
symmetryS S

Article

New Algorithms for Counting Temporal
Graph Pattern

Xiaoli Sun 1,* , Yusong Tan 1, Qingbo Wu 1, Jing Wang 1 and Changxiang Shen 2

1 College of computer, National University of Defence Technology, Changsha 410073, China;
tanyusong@kylinos.cn (Y.T.); wuqingbo@kylinos.cn (Q.W.); wangjing@kylinos.cn (J.W.)

2 College of computer, Beijing University of Technology, Beijing 100000, China; shenchx@cae.cn
* Correspondence: sunxiaoli12@nudt.edu.cn

Received: 25 August 2019; Accepted: 17 September 2019; Published: 20 September 2019
����������
�������

Abstract: Temporal networks can describe multiple types of complex systems with temporal
information in the real world. As an effective method for analyzing such network, temporal graph
pattern (TGP) counting has received extensive attention and has been applied in diverse domains.
In this paper, we study the problem of counting the TGP in the temporal network. Then, an exact
algorithm is proposed based on the time first search (TFS) algorithm. This algorithm can reduce
the intermediate results generated in the graph isomorphism and has high computational efficiency.
To further improve the algorithm performance, we design an estimation algorithm by applying the
edge sampling strategy to the exact algorithm. Finally, we evaluate the performances of the two
algorithms by counting both the symmetric and asymmetric TGP. Extensive experiments on real
datasets demonstrated that the exact algorithm is faster than the existing algorithm and the estimation
algorithm can greatly reduce the running time while guaranteeing the accuracy.

Keywords: temporal network; temporal graph pattern (TGP); TGP counting; edge sampling; TFS

1. Introduction

A graph is a tool for describing the complex systems, such as biological [1], chemical [2], and
electronic interactive systems [3]. In many cases, these systems are accompanied by the temporal
information. One example is that in the social network the time when people send the messages is
always recorded [4]. Another example is that the chronological order of the packet transmission is
also concerned in cyber network [5]. Obviously, the temporal information is a key component of such
systems. For the purpose of analysis, the complex systems are usually represented by the networks
(graphs). However, the static networks cannot describe the complex systems that contain the temporal
information. Therefore, the temporal network, in which each edge has a timestamp, is proposed [6].

Graph pattern counting is a fundamental problem in network analysis, including anomaly
detection [7], community detection [8], internet traffic classification [9] and so on. Usually, the graph
pattern refers to small and induced subgraph, which is also called motif or graphlet. In particular,
for the temporal network, if the graph pattern has temporal information, then the pattern becomes
temporal graph pattern (TGP). TGP has been widely studied and is more commonly known as temporal
motif in many studies. According to the application scenario, there are two kinds of definitions about
temporal motif. The first definition is the network motif for the graph snapshots at different time
points, in which the edges have continuous timestamps [10]. The second definition is the temporal
motif of a whole temporal graph. In this paper, we consider the second type of temporal motif.

The counting problem of small graph pattern in static network has been proposed for a long time
and attracted widespread attention, especially the triangle counting in social network analysis [11–13].
Until now, most of the triangle counting algorithms are estimation algorithms, and the graph stream

Symmetry 2019, 11, 1188; doi:10.3390/sym11101188 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-0191-3410
http://dx.doi.org/10.3390/sym11101188
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/10/1188?type=check_update&version=2

Symmetry 2019, 11, 1188 2 of 16

model has been applied in the algorithms to optimize memory usage [12,14]. In recent years, more
and more scholars have shown interest in the problem of counting a large graph pattern (i.e., the
pattern with more than three vertexes) [15–17]. The counting algorithms can be divided into two
categories: the exact algorithms and the estimation algorithms. The former is designed for the graph
pattern with no more than five vertexes and has low efficiency [15–21]. Even for the fastest exact
algorithm, the Efficient Subgraph Counting Algorithmic PackagE (ESCAPE) [15], it takes a week
to count the five-vertex graph pattern in a graph with a million vertexes. Compared to the exact
algorithms, the estimation algorithms reduce the search space by sampling the graph and thus improve
the computational efficiency [18–21]. Rahman et al. [22] reduced the counting time by sampling the
edges. Bhuiyan et al. [21] used a Markov chain to uniformly sample motifs and obtained the counts of
three-, four-, and five-vertex graphlets. In the existing estimation algorithm, the most frequently used
sampling methods are path sampling [23], random walk [19] and color coding [20,24], where the path
sampling can not be applied to count the graph pattern with more than five vertexes, while the other
two methods can be used for larger graph patterns.

The above algorithms are designed for graph pattern counting in static network. They cannot
be directly applied to the temporal network because the problems in temporal network and static
network are totally different. Firstly, the temporal network has temporal information, while the static
network does not. Secondly, the edges of the TGP have a chronological order, while the edges of the
static graph pattern do not. Thirdly, the graph isomorphism of the temporal network, which is more
complex than that of the static network, considering not only the topology structure isomorphism but
also the chronological order of the edges in the temporal graph.

At present, there are many studies on the graph pattern counting problem in temporal network.
At the early stage, TGP (known as temporal motif) was usually defined as the network motif of graph
snapshots at different time points [10,25]. On the basis of this definition, Bajardi et al. [25] further
defined the dynamic motif of the cattle trade movement. Recently, temporal motif is no longer limited
by snapshots, but extends to the network motifs with temporal attribute [26]. Inspired by this idea,
Kovanan et al. [27] proposed a temporal motif definition that is widely used in Wikipedia network
[28] and combat system coordination [29], and Paranjape et al. [30] put forward the δ-temporal motif.
Although both definitions have temporal attribute, there are still some differences between them. On
the one hand, δ-temporal motif stipulates that the edges must be sorted according to the timestamps,
i.e., there is no edge of the same time, while the definition in [27] may have several edges with the
same time. On the other hand, all the edges of δ-temporal motif should be in a fixed time window,
while the temporal motif in [27] only requires that the time difference between adjacent edges does
not exceed the threshold. Afterwards, Mackey et al. [31] used the δ-temporal motif and designed a
chronological edge-driven method to search all matched subgraphs of a given temporal graph. Liu
et al. [32] proposed a sampling framework for counting the δ-temporal motif. Since these counting
methods are based on the δ-temporal motif, it is hard for them to count the temporal motif in [27].

Although there are many algorithms for counting different kinds of TGP (or temporal motifs), the
TGP counting still has two challenges. Firstly, the counting algorithm for the TGP defined in [27] is
lacking. Secondly, the existing algorithms do not consider the TGP that has multiple edges with the
same time. To solve the challenges, here we study the counting problem for the TGP defined in [27],
and propose an exact algorithm and an estimation algorithm. The exact algorithm first partitions
the graph into several temporal subgraphs according to the time threshold, and then counts the
TGP of each temporal subgraph. The key problem in the counting process is the temporal graph
isomorphism, which is actually a typical NP-complete problem. To fix this problem, we produce
an edge order via the time first search (TFS) algorithm, and match the temporal motif according to the
order. Since the TFS algorithm considers both the temporal and topological information simultaneously,
the intermediate results in the isomorphism are reduced and the efficiency of the algorithm is improved.
Based on the exact algorithm, the estimation algorithm which can achieve an unbiased estimation is
proposed. Because of the use of edge sampling, this algorithm can greatly reduce the running time

Symmetry 2019, 11, 1188 3 of 16

while guaranteeing the accuracy. Moreover, both algorithms are suitable for the TGP that has multiple
edges with the same time. The main contributions of this paper are as follows:

(1) The paper studies the problem of counting the temporal graph pattern defined in [27] and
proposes the corresponding problem model. Since all the counting algorithms in the existing literature
are designed for the TGP defined in [30], the problem here has not been discussed before and is of
great significance.

(2) The paper provides a strategy of the TFS algorithm to process the temporal graph pattern that
has multiple edges with the same time. The TFS algorithm gives an edge order determined according
to the topology when there exist such edges. The edge order is used to match the edges, and makes
the proposed algorithms suitable for any TGP.

(3) The paper proposes an exact algorithm and an estimation algorithm to count the TGP in
temporal graph. Both algorithms are computationally efficient because they can match the topology
and temporal information simultaneously.

The rest of this manuscript is organized as follows. Section 2 gives some definitions and describes
the temporal graph counting problem for the temporal network. In Section 3, we propose an
exact algorithm and an estimation algorithm for the TGP counting. Section 4 presents a variety
of experiments to demonstrate the effectiveness of the algorithms. Section 5 gives some discussions.
Finally, conclusions are provided in Section 6.

2. Definitions and Problem

In this section, we give the fundamental definitions of the temporal graph, the temporal graph
pattern, the temporal graph isomorphism and so on. Then, according to these definition, we briefly
describe the counting problem of the temporal graph pattern.

Definition 1. Temporal Graph. A temporal graph G = (V, E) consists of a set of vertices V and a set of
temporal edges E = {(u, v, t)|u, v ∈ V}, where t is the timestamp of the edge.

Definition 2. ∆T-Temporally Related Edges. Given two edges ei = (ui, vi, ti) and ej = (uj, vj, tj), the
edge ei is ∆T-temporally related to edge ej if they are temporally adjacent, i.e., {ui, vi} ∩ {uj, vj} 6= ∅ and
|ti− tj| ≤ ∆T .

Definition 3. ∆T-Temporally Connected Graph. A temporal graph G = (V, E) is ∆T-temporally connected
graph if and only if the graph is weakly connected and all the adjacent edges are ∆T-temporally related edges.

Definition 4. Temporal Graph Pattern. A temporal graph pattern H = (g, ∆T), also known as the temporal
motif, is a ∆T-temporally connected graph g = (Vh, Eh).

Definition 4 is just one of the TGP definitions, and we aim at counting the number of this pattern
in a large temporal graph. Since the TGP contains the temporal information, the graph isomorphism
needs to satisfy both the isomorphic conditions of static graph and the temporal conditions. In the
following, we further give the definition of temporal graph isomorphism and the conditions that need
to be satisfied.

Definition 5. Temporal Graph Isomorphism. If a temporal subgraph G = (V, E) is temporally isomorphic
to the temporal graph pattern H = (g, ∆T), where g = (Vh, Eh), then there exists an injective function

Symmetry 2019, 11, 1188 4 of 16

ϕ : Vh → V which satisfies the following conditions:
(1) ∀uh ∈ Vh, ∃ϕ(uh) ∈ V
(2) ∀ eh = (uh, vh, th) ∈ Eh, ∃e = (ϕ(uh), ϕ(vh), t) ∈ E
(3) For ehi

= (uhi
, vhi

, thi
), ehj

= (uhj
, vhj

, thj
) ∈ Eh

if thi
< thj

then ∃ ei = (ϕ(uhi
), ϕ(vhi

), ti), ej = (ϕ(uhj
), ϕ(vhj

), tj) ∈ E
s.t. ti < tj.

Condition (3) describes the temporal relationship among the edges. In addition to the above
conditions, all the adjacent edges in the matched subgraph G must be the ∆T-temporally related edges.

Therefore, given a temporal graph G and the TGP H, the problem here is to count the number of
subgraphs that are temporally isomorphic to H in G.

3. The Counting Algorithms for TGP

To solve the TGP counting problem, an edge-centric exact algorithm based on the TFS method is
first proposed in this section. Then, we combine the exact algorithm with the edge sampling method
to reduce the iteration number of the edges, and present an estimation algorithm.

3.1. The Exact Algorithm

3.1.1. The Overall Idea of the Algorithm

As mentioned in the previous section, the temporal motif is a ∆T-temporally connected graph
and the time differences among the adjacent edges of the temporal motif should not exceed the time
threshold ∆T. Therefore, we can partition the temporal graph into multiple subgraphs according to
∆T, and count the number of the graph pattern in each subgraph. After accumulating the numbers
from different subgraphs, the total number of TGP can be obtained. Obviously, the counting problem
can be handled by three steps: (1) partitioning the temporal graph; (2) counting the number of TGP in
each subgraph; and (3) accumulating the numbers.

In Step (1), we need to traverse all the edges in the temporal graph and ensure that the adjacent
edges whose time differences do not exceed the threshold ∆T are placed in the same subgraph. After
the partition, we can get a set of temporal subgraphs S = {Gti , i = 0, 1..., M}, and each edge in the
temporal graph G only exists in one subgraph. The partitioning process can be easily achieved by the
algorithm in work [33], thus here we do not describe the partitioning algorithm in detail.

The key step for solving the counting problem is Step (2), i.e., counting the number of TGP in the
obtained temporal subgraphs. In this step, the NP-Complete graph isomorphism problem is inevitable.
Compared to the isomorphism problem in static graph, the temporal isomorphism problem requires
extra consideration of the temporal relationship, which means that the counting problem of TGP in
temporal graph is more difficult than the counting problem of the non-temporal graph pattern in static
graph. In the following, we focus on Step (2) and then design a counting algorithm that can match the
temporal relationship and the topology simultaneously.

3.1.2. Counting the Number of TGP in Each Subgraph

To count the number of TGP, we need to search the isomorphic graphs in the subgraphs Gti ,
i = 0, 1..., M. A common strategy used in the graph isomorphism is to match the edges exactly
according to the chronological order of the edges of TGP. The advantage of this strategy is that it
reduces the intermediate results that satisfy the topology but do not satisfy the chronological order.
However, since TGP may have several edges with the same time, there may be some intermediate
results that satisfy the chronological order but do not satisfy the topology in the process of isomorphism.
To eliminate such intermediate results, here we apply the TFS algorithm proposed in our previous
work [33] to match the edges.

Symmetry 2019, 11, 1188 5 of 16

The TFS algorithm is an edge traversal algorithm, and its output is the traversal order of the edges
of the input temporal graph. This algorithm first sorts the edges in the temporal graph by time to select
the edge with the smallest time. If there are multiple edges with the smallest time, one of them will be
selected randomly. Then, the algorithm traverses the adjacent edges of the selected edge, and selects
the new edge with the smallest time. Finally, it repeats the process of selecting the new edge from the
adjacent edges of the already selected edges until all the edges of the input temporal graph have been
traversed. As the algorithm combines the edge time with the topology, the traversal order satisfies the
chronological order of the edges as much as possible while guaranteeing the topological connection.

By applying the above TFS algorithm to the TGP, the traversal order of the TGP can be obtained.
Then, we need to get the matched pairs consisting of an edge of temporal graph and a pattern edge
one by one according to this order, and count the number of TGP. Algorithm 1 provides the details of
the matching process and summarizes the counting algorithm for subgraphs Gti , i = 0, 1..., M. Given
the subgraph Gti obtained from graph partitioning and the TGP H, this algorithm outputs the number
of the subgraphs isomorphic to the TGP H in Gti . First, we sort the edges of H according to the TFS
algorithm (Line 1), and get the first edge eh0 of the traversal order L (Line 2). Then, we traverse all
the edges of Gti to get the isomorphic subgraphs (Line 5). If the edge e of the temporal graph Gti

is isomorphic to the edge eh0 (i.e., e satisfies the matching conditions) (Line 6), we add the matched
pair P consisting of e and eh0 to the matched pair set M (Lines 7–8), and call the algorithm Match()
to match the rest edges of H (Lines 9–11). The algorithm Match() is a recursive algorithm shown
in Algorithm 2. In this algorithm, we first determine whether the set M contains all the edges of L
(Line 1). If so, the count is incremented by 1 and returned (Lines 2–3); otherwise, we continue to find
the matched subgraph. Then, we get the next unmatched edge ehj

of L and all the candidate edges Ec

from the adjacent edges of matched edges (Lines 5–6). For the edge e′ in Ec, if e′ satisfies the matching
conditions (Lines 7–8), we store the matched pair consisting of e′ and ehj

in M and continue to call
the match algorithm (Lines 9–12). It is easy to observe that the algorithm Match() returns the number
of isomorphic subgraphs whose first matched edge is e. Thus, after traversing all the edges of Gti ,
the number of all the isomorphic graphs can be obtained.

Algorithm 1 The counting algorithm for subgraph Gti .

Input: Gti = (Vti , Eti): the temporal subgraph obtained from graph partitioning,

H = (g, ∆T): the temporal graph pattern.
Output: Ci: the number of the subgraphs isomorphic to H in Gti .
1: L←Sort the edges of g according to the TFS algorithm;
2: Get the first edge eh0 of the traversal order L;
3: M = ∅;
4: Ci = 0;
5: for edge e ∈ Gti do

6: if e satisfies the matching conditions then

7: P = Pair(e, eh0);
8: M = M ∪ P;
9: count = Match(M, L, Gti , 0);

10: Ci = Ci + count;
11: M = ∅;
12: end if
13: end for
14: return Ci

Symmetry 2019, 11, 1188 6 of 16

Algorithm 2 Match(M, L, G, count).

Input: M: the matched edge pairs, L: the sorted edges of the temporal graph pattern,

G: the temporal graph, count: the number of the subgraphs isomorphic to H.
Output: count: the number of the subgraphs isomorphic to H.
1: if M covers all the edges of the L then

2: count ++;
3: return count
4: end if
5: ehj

← Get the next unmatched edge of L;
6: Ec ← Get all the candidate edges from the adjacent edges of matched edges;
7: for edge e′ ∈ Ec do

8: if e′ satisfies the matching conditions then

9: P = Pair(e′, ehj
);

10: M = M ∪ P;
11: Match(M, L, G, count);
12: Delete(M, P);
13: end if
14: end for

On Line 6 of Algorithm 1 and Line 8 of Algorithm 2, we search the matched edges via the matching
conditions. Actually, the matched edges need to satisfy two types of conditions: topological condition
and temporal condition. Temporal condition is mainly reflected in two aspects. On the one hand,
the time difference between adjacent edges does not exceed the threshold ∆T. On the other hand,
the chronological order of the matched edges should be consistent with that of the edges in TGP H.
The topological condition restricts the degree of the vertex, which means that the degree of the matched
vertex in the temporal graph is equal to or larger than the degree of the vertex in H. In addition,
the candidate edges on Line 6 of Algorithm 2 are obtained according to the topological condition.
When we search the isomorphic edge of the edge ehj

= (uhj
, vhj

, thj
), j > 0, the source vertex uhj

or the
target vertex vhj

should have been matched. Thus, there are three cases in the selection of candidate
edges. (1) If only the source vertex uhj

is matched, we traverse the outgoing edges of the matched
vertex of the uhj

and choose the edges that satisfy the temporal condition as the candidate edges. (2)
If only the target vertex vhj

is matched, we traverse the incoming edges of the matched vertex of the
vhj

and choose the candidate edges in the same way. (3) If both the uhj
and the vhj

are matched, we
choose the candidate edges from the intersection of the corresponding outgoing edge set and incoming
edge set.

3.1.3. Algorithm Summary and Computational Complexity

According to Algorithm 1, we get the number Ci of subgraphs isomorphic to the TGP H in Gti .
Then, by applying this algorithm M + 1 times and accumulating all the numbers Ci, i = 0, ..., M, the
total number C of isomorphic subgraphs can be obtained. Algorithm 3 summarizes the whole counting
algorithm (which we call the exact algorithm). The computational complexity of the algorithm is
analyzed as follows. First, the computational complexity of the partition processing is O(|E|), where
|E| is the number of the edges in G. Then, the worst complexity of counting H in subgraph Gti is
O((mti)

mh), where mti and mh are the edge numbers of Gti and H, respectively. The case would
occur when each edge in Gti could match each edge in H. However, if the edges have a temporal
order, the temporal graph isomorphism has exponential asymptotic complexity O(m2

ti
). Since the

whole algorithm contains the partition processing and needs to count the numbers of H in subgraphs
Gti , i = 0, ..., M, the total computational complexity of the exact algorithm isO(∑M

i=0(mti)
mh + |E|). It is

Symmetry 2019, 11, 1188 7 of 16

worth noting that, in real scenarios, most of subgraphs Gti , i = 0, ..., M may have only one or two edges,
thus the real performance would be better than the analytical performance O(∑M

i=0(mti)
mh + |E|).

Algorithm 3 The exact algorithm for the temporal graph pattern.

Input: G = (V, E): the temporal graph, H = (g, ∆T): the temporal graph pattern.
Output: C: the number of the subgraphs isomorphic to H in G.
1: S← partition the graph G into subgraphs Gti , i = 0, 1..., M;
2: for subgraph Gti in S do

3: Ci ← count the number of the subgraphs isomorphic to H in Gti ;
4: end for
5: C = ΣM

i=0Ci
6: return C

3.2. The Estimation Algorithm

In the previous subsection, we present the exact algorithm which has relatively high efficiency to
reduce the intermediate results in the process of isomorphism. To further improve the computational
efficiency, we design an algorithm based on the exact algorithm and the edge sampling in this
subsection, where the edge sampling was used by Doulion [34] to count the triangles of the large
graph. Instead of traversing all the edges in the graph, the algorithm here samples the edges by using
the method of throwing biased coins. For each edge in the temporal graph, a biased coin with success
probability p is thrown to determine whether this edge is reserved, which means that the selection
probability of this edge is p. If the edge e is selected, e is placed in the edge set Ep; otherwise, e is
ignored. Then, we build a new temporal graph Gp according to the selected edges Ep, and apply
the exact algorithm to count the number Cp of isomorphic subgraphs in Gp. The approximate value
of the exact number C can be obtained by Cp/pmh , where pmh is the probability of the TGP being
selected. Since the algorithm outputs the estimated number of the isomorphic subgraphs, we call it the
estimation algorithm. The specific steps of the algorithm is provided in Algorithm 4.

Algorithm 4 The estimation algorithm for the temporal graph pattern.

Input: G = (V, E): the temporal graph, H = (g, ∆T): the temporal graph pattern, p: the probability

of edge sampling.
Output: Ĉ: the approximate number of the temporal subgraphs isomorphic to H
1: Ep = ∅;
2: for all e ∈ E do

3: x ← Toss a biased coin with success probability p
4: if x = 1 then

5: Ep ← Ep ∪ e
6: end if
7: end for
8: Gp = (Vp, Ep)← build a temporal graph according to the Ep,
9: Cp ← count the number of H in Gp

10: Ĉ = Cp/pmh , where mh is the number of the edges in H.
11: return Ĉ.

Although Ĉ is an approximate value of C, Ĉ is the unbiased estimation of C and has high accuracy
(which can be seen in the numerical experiments). In the following, we give two lemmas about the
expectation and variance of Ĉ to demonstrate the unbiasedness.

Symmetry 2019, 11, 1188 8 of 16

Lemma 1. Let C and Ĉ be the exact number of the temporal subgraphs isomorphic to H in G and the estimated
number obtained by Algorithm 4, respectively. Then, E[Ĉ] = C.

Proof of Lemma 1. For each temporal subgraph isomorphic to H in G, we introduce an indicator
variable δi, i = 1, ..., C to indicate whether the isomorphic subgraph is sampled or not, i.e.,

δi =

{
1, i f the subgraph is sampled
0, otherwise

, i = 1, ..., C. (1)

It is easy to see that the number Cp is obtained from the temporal graph after edge sampling, thus
Cp is also the number of isomorphic subgraphs being sampled, i.e., Cp = ∑C

i=1 δi. Then, we can get the
expectation of Ĉ as follows

E[Ĉ] = E
[

Cp

pmh

]
= E

[
1

pmh

C

∑
i=1

δi

]
=

1
pmh

C

∑
i=1

E[δi] (2)

where mh is the number of the edges in H. Since each edge is sampled with probability p, the probability
that the ith subgraph is selected (i.e., δi = 1) is pmh . Then, the probability distribution of δi, i = 1, ...C
can be denoted as.

According to Table 1, the expectation of δi can be calculated as

E[δi] = 0 · (1− pmh) + 1 · pmh = pmh . (3)

By substituting Equation (3) into Equation (2), we can get E[Ĉ] = C. The proof is complete.

Table 1. The probability distribution of δi, i = 1, ...C.

δi 0 1

probability 1− pmh pmh

Lemma 2. Let C and Ĉ be the exact number of the temporal subgraphs isomorphic to H in G and the estimated
number obtained by Algorithm 4, respectively. Then, Var[Ĉ] = 1

p2mh

(
∑mh

k=1 ck(p2mh−k − p2mh)
)

, where ck is

the number of cases that two subgraphs share k edges.

Proof of Lemma 2. Similar to Equation (2), the variance Var[Ĉ] is given by

Var[Ĉ] = Var

[
1

pmh

C

∑
i=1

δi

]
=

1
p2mh

C

∑
i=1

C

∑
j=1

Cov[δi, δj] (4)

where Cov[δi, δj] is the covariance of δi and δj, which can simplified as

Cov[δi, δj] = E[(δi − E[δi])(δj − E[δj])] = E[δiδj]− E[δi]E[δj] = E[δiδj]− p2mh (5)

As can be seen from Equation (4), there are C2 terms in the summation, where C terms belong to
the case of i = j and C2 − C terms belong to the case of i 6= j. To calculate the covariance Cov[δi, δj],
we divide the calculation into three cases.

• Case 1: i = j. When i = j, we have Cov[δi, δj] = E[δ2
i]− p2mh . Since δi obeys the 0–1 distribution

shown in Table 1, E[δ2
i] can be calculated as E[δ2

i] = 02 · (1− pmh) + 12 · pmh = pmh . Then, we can
get Cov[δi, δj] = pmh − p2mh .

Symmetry 2019, 11, 1188 9 of 16

• Case 2: i 6= j and the subgraphs corresponding to δi, δj do not share any edges. In this case,
whether the ith subgraph is sampled is unrelated to the jth subgraph, which means that δi and δj
are independent. Thus, we have Cov[δi, δj] = E[δi]E[δj]− p2mh = 0.

• Case 3: i 6= j and the subgraphs corresponding to δi, δj share edges. Assume that the ith and jth
subgraphs share k (k < mh) edges. Thus, the probability that the shared edges are sampled is pk,
and the probability that the remaining 2mh− 2k edges of the two subgraphs are sampled is p2mh−2k.
Based on these two probabilities, the probability of both subgraphs being sampled can be denoted
as E[δiδj] = pk · p2mh−2k = p2mh−k. Then, we can obtain the covariance Cov[δi, δj] = p2mh−k− p2mh .

According to Equation (4) and the three cases, the variance Var[Ĉ] can be rewritten as

Var[Ĉ] =
1

p2mh

(
C(pmh − p2mh) + c0 · 0 +

mh−1

∑
k=1

ck(p2mh−k − p2mh)

)

=
1

p2mh

(
mh

∑
k=1

ck(p2mh−k − p2mh)

) (6)

where ck, k = 0, ..., mh are the numbers of these terms Cov(δi, δj), i, j = 1, ..., C in which the subgraphs
represented by δi and δj share k edges, cmh = C and ∑mh

k=0 ck = C2. The proof is complete.

It is worth noting that the estimation accuracy is closely related to the variance Var[Ĉ]. Actually,
the expectation of the mean squared error (MSE) of Ĉ is E[(Ĉ − C)2] = E[(Ĉ − E[Ĉ])2] = Var[Ĉ].
Moreover, compared to the exact algorithm, the estimation algorithm has higher computational
efficiency. In the estimation algorithm, the edges in the temporal graph G are sampled, so the number
of edges to be processed and the number of isomorphic subgraphs are reduced. Similar to the
complexity of the exact algorithm (i.e., O(∑M

i=0(mti)
mh + |E|)), the computational complexity of the

estimation algorithm can be expressed as O(∑M′
i=0(m

′
ti
)mh + p|E|), where m′ti

is the edge number of G′ti
,

which is generated after partitioning the graph Gp, M′ is the graph number after edge sampling and
graph partitioning, and ∑M′

i=0 m′ti
= p|E|. In the next section, we present several numerical experiments

to verify that the algorithm has high estimation accuracy and efficiency.

4. Experiments and Discussion

4.1. Datasets and Setup

In this section, we evaluate the performance of the proposed algorithms in the following datasets.
CollegeMsg data [35]: The data record the private messages between users of the online social

network at the University of California, Irvine. In these data, the temporal edge (u, v, t) of the temporal
network means that the user u sends a private message to the user v at time t.

Email data [30]: These data were collected from European research institution and contain the
e-mails between institution members from October 2003 to May 2005 (18 months). In these data, the
directed edge (u, v, t) denotes that an e-mail is sent from member u to member v at time t.

MathOverflow data [30]: The temporal network was generated using the interactions on the
stack exchange website Math Overflow. The temporal edge (u, v, t) represents that user u answers user
v’s question or comments on user v’s question/answer at time t.

Table 2 gives some statistics of these datasets. All experiments were conducted on the machine
with Intel Core i7 3.40 GHz processor and 8 GB of memory. The software environment was Java 1.8.0.

Symmetry 2019, 11, 1188 10 of 16

Table 2. Statistics on the datasets.

Dataset # Node # Static Edges # Temporal Edges Time Span

CollegeMsg 1.9 K 20.3 K 59.8 K 194 days
Email 986 24.9 K 332 K 2.20 years

MathOverflow 24.8 K 228 K 390 K 6.44 years

To verify the performance of the proposed algorithms, we first chose the baseline algorithm. In
fact, there are three works on the problem of counting TGP at present, i.e., the works in [30,32] and the
BT algorithm [31]. However, the work in [30] only handles the motifs with at most three edges, and the
sampling framework in [32] cannot be applied to our temporal motif definition. Therefore, the first two
works cannot be used for the problem in this paper, thus we could only choose the BT algorithm [31]
as the baseline algorithm. In the experiments, we re-implemented the code of the BT algorithm and
made some modifications to make it suitable for our temporal motif definition. The temporal graph
patterns (TGPs) used in the experiments are the typical motifs shown in Figure 1, where the topology
of Triangle motif is rotational symmetric, and the topology of Bi-fan motif is axial symmetric.

A B

DC

t0

t3

t2 t1

A Bt0 C Dt1 t2

A

B C

t0

t1

t2

Dt3

(a) Triangle

A B

DC

t0

t3

t2 t1

A Bt0 C Dt1 t2

A

B C

t0

t1

t2

Dt3

(b) Path

A B

DC

t0

t3

t2 t1

(c) Bi-fan

Figure 1. Temporal graph patterns used in the experiments: (a) a classical triangle motif, and the
temporal relationship is t0 < t1 < t2; (b) s path motif whose edge time increases from left to right,
and the motif indicates the propagation of information on the path; and (c) the bi-fan motif, and the
temporal relationship is t0 < t1 < t2 < t3.

4.2. Experimental Results

Next, we evaluated the performance of the exact algorithm and the estimation algorithm. First,
we compared the performances of the exact algorithm and BT algorithm on the different datasets.
Then, we defined two parameters to show the estimation accuracy and computational efficiency of the
estimation algorithm.

4.2.1. Results of the Exact Algorithm

For the exact algorithm, the time threshold ∆T is an important parameter, thus we compared
the performance under different ∆T. In this experiment, we applied the exact algorithm and the BT
algorithm to count the above three TGPs in three datasets (CollegeMsg, Email and MathOverflow),
and considered four different thresholds: 0.5 h (1800 s), 1 h (3600 s), 1.5 h (5400 s) and 2 h (7200 s). The
results of these two algorithms are shown in Figures 2–4 and Table 3. In Table 3, the speedup ratio Sr
is the ratio of running time of BT algorithm to that of exact algorithm. In these figures and table, we
can get three findings as follows.

Symmetry 2019, 11, 1188 11 of 16

Table 3. The running time (s) and the speedup ratio of the exact and BT algorithms

Datasets TGP ∆T = 1800 ∆T = 3600 ∆T = 5400 ∆T = 7200

Exact BT Sr Exact BT Sr Exact BT Sr Exact BT Sr

College
Triangle 0.52 0.52 1.0 0.54 0.57 1.1 0.56 0.67 1.2 0.56 0.723 1.3

Path 0.47 0.41 0.8 0.50 0.87 1.7 0.54 1.02 1.9 0.58 1.23 2.1
Bi-fan 0.58 1.04 1.8 0.64 1.43 2.2 0.71 1.65 2.3 0.78 1.73 2.2

Email
Triangle 10.39 11.24 1.1 10.65 12.42 1.2 10.78 13.70 1.3 11.34 16.22 1.4

Path 10.58 13.69 1.3 10.79 15.41 1.4 10.88 18.26 1.7 10.91 21.59 2.0
Bi-fan 10.10 23.56 2.3 10.40 27.79 2.7 10.50 32.90 3.1 10.65 37.52 3.5

Math
Triangle 11.00 10.64 0.9 11.25 11.12 1.0 12.28 12.35 1.0 12.82 13.62 1.1

Path 10.19 10.61 1.0 11.23 11.27 1.0 12.59 13.48 1.1 12.79 14.34 1.1
Bi-fan 12.29 21.91 1.8 13.47 22.62 1.7 13.50 23.78 1.8 13.40 25.63 1.9

0 1 8 0 0 3 6 0 0 5 4 0 0 7 2 0 0
0

2 0 0

4 0 0

6 0 0

8 0 0

Ru
nn

ing
 tim

e (
ms

)

T i m e t h r e s h o l d (s)

 E x a c t a l g o r i t h m
 B T

(a) Triangle

0 1 8 0 0 3 6 0 0 5 4 0 0 7 2 0 0
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

Ru
nn

ing
 tim

e (
ms

)

T i m e t h r e s h o l d (s)

 E x a c t a l g o r i t h m
 B T

(b) Path

0 1 8 0 0 3 6 0 0 5 4 0 0 7 2 0 0
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0

Ru
nn

ing
 tim

e (
ms

)

T i m e t h r e s h o l d (s)

 E x a c t a l g o r i t h m
 B T

(c) Bi-fan

Figure 2. The running time of the exact and BT algorithms under different ∆T in CollegeMsg dataset.
(a) the result for the Triangle TGP, (b) the result for the Path TGP, (c) the result for the Bi-fan TGP.

0 1 8 0 0 3 6 0 0 5 4 0 0 7 2 0 0
0

5

1 0

1 5

2 0

Ru
nn

ing
 tim

e (
s)

T i m e t h r e s h o l d (s)

 E x a c t a l g o r i t h m
 B T

(a) Triangle

0 1 8 0 0 3 6 0 0 5 4 0 0 7 2 0 0
0

5

1 0

1 5

2 0

2 5

Ru
nn

ing
 tim

e (
s)

T i m e t h r e s h o l d (s)

 E x a c t a l g o r i t h m
 B T

(b) Path

0 1 8 0 0 3 6 0 0 5 4 0 0 7 2 0 0
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

Ru
nn

ing
 tim

e (
s)

T i m e t h r e s h o l d (s)

 E x a c t a l g o r i t h m
 B T

(c) Bi-fan

Figure 3. The running time of the exact and BT algorithms under different ∆T in Email dataset. (a) the
result for the Triangle TGP, (b) the result for the Path TGP, (c) the result for the Bi-fan TGP.

0 1 8 0 0 3 6 0 0 5 4 0 0 7 2 0 0
0

2

4

6

8

1 0

1 2

1 4

Ru
nn

ing
 tim

e (
s)

T i m e t h r e s h o l d (s)

 E x a c t a l g o r i t h m
 B T

(a) Triangle

0 1 8 0 0 3 6 0 0 5 4 0 0 7 2 0 0
0

2

4

6

8

1 0

1 2

1 4

1 6

Ru
nn

ing
 tim

e (
s)

T i m e t h r e s h o l d (s)

 E x a c t a l g o r i t h m
 B T

(b) Path

0 1 8 0 0 3 6 0 0 5 4 0 0 7 2 0 0
0

4

8

1 2

1 6

2 0

2 4

2 8

Ru
nn

ing
 tim

e (
s)

T i m e t h r e s h o l d (s)

 E x a c t a l g o r i t h m
 B T

(c) Bi-fan

Figure 4. The running time of the exact and BT algorithms under different ∆T in MathOverflow dataset.
(a) the result for the Triangle TGP, (b) the result for the Path TGP, (c) the result for the Bi-fan TGP.

Symmetry 2019, 11, 1188 12 of 16

9 0 0 1 8 0 0 2 7 0 0 3 6 0 0 4 5 0 0 5 4 0 0 6 3 0 0 7 2 0 0 8 1 0 0
0 . 0

5 . 0 x 1 0 3

1 . 0 x 1 0 4

1 . 5 x 1 0 4

Nu

mb
er

T i m e t h r e s h o l d (s)

 s u b g r a p h s w i t h m o r e t h a n 2 e d g e s
 s u b g r a p h s w i t h l e s s t h a n 3 e d g e s

(a) CollegeMsg

9 0 0 1 8 0 0 2 7 0 0 3 6 0 0 4 5 0 0 5 4 0 0 6 3 0 0 7 2 0 0 8 1 0 0
0 . 0

2 . 0 x 1 0 4

4 . 0 x 1 0 4

6 . 0 x 1 0 4

8 . 0 x 1 0 4

1 . 0 x 1 0 5

Nu
mb

er

T i m e t h r e s h o l d (s)

 s u b g r a p h s w i t h m o r e t h a n 2 e d g e s
 s u b g r a p h s w i t h l e s s t h a n 3 e d g e s

(b) Email

9 0 0 1 8 0 0 2 7 0 0 3 6 0 0 4 5 0 0 5 4 0 0 6 3 0 0 7 2 0 0 8 1 0 0
0

1 x 1 0 5

2 x 1 0 5

3 x 1 0 5

Nu
mb

er

T i m e t h r e s h o l d (s)

 s u b g r a p h s w i t h m o r e t h a n 2 e d g e s
 s u b g r a p h s w i t h l e s s t h a n 3 e d g e s

(c) MathOverflow

Figure 5. The number of subgraphs in set S. (a) the result of CollegeMsg, (b) the result of Email, (c) the
result of MathOverflow.

First, the running time of the two algorithms increases with the increase of the time threshold ∆T.
To better explain the performance of the exact algorithm in Figures 2–4, Figure 5 gives the number of
subgraphs in set S under different time thresholds. It can be seen that the number of subgraphs in set
S decreases with the increase of ∆T. Therefore, the edge number of subgraph Gti (Gti ∈ S) increases
with the increase of ∆T. In Figure 5, we can also see that most of subgraphs in S have fewer than
three edges, and the number of larger subgraphs decreases slightly with the increase of ∆T. Obviously,
most of the reduced graph in S are the graphs with few edges and require very little calculation,
which means that the decrease of the graph number in S has little impact on the performance of the
algorithm. Thus, when the time threshold ∆T increases, the running time of the exact algorithm is
mainly affected by the edge number of subgraph in S and increases inevitably. Similarly, with the
increase of ∆T, the number of intermediate results processed by the BT algorithm increases, which
results in the increase of the running time. Besides, it can also be seen in these figures that the change
of running time caused by ∆T in BT algorithm is more obvious than that in the exact algorithm.

Moreover, the performance of the exact algorithm is more stable than that of the BT algorithm
when counting different TGPs. From the results of different TGPs, we can see that the running time
of the exact algorithm changes very little, which indicates that the algorithm performance is scarcely
affected by the shape of TGP. In contrast, the BT algorithm has obvious increase in running time when
dealing with the Bi-fan pattern, which is more complex than the other two patterns. Comparing the
results in different datasets, it is easy to find that both algorithms spend less time on the CollegeMsg
dataset, because this dataset has fewer temporal edges than the other two datasets.

Finally, the performance of the exact algorithm is significantly better than the performance of the
BT algorithm. From theoretical complexity analysis above and the analysis in [31], we can see that the
computational complexity of the exact algorithm isO(∑M

i=0(mti)
mh + |E|), and that of the BT algorithm

is O(|E|mh), where mti , mh and |E| are the edge numbers of Gti , H and G, respectively. It is easy to
see that the computational complexity of the exact algorithm is lower than that of the BT algorithm.
Although our algorithm is slightly slower than the BT algorithm in some cases, such as Figures 2b and
4a, the overall running time of our algorithm is better. Especially when ∆T is very large, the exact
algorithm can even have a 3× acceleration compared to the BT algorithm.

4.2.2. Results of the Estimation Algorithm

To evaluate the performance of the estimation algorithm, we defined the relative error ε and the
speedup ratio Sr, where ε was used to measure the estimation accuracy and Sr was related to the
computational efficiency. The definition of the ε is as follows:

ε(C, Ĉ) =
|Ĉ− C|
C + 1

(7)

Symmetry 2019, 11, 1188 13 of 16

In the above equation, we add 1 to both Ĉ and C to avoid the case C = 0. The Sr is defined as

Sr =
t
te

(8)

where t is the running time of the exact algorithm and te is running time of the estimation algorithm.
In this experiment, we tested the performance of the estimation algorithm under different

probability values (0.6, 0.7, 0.8 and 0.9). Here, we only considered the case that the threshold ∆T is
7200 s, because the algorithm has similar characteristics using other time thresholds. Then, for each
TGP and each probability, we repeated the proposed algorithms 10 times and computed the average ε

and Sr.
Table 4 shows the relative error ε and the speedup ratio Sr of the estimation algorithm under

different probabilities p. With the increase of the probability p, ε decreases from about 5% to 1%, which
means that the estimation accuracy of the algorithm improves. Actually, the fluctuation of ε inevitably
reduces when increasing p, because the larger is the p the smaller is the variance Var[Ĉ] (as can be
seen from Equation (6)). In this table, we can also see that the algorithm always has good estimation
performance when dealing with different TGPs and datasets.

In addition, from the Sr in Table 4, we can see that the speedup ratio decreases with the increase of
p, which means that the estimation algorithm takes more time when p is large. This is consistent with
the fact that high probability p leads to high computational complexity of the estimation algorithm.
Since the estimation algorithm still has high estimation accuracy when p is small, we can choose
a relatively small p (e.g., 0.6–0.8) to achieve high accuracy and high computational efficiency at the
same time.

Table 4. The average ε and Sr of the estimation algorithm under different probabilities (10 trials).

Datasets TGP p = 0.6 p = 0.7 p = 0.8 p = 0.9

ε Sr ε Sr ε Sr ε Sr

CollegeMsg
Triangle 5.29% 2.00 3.93% 1.87 2.96% 1.62 1.43% 1.52

Path 4.84% 2.23 3.02% 1.81 1.98% 1.44 1.67% 1.15
Bi-fan 5.05% 2.20 2.95% 1.53 2.13% 1.48 1.98% 1.33

Email
Triangle 3.44% 2.92 1.35% 2.20 1.32% 1.71 1.17% 1.32

Path 3.14% 2.85 2.52% 2.12 1.85% 1.64 1.01% 1.21
Bi-fan 4.70% 2.74 2.24% 2.10 2.19% 1.61 1.19% 1.27

MathOverflow
Triangle 4.05% 3.03 2.85% 2.18 2.43% 1.64 1.47% 1.33

Path 5.65% 2.88 4.43% 2.13 3.04% 1.59 1.96% 1.28
Bi-fan 4.76% 2.94 3.76% 2.04 1.90% 1.53 1.56% 1.20

5. Discussion

In this section, we discuss the application scope and limitations of the algorithm.
(1) The type of network: In Section 3, we propose two algorithms for the counting problem in

the static temporal network. Similar to all algorithms based on such network, the proposed algorithm
cannot be applied to the dynamic network or the static network whose edges do not have the temporal
information. It is worth noting that no algorithm can be applied to two different networks at the
same time.

(2) The definition of TGP: In this paper, we consider the TGP defined in [27], which is different
from the other definitions discussed in the Introduction. This definition is relatively suitable for
communication networks [36], wikipedia network [28], and mobile cohesive groups [37].

(3) The algorithms: Since our algorithms partition the large graph into multiple subgraphs, the
algorithms can be implemented in parallel, i.e., each subgraph is processed independently and the
total result is obtained by adding the parallel results.

(4) The edge sampling: In the estimation algorithm, we use the edge sampling strategy to estimate
the number of TGP. Since the increase in the edge number mh of TGP reduces the probability of the

Symmetry 2019, 11, 1188 14 of 16

isomorphic subgraphs being sampled, the number of sampled isomorphic subgraphs will be small
when mh is large. Therefore, the algorithm has high relative error when counting the TGP with many
edges. This indicates that it is only suitable for the TGP with a small number of edges. In the future,
the problem of estimating the number of large TGP in the temporal graph can be further studied.

6. Conclusions

In this work, we propose an exact algorithm and an estimation algorithm for counting temporal
graph patterns in large temporal graph. The exact algorithm is designed based on TFS. Since the algorithm
can match the topology and the temporal relationship simultaneously, the high computational efficiency
of the algorithm can be guaranteed. To further reduce the computational complexity, we then design the
estimation algorithm based on the edge sampling. Extensive experiments on three real datasets showed
that the exact algorithm is faster than the BT algorithm and the estimation algorithm can greatly reduce
the running time while guaranteeing the estimation accuracy.

Author Contributions: Conceptualization, X.S. and Y.T.; methodology, X.S.; software, X.S. and J.W.; validation,
X.S. and Y.T.; formal analysis, X.S. and Q.W.; investigation, Y.T., Q.W., and C.S.; resources, Y.T. and C.S.;
writing—original draft preparation, X.S.; writing—review and editing, Y.T. and Q.W.; project administration, Q.W.;
and funding acquisition, Y.T.

Funding: This work was funded by the National Natural Science Foundation of China under grant No. 61872444
and the National Key Research and Development Program of China under grant No. 2018YFB1003602.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gao, W.; Wu, H.; Siddiqui, M.K.; Baig, A.Q. Study of biological networks using graph theory. Saudi J.
Biol. Sci. 2018, 25, 1212–1219. [CrossRef] [PubMed]

2. Trinajstic, N. Chemical Graph Theory; Routledge: London, UK, 1992.
3. Yang, P.; Freeman, R.A.; Gordon, G.J.; Lynch, K.M.; Srinivasa, S.S.; Sukthankar, R. Decentralized estimation

and control of graph connectivity for mobile sensor networks. Automatica 2010, 46, 390–396. [CrossRef]
4. Yu, J.; Shen, Y.; Yang, Z. Topic-STG: Extending the session-based temporal graph approach for personalized

tweet recommendation. In Proceedings of the 23rd International Conference on World Wide Web, Seoul,
Korea, 7–11 April 2014; ACM: New York, NY, USA, 2014; pp. 413–414.

5. Choudhury, S.; Holder, L.; Chin, G.; Ray, A.; Beus, S.; Feo, J. Streamworks: A system for dynamic graph
search. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data,
New York, NY, USA, 22–27 June 2013; pp. 1101–1104.

6. Kovanen, L.; Kaski, K.; Kertész, J.; Saramäki, J. Temporal motifs reveal homophily, gender-specific patterns,
and group talk in call sequences. Proc. Natl. Acad. Sci. USA 2013, 110, 18070–18075. [CrossRef] [PubMed]

7. Harshaw, C.R.; Bridges, R.A.; Iannacone, M.D.; Reed, J.W.; Goodall, J.R. Graphprints: Towards a graph
analytic method for network anomaly detection. In Proceedings of the 11th Annual Cyber and Information
Security Research Conference, Oak Ridge, TN, USA, 5–7 April 2016; p. 15.

8. Berry, J.W.; Hendrickson, B.; LaViolette, R.A.; Phillips, C.A. Tolerating the community detection resolution
limit with edge weighting. Phys. Rev. E 2011, 83, 056119. [CrossRef] [PubMed]

9. Iliofotou, M.; Faloutsos, M.; Mitzenmacher, M. Exploiting dynamicity in graph-based traffic analysis:
Techniques and applications. In Proceedings of the 5th international conference on Emerging networking
experiments and technologies, Rome, Italy, 1–4 December 2009; pp. 241–252.

10. Braha, D.; Bar-Yam, Y. Time-Dependent Complex Networks: Dynamic Centrality, Dynamic Motifs, and Cycles of
Social Interactions. In Adaptive Networks: Theory, Models and Applications; Springer: Berlin/Heidelberg, Germany,
2009; pp. 39–50.

11. Al Hasan, M.; Dave, V.S. Triangle counting in large networks: A review. Wiley Interdiscip. Rev. Data Min.
Knowl. Discov. 2018, 8, e1226. [CrossRef]

12. Lim, Y.; Kang, U. Mascot: Memory-efficient and accurate sampling for counting local triangles in graph
streams. In Proceedings of the 21th ACM SIGKDD International Conference On Knowledge Discovery and
Data Mining, Sydney, NSW, Australia, 10–13 August 2015; pp. 685–694.

http://dx.doi.org/10.1016/j.sjbs.2017.11.022
http://www.ncbi.nlm.nih.gov/pubmed/30174525
http://dx.doi.org/10.1016/j.automatica.2009.11.012
http://dx.doi.org/10.1073/pnas.1307941110
http://www.ncbi.nlm.nih.gov/pubmed/24145424
http://dx.doi.org/10.1103/PhysRevE.83.056119
http://www.ncbi.nlm.nih.gov/pubmed/21728617
http://dx.doi.org/10.1002/widm.1226

Symmetry 2019, 11, 1188 15 of 16

13. Pearce, R. Triangle counting for scale-free graphs at scale in distributed memory. In Proceedings of the 2017
IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 12–14 September
2017; pp. 1–4.

14. Stefani, L.D.; Epasto, A.; Riondato, M.; Upfal, E. TRIÈST: Counting Local and Global Triangles in Fully-dynamic
Streams with Fixed Memory Size. ACM Trans. Knowl. Discov. Data (TKDD) 2017, 11, 43. [CrossRef]

15. Pinar, A.; Seshadhri, C.; Vishal, V. Escape: Efficiently counting all 5-vertex subgraphs. In Proceedings of the
26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 1431–1440.

16. Marcus, D.; Shavitt, Y. Efficient counting of network motifs. In Proceedings of the 2010 IEEE 30th
International Conference on Distributed Computing Systems Workshops, Genova, Italy, 21–25 June 2010;
pp. 92–98.

17. Hočevar, T.; Demšar, J. A combinatorial approach to graphlet counting. Bioinformatics 2014, 30, 559–565.
[CrossRef] [PubMed]

18. Wang, P.; Zhao, J.; Zhang, X.; Li, Z.; Cheng, J.; Lui, J.C.; Towsley, D.; Tao, J.; Guan, X. MOSS-5: A fast method
of approximating counts of 5-node graphlets in large graphs. IEEE Trans. Knowl. Data Eng. 2017, 30, 73–86.
[CrossRef]

19. Chen, X.; Lui, J.C.S. Mining Graphlet Counts in Online Social Networks. ACM Trans. Knowl. Discov.
Data (TKDD) 2018, 12, 41:1–41:38. [CrossRef]

20. Bressan, M.; Chierichetti, F.; Kumar, R.; Leucci, S.; Panconesi, A. Counting graphlets: Space vs. time.
In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, Cambridge,
UK, 6–10 February 2017; pp. 557–566.

21. Bhuiyan, M.A.; Rahman, M.; Rahman, M.; Al Hasan, M. Guise: Uniform sampling of graphlets for large
graph analysis. In Proceedings of the 12th International IEEE Conference on Data Mining, Brussels, Belgium,
10–13 December 2012; pp. 91–100.

22. Rahman, M.; Bhuiyan, M.A.; Al Hasan, M. Graft: An Efficient Graphlet Counting Method for Large Graph
Analysis. IEEE Trans. Knowl. Data Eng. 2014, 26, 2466–2478. [CrossRef]

23. Jha, M.; Seshadhri, C.; Pinar, A. Path Sampling: A Fast and Provable Method for Estimating 4-Vertex
Subgraph Counts. In Proceedings of the 24th International Conference on World Wide Web, 2015, WWW ’15,
Florence, Italy, 18–22 May 2015; pp. 495–505.

24. Bressan, M.; Leucci, S.; Panconesi, A. Motivo: Fast motif counting via succinct color coding and adaptive
sampling. arXiv 2019, arXiv:1906.01599.

25. Bajardi, P.; Barrat, A.; Natale, F.; Savini, L.; Colizza, V. Dynamical patterns of cattle trade movements.
PLoS ONE 2011, 6, e19869. [CrossRef] [PubMed]

26. Zhao, Q.; Tian, Y.; He, Q.; Oliver, N.; Jin, R.; Lee, W.C. Communication motifs: A tool to characterize social
communications. In Proceedings of the 19th ACM International Conference on Information and Knowledge
Management, Toronto, ON, Canada, 26–30 October 2010; pp. 1645–1648.

27. Kovanen, L.; Karsai, M.; Kaski, K.; Kertész, J.; Saramäki, J. Temporal motifs in time-dependent networks.
J. Stat. Mech. Theory Exp. 2011, 2011, P11005. [CrossRef]

28. Jurgens, D.; Lu, T.C. Temporal Motifs Reveal the Dynamics of Editor Interactions in Wikipedia.
In Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media (ICWSM 2012),
Dublin, Ireland, 4–7 June 2012.

29. Wu, W.; Hu, X.; Guo, S.; He, X. Methods of Analyzing Combat SoS Coordination Pattern Based on Temporal
Motif. In Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems; Springer:
Singapore, 2016; pp. 544–554.

30. Paranjape, A.; Benson, A.R.; Leskovec, J. Motifs in Temporal Networks. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, Cambridge, UK, 6–10 February 2017; pp. 601–610.

31. Mackey, P.; Porterfield, K.; Fitzhenry, E.; Choudhury, S.; Chin, G. A chronological edge-driven approach to
temporal subgraph isomorphism. In Proceedings of the 2018 IEEE International Conference on Big Data
(Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 3972–3979.

32. Liu, P.; Benson, A.R.; Charikar, M. Sampling methods for counting temporal motifs. In Proceedings of
the Twelfth ACM International Conference on Web Search and Data Mining, Melbourne VIC, Australia,
11–15 February 2019; pp. 294–302.

33. Sun, X.; Tan, Y.; Wu, Q.; Chen, B.; Shen, C. TM-Miner: TFS-Based Algorithm for Mining Temporal Motifs in
Large Temporal Network. IEEE Access 2019, 7, 49778–49789. [CrossRef]

http://dx.doi.org/10.1145/3059194
http://dx.doi.org/10.1093/bioinformatics/btt717
http://www.ncbi.nlm.nih.gov/pubmed/24336411
http://dx.doi.org/10.1109/TKDE.2017.2756836
http://dx.doi.org/10.1145/3182392
http://dx.doi.org/10.1109/TKDE.2013.2297929
http://dx.doi.org/10.1371/journal.pone.0019869
http://www.ncbi.nlm.nih.gov/pubmed/21625633
http://dx.doi.org/10.1088/1742-5468/2011/11/P11005
http://dx.doi.org/10.1109/ACCESS.2019.2911181

Symmetry 2019, 11, 1188 16 of 16

34. Tsourakakis, C.E.; Kang, U.; Miller, G.L.; Faloutsos, C. Doulion: Counting triangles in massive graphs with
a coin. In Proceedings of the 15th ACM SIGKDD International Conference On Knowledge Discovery and
Data Mining, Paris, France, 28 June–1 July 2009; pp. 837–846.

35. Panzarasa, P.; Opsahl, T.; Carley, K.M. Patterns and Dynamics of Users’ Behavior and Interaction: Network
Analysis of an Online Community. J. Assoc. Inf. Sci. Technol. 2010, 60, 911–932. [CrossRef]

36. Gurukar, S.; Ranu, S.; Ravindran, B. COMMIT: A Scalable Approach to Mining Communication Motifs from
Dynamic Networks. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, Melbourne, Victoria, Australia, 31 May–4 June 2015; pp. 475–489.

37. Zignani, M.; Quadri, C.; Del Vicario, M.; Gaito, S.; Rossi, G.P. Temporal Communication Motifs in
Mobile Cohesive Groups. In Proceedings of the International Workshop on Complex Networks and
Their Applications, Cambridge, UK, 11–13 December 2018; pp. 490–501.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/asi.21015
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Definitions and Problem
	The Counting Algorithms for TGP
	The Exact Algorithm
	The Overall Idea of the Algorithm
	Counting the Number of TGP in Each Subgraph
	Algorithm Summary and Computational Complexity

	The Estimation Algorithm

	Experiments and Discussion
	Datasets and Setup
	Experimental Results
	Results of the Exact Algorithm
	Results of the Estimation Algorithm

	Discussion
	Conclusions
	References

