; Mambo, M. Mobile edge computing, Fog et al.: A survey and analysis of security
threats and challenges. Future Gener. Comput. Syst. 2018, 78, 608–698. [CrossRef]

4. Mukherjee, M.; Matam, R.; Shu, L.; Maglaras, L.; Ferrage, M.A.; Choudhury, N.; Kumar, V. Security and
Privacy in fog computing: Challenges. IEEE Access 2017, 5, 19293–19304. [CrossRef]

5. Yaqoob, I.; Hashem, I.A.T.; Ahmed, A.; Kazmi, S.M.A.; Hong, C.S. Internet of things forensics: Recent
advances, taxonomy, requirements, and open challenges. Future Gener. Comput. Syst. 2019, 92, 265–275.
[CrossRef]

6. Satyanarayanan, M. The emergence of edge computing. IEEE Comput. Soc. 2017, 50, 30–39. [CrossRef]
7. Zawoad, S.; Dutta, A.K.; Hasan, R. SecLaaS: Secure Logging-as-a-Service for cloud forensics. In Proceedings of

the 8th ACM SIGSAC Symposium on Information, Computer and Communications Security; ACM: New York, NY,
USA, 2013; pp. 219–230.

8. Ray, I.; Belyaev, K.; Strizhov, M.; Mulamba, D.; Rajaram, M. Secure Logging As a Service—Delegating Log
Management to the Cloud. IEEE Syst. J. 2013, 7, 323–334. [CrossRef]

9. Zawoad, S.; Dutta, A.K.; Hasanm, R. Towards Building Forensics Enabled Cloud Through Secure
Logging-as-a-Service. IEEE Trans. Dependable Secur. Comput. 2016, 13, 148–162. [CrossRef]

https://www.itu.int/rec/T-REC-Y.3508/en
http://dx.doi.org/10.1016/j.future.2016.11.009
http://dx.doi.org/10.1109/ACCESS.2017.2749422
http://dx.doi.org/10.1016/j.future.2018.09.058
http://dx.doi.org/10.1109/MC.2017.9
http://dx.doi.org/10.1109/JSYST.2012.2221958
http://dx.doi.org/10.1109/TDSC.2015.2482484

Symmetry 2019, 11, 1192 26 of 27

10. Sree, T.R.; Bhanu, S.M.S. Secure logging scheme for forensic analysis in cloud. Concurr. Comput. Pract. Exp.
2019, 31, e5143. [CrossRef]

11. Ahsan, M.A.M.; Wahab, A.W.A.; Idris, M.Y.I.; Khan, S.; Bachura, E.; Choo, K.K.R. CLASS: Cloud Log Assuring
Soundness and Secrecy Scheme for Cloud Forensics. IEEE Trans. Sustain. Comput. 2018, 1–15. [CrossRef]

12. Wang, S.; Zhang, X.; Zhang, Y.; Wang, L.; Yang, J.; Wang, W. A survey on mobile edge networks: Convergence
of computing, caching and communications. IEEE Access 2017, 5, 6757–6779. [CrossRef]

13. Klas, G.I. Fog computing and mobile edge cloud gain momentum open fog consortium, etsi mec and
cloudlets. Y.I Readings. 22 November 2015. Available online: https://yucianga.info/?p=938 (accessed on
21 September 2019).

14. Dolui, K.; Datta, S.K. Comparison of edge computing implementations: Fog computing, cloudlet and mobile
edge computing. In Proceedings of the 2017 Global Internet of Things Summit (GIoTS), Geneva, Switzerland,
6–9 June 2017; pp. 1–6.

15. Shahzadi, S.; Iqbal, M.; Dagiuklas, T.; Qayyum, Z.U. Multi-access edge computing: Open issues, challenges
and future perspectives. J. Cloud Comput. 2017, 6, 30. [CrossRef]

16. Borcoci, E.; Obreja, S. Edge Computing Architectures—A Survey on Convergence of Solutions. In Proceedings
of the FUTURE COMPUTING 2018: The Tenth International Conference on Future Computational
Technologies and Applications, IARIA, Barcelona, Spain, 18–22 February 2018.

17. Tang, B.; Chen, Z.; Hefferman, G.; Wei, T.; Haibo, H.; Yang, Q. A hierarchical distributed fog computing
architecture for big data analysis in smart cities. In Proceedings of the ASE BigData and Social Informatics 2015;
ACM: New York, NY, USA, 2015; pp. 1–6.

18. Patrascu, A.; Patriciu, V.-V. Logging System for Cloud Computing Forensic Environments. J. Control. Eng.
Appl. Inform. 2014, 16, 80–88.

19. Lin, C.-Y.; Chang, M.-C.; Chiu, H.-C.; Shyu, K.-H. Secure logging framework integrating with cloud database.
In Proceedings of the 2015 International Carnahan Conference on Security Technology (ICCST), Taipei,
Taiwan, 21–24 September 2015; pp. 13–17.

20. Zawoad, S.; Mernik, M.; Hasan, R. FAL: A forensics aware language for secure logging. In Proceedings
of the 2013 Federated Conference on Computer Science and Information Systems, Krako¿w, Poland,
8–11 September 2013; pp. 1579–1586.

21. Yang, L.; Cao, J.; Yuan, T.; Li, T.; Han, A.; Chan, A. A Framework for partitioning and execution of data stream
application in mobile cloud computing. ACM SIGMETRICS Perform. Eval. Rev. 2013, 40, 23–32. [CrossRef]

22. Selvakumar, C.; Rathanam, G.J.; Sumalatha, M.R. PDDS-Improving cloud data storage security using data
partitioning technique. In Proceedings of the 2013 3rd IEEE International Advance Computing Conference
(IACC), Ghaziabad, India, 22–23 February 2013; pp. 7–11.

23. Karam, Y.; Baker, T.; Taleb-Bendiab, A. Security Support for Intention Driven Elastic Cloud Computing.
In Proceedings of the 2012 Sixth UKSim-AMSS 6th European Modelling Symposium, Valetta, Malta,
14–16 November 2012; pp. 67–73.

24. Asim, M.; Yautsiukhin, A.; Brucker, A.D.; Baker, T.; Shi, Q.; Lempereur, B. Security policy monitoring of
BPMN-based service compositions. J. Softw. Evol. Process. 2018, 30, e1944. [CrossRef]

25. Das, U.P.; R, V.K.; Ravishankar, B.R. Securing Data in Cloud using Disinformation Data Fog Computing. Int.
J. Comput. Sci. Trends Technol. (IJCST) 2018, 6, 244–248.

26. Liu, X.; Yang, Y.; Choo, K.K.R.; Wang, H. Security and Privacy Challenges for Internet-of-Things and Fog
Computing. Wirel. Commun. Mob. Comput. 2018, 2018, 1–3. [CrossRef]

27. Mohamed, E.G.; Kiram, E.; Ahmed, M.; Latifa, E.R. Blockchain and Multi-Agent System: A New Promising
Approach for Cloud Data Integrity Auditing with Deduplication. Int. J. Commun. Netw. Inf. Secur. 2019, 11,
175–184.

28. Rantos, K.; Drosatos, G.; Demertzis, K.; Ilioudis, C.; Papanikolaou, A. Blockchain-based consents management
for personal data processing in the IoT ecosystem. In Proceedings of the 15th International Joint Conference
on e-Business and Telecommunications, Porto, Portugal, 26–28 July 2018; Volume 2, pp. 572–577.

29. Tariq, M.; Asim, M.; Al-Obeidat, F.; Farooqi, M.Z.; Baker, T.; Hammoudeh, M.; Ghafir, I. The Security of Big
Data in Fog-Enabled IoT Applications Including Blockchain: A Survey. Sensors 2019, 19, 1788. [CrossRef]
[PubMed]

30. Amazon EC2 Pricing. Available online: https://aws.amazon.com/ec2/pricing/on-demand/?nc1=h_ls (accessed
on 30 August 2019).

http://dx.doi.org/10.1002/cpe.5143
http://dx.doi.org/10.1109/TSUSC.2018.2833502
http://dx.doi.org/10.1109/ACCESS.2017.2685434
https://yucianga.info/?p=938
http://dx.doi.org/10.1186/s13677-017-0097-9
http://dx.doi.org/10.1145/2479942.2479946
http://dx.doi.org/10.1002/smr.1944
http://dx.doi.org/10.1155/2018/9373961
http://dx.doi.org/10.3390/s19081788
http://www.ncbi.nlm.nih.gov/pubmed/31013993
https://aws.amazon.com/ec2/pricing/on-demand/?nc1=h_ls

Symmetry 2019, 11, 1192 27 of 27

31. Amazon S3 Pricing. Available online: https://aws.amazon.com/s3/pricing/?nc1=h_ls, (accessed on
30 August 2019).

32. Babu, R.; Jayashree, K.; Abirami, R. Fog Computing Qos Review and Open Challenges. Int. J. Fog Comput.
2018, 1, 109–118. [CrossRef]

33. Wu, Y.; Nordstrom, L.; Wang, Y.; Hauser, C. Adaptive Cyber-Security Scheme Incorporating QoS Requirements
for WAMC Applications. In Proceedings of the Power Systems Computation Conference(PSCC), Dublin,
Ireland, 11–15 June 2018; pp. 1–8.

34. Hwang, S.-J.; Kim, D.-Y. A Study on the Optimal Assignment of the Network Bandwidth Considering
the Security and QoS. In Proceedings of the Symposium of the Korean Institute of communications and
Information Sciences, Jeju, Korea, 22–24 June 2009; pp. 194–195.

35. Rachedi, A.; Benslimane, A. Multi-objective optimization for Security and QoS adaptation in Wireless Sensor
Networks. In Proceedings of the IEEE ICC Ad-hoc and Sensor Networking Symposium, Kuala Lumpur,
Malaysia, 22–27 May 2016; pp. 1–7.

36. Aghili, S.F.; Mala, H.; Shojafar, M.; Peris-Lopez, P. LACO: Lightweight Three-Factor Authentication, Access
Control and Ownership Transfer Scheme for E-Health Systems in IoT. Future Gener. Comput. Syst. 2019, 96,
410–424. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://aws.amazon.com/s3/pricing/?nc1=h_ls,
http://dx.doi.org/10.4018/IJFC.2018070104
http://dx.doi.org/10.1016/j.future.2019.02.020
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement
	Contributions

	Related Work
	Edge Cloud
	Conventional Cloud Logging Systems
	Data Protection Techniques
	Ensuring Data Integrity Technique

	Edge-Cloud Threat Model and Security Properties
	Terms and Definitions
	Edge-Cloud Service Models
	General Model
	Mobility-Support Model (MSM)
	Service-Extension Model
	Edge-Federation Model

	Threat Models
	Security Properties

	Proposed Scheme: eCLASS
	Overview
	eCLASS Specification
	Log Collection Procedure
	Log Verification Procedure

	Performance and Security Evaluation
	Implementation
	Performance Analysis
	Logging Processing Time
	Computing Resource Allocation
	Operation Cost

	Summary
	Security Analysis
	eCLASS Quality of Service

	Conclusions
	References

