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Abstract: In this paper, we study the reconstruction paradigm for Tsallis holographic dark energy
model using generalized Tsallis entropy conjecture with Hubble horizon in the framework of
f (G, T) gravity (G and T represent the Gauss-Bonnet invariant and trace of the energy-momentum
tensor). We take the flat Friedmann-Robertson-Walker universe model with dust fluid configuration.
The cosmological evolution of reconstructed models is examined through cosmic diagnostic
parameters and phase planes. The equation of the state parameter indicates phantom phase
while the deceleration parameter demonstrates accelerated cosmic epoch for both conserved as
well as non-conserved energy-momentum tensor. The squared speed of the sound parameter
shows instability of the conserved model while stable non-conserved model for the entire cosmic
evolutionary paradigm. The trajectories of the ωGT −ω′GT plane correspond to freezing as well as
thawing regimes for the conserved and non-conserved scenario, respectively. The r− s plane gives
phantom and quintessence dark energy epochs for conserved while Chaplygin gas model regime
for the non-conserved case. We conclude that, upon the appropriate choice of the free parameters
involved, the derived models demonstrate a self-consistent phantom universe behavior.

Keywords: dark energy; f (G, T) gravity; cosmic diagnostic parameters

1. Introduction

The current cosmic accelerated expansion manifests the spectacular development in modern
cosmology. It has been suggested through numerous cosmological observational schemes that the
phenomenon behind this marvelous cosmic expanding paradigm is the rapid accelerated scenario
referred to exotic force. This type of force accommodates repulsive nature with large negative pressure,
dubbed as dark energy (DE). This exotic energy is assumed to determine the ultimate fate of the cosmos
but its enigmatic traits are still not settled. There are mainly two approaches to justify perplexing
source causing this cosmic accelerating expansion. One approach is to modify the matter part yielding
dynamical DE models and another choice is to modify the geometric part of the Einstein-Hilbert (EH)
action leading to modified theories of gravity (see for review [1]).

The holographic dark energy (HDE) model has been found to be a promising candidate to resolve
the perplexing DE puzzle. This is based on a holographic principle underlying the quantum features
of the black hole (BH) [2]. Cohen et al. [3] used this idea to establish a relationship between UV and
IR-cutoffs for analyzing the speculation of BH formation. The energy density of HDE is defined as [4]

ρhde = 3c2m2
pL−2, (1)

where mp and L represent reduced Planck mass and IR-cutoff, respectively. Karami and Khaledian [5]
explored HDE as well as new agegraphic DE in the context of f (R) gravity and observed a
transition from quintessence to phantom phase for entropy corrected reconstructed models. Houndjo
and Piattella [6] reconstructed the HDE f (R, T) model to analyze the current cosmic evolution.
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Daouda et al. [7] examined the HDE model for unifying outcomes of DE and dark matter in the
framework of teleparallel theory. Jawad et al. [8] studied the stability of HDE f (G) model for emergent,
logamediate and intermediate scale factors using Granda-Oliveros cutoff and found the stability for
intermediate scale factor only. Sharif and Zubair [9] reconstructed HDE as well as agegraphic DE
f (R, T) model which gives phantom and quintessence epochs of the derived model. Fayaz et al. [10]
investigated phantom and quintessence phases of cosmic evolution for reconstructed f (R, T) gravity
using Bianchi type-I universe model in the context of HDE as well as new agegraphic DE.

The HDE model (primary model) was developed by using Bekenstein entropy with IR-cutoff
as Hubble horizon but it fails to provide essential description for the evolutionary history of flat
Friedmann-Robertson-Walker (FRW) universe model [11–14]. To resolve this issue, numerous
physicists attempted to incorporate other cutoff values, probable interaction between cosmic regime,
different entropy versions or through manipulation of all the above choices [15,16]. A variety of
generalized entropy formalisms have also been developed in literature to interpret consequences of
gravitational as well as cosmological phenomenon [17–19]. Recently, two new versions of stable HDE
model has been introduced in connection with generalized entropy conjecture [20,21].

The cornerstone behind these models underlies for the implementation of Tsallis statistics to
the horizon structure [22,23]. More precisely, the Tsallis entropy [24] is useful for understanding
strongly correlated system of elements (gravitational and cosmological system) in the context of
generalized statistical mechanics [25–27]. Tsallis and Citro established the fact that Bekenstein entropy
is not the only sequel of Tsallis statistics execution for the system. More recently, Tavayef and his
collaborators [28] proposed Tsallis HDE (THDE) based on Tsallis entropy as well as holographic
speculation for describing the late-time cosmic expansion paradigm. They also observed the
evolutionary history of the FRW universe as well as its approximate age and examined the instability
of the model based on Bekenstein entropy.

Harko et al. [29] introduced curvature-matter coupling known as f (R, T) gravity (R denotes Ricci
scalar) to study the evolutionary paradigm of the cosmos. Recently, Sharif and Ikram [30] proposed
such curvature-matter coupling in f (G) gravity dubbed as f (G, T) gravity. This coupling offers an
extra force due to non-zero covariant divergence of the energy-momentum tensor (EMT). Consequently,
the dust particle moves on non-geodesic trajectories contrarily to massive test particles. They explored
energy conditions and also reconstructed f (G, T) models as well as examined their stability [31].
Bhatti et al. [32] explored the role of physically viable f (G, T) models in the evolutionary paradigm of
relativistic compact stars. Shamir and Ahmad [33] reconstructed cosmologically viable f (G, T) models
using Noether symmetric approach to discuss cosmic expansion.

In reconstruction scenario, one compares relative energy densities of known cosmic solution
(i.e, DE model) and modified gravity to find reconstructed Lagrangian which reproduces the entire
cosmic history. Jamil and Saridakis [34] made correspondence between new agegraphic DE model
and Horava-Lifshitz gravity exhibiting consistent regime with observations for accelerating expansion
of the universe. Jawad and Chattopadhyay [35] analyzed the implications of pilgrim DE model
in the framework of Horava-Lifshitz f (R) gravity with Hubble horizon. Sharif and Nazir [36]
investigated generalized ghost pilgrim DE in f (T ) gravity (T denotes torsion scalar) to prevent
BH formulation. They also explored cosmic evolutionary regime of reconstructed f (T , TG) models
(TG indicates teleparallel equivalent to GB invariant) using different forms of scale factors [37]. Kleidis
and Oikonomou [38] investigated entire cosmic evolutionary paradigm using scalar-tensor theory,
specifically for single and two scalar theories. Recently, Ghaffari and his collaborator [39] analyzed
THDE using Tsallis generalized entropy, holographic conjecture with IR-cutoff as Hubble horizon in
the framework of Brans-Dicke (BD) theory.

In this paper, we establish reconstruction scenario for THDE model in the context of f (G, T)
gravity with Hubble horizon and generalized Tsallis entropy conjecture using power-law solution of
the scale factor. The paper is organized in the following format. In the next section, we present basic
terminologies of f (G) gravity and THDE model and establish reconstruction paradigm between the
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corresponding physical entities. Section 3 is devoted to analyze cosmic evolutionary regime using
cosmological diagnostics and phase planes. Finally, we conclude our results in the last section.

2. Reconstruction of THDE f (G, T) Models

In this section, we develop the reconstruction paradigm for Tsallis holographic DE in the
framework of f (G, T) gravity. This theory is a more intriguing approach to study cosmic evolutionary
regime as it incorporates curvature-matter coupling in modified Gauss-Bonnet gravity. The motivation
behind this theory comes from string theory which can effectively elaborate late-time cosmic phase
transitions. There appears an extra force due to non-conserved behavior of matter configuration which
deviates the motion of test particles on the geodesic/non-geodesic path as compared to f (R) or f (T)
models. The action of f (G, T) gravity is given by [30]

S =
∫

d4x
√
−g
(

R + f (G, T)
2κ2 + Lm

)
, (2)

where coupling constant κ2 = 1 and Lm denote matter Lagrangian density. The corresponding field
equations are

Rαρ −
1
2

Rgαρ = κ2Tαρ +
1
2

gαρ f (G, T)− (Tαρ + Θαρ) fT(G, T)

+ (4RχρRχ
α − 2RRαρ + 4Rαχρη Rχη − 2Rχηγ

α Rρχηγ) fG(G, T)

+ (4Rαρ − 2Rgαρ)� fG(G, T) + 2R∇α∇ρ fG(G, T) (3)

− 4Rχ
ρ∇α∇χ fG(G, T)− 4Rχ

α∇ρ∇χ fG(G, T)

+ 4gαρRχη∇χ∇η fG(G, T)− 4Rαχρη∇χ∇η fG(G, T),

where Θαρ = gαξ(
δTαξ

δgαρ ) and � = ∇2 = ∇η∇η represents d’Alembert operator whereas ∇η , fG(G, T)
and fT(G, T) denote covariant derivative, derivative of generic function with respect to G and T,
respectively. The covariant divergence of the above equation gives

∇αTαρ =
fT(G, T)

1− fT(G, T)
[(Θαρ + Tαρ)∇α ln fT(G, T)− 1

2
gαρ∇αT +∇αΘαρ]. (4)

The corresponding field equations for perfect fluid configuration using flat FRW universe yield

3H2 = ρe f f = ρ + ρGT , −(2Ḣ + 3H2) = Pe f f = P + PGT , (5)

where

ρGT =
1
2

f (G, T) + (ρ + P) fT(G, T)− 1
2

G fG(G, T) + 12H3Ġ fGG(G, T)

+ 12H3Ṫ fGT(G, T), (6)

PGT = −1
2

f (G, T) +
1
2

G fG(G, T)− 8H(Ḣ + H2)(Ġ fGG(G, T)

+ Ṫ fGT(G, T))− 4H2(Ġ2 fGGG(G, T) + 2ĠṪ fGGT(G, T) (7)

+ T̈2 fGTT(G, T) + G̈ fGG(G, T) + T̈ fGT(G, T)),

dot indicates derivative with respect to cosmic time t while G = 24H2(H2 + Ḣ) and T = ρ − 3P.
The conservation Equation (4) for perfect fluid configuration turns out to be

ρ̇ + 3H(ρ + P) =
−1

1− fT(G, T)
[(Ṗ +

1
2

Ṫ) fT(G, T) + (ρ + P)∂t fT(G, T)]. (8)
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The energy density of HDE (1) depends on the entropy-area relation A ∼ S ∼ L2, while A = 4πL2

denotes the area of horizon. Motivated by holographic principle, Cohen et al. [3] established a
relationship between the entropy of system (S), IR-cuttoff (L) and UV-cutoff (Λ) as

L3Λ3 ≤ S
3
4 . (9)

Tsallis and Citro [25] suggested that the HDE can be redefined through the modification in horizon
entropy of BH using quantum phenomenology as

Sµ = γAµ, (10)

here γ and µ denote arbitrary constant and non-additivity parameter, respectively. Combining
inequality (9) with (10), one gets

Λ4 ≤ (γ(4π)µ)L2µ−4, (11)

where Λ4 is the vacuum energy density in the context of HDE hypothesis [40]. Using the above
inequality, the energy density of THDE is defined as

ρthde = BL2µ−4, (12)

here B is unknown parameter [40]. By choosing the simplest IR-cutoff as Hubble horizon (L = H−1),
the corresponding energy density becomes

ρthde = BH4−2µ, (13)

Consequently, the equation of state (EoS) parameter for THDE density in the context of DE
dominated universe becomes

ωthde = −1 +
(2µ− 4)Ḣ

3H2 . (14)

It is observed that Ḣ < 0 for the entire cosmic history. Therefore, the universe may behave
phantom-like for µ > 2 and non-phantom elsewhere.

Now, we reconstruct THDE f (G, T) model using correspondence scheme in the framework of
perfect fluid configuration with dust case (P = 0). For the sake of simplicity, we take specific form of
the generic function [41]

• f (G, T) = f1(G) + f2(T),
• f (G, T) = F(G) + ηT,

corresponding to conserved as well as non-conserved EMT paradigm.

2.1. Conserved EMT Based Reconstruction

We consider the generic function of the following form

f (G, T) = f1(G) + f2(T), (15)

which involves minimal coupling of curvature and matter contents with some modification to f (G)

gravity. This specific form of generic function indicates that the interaction (coupling) is purely
gravitational. This form of generic function can easily be handled and elaborate more effectively
the current cosmic expansion. Moreover, the reconstruction framework demonstrated the posteriori
that such developed models are physically viable [41–44]. The field equations corresponding to
Lagrangian (15) for dust fluid yields

3H2 = ρe f f = ρ + ρGT , −(2Ḣ + 3H2) = Pe f f = PGT , (16)
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where

ρGT =
1
2

f1(G) +
1
2

f2(T) + ρ f2T(T)−
1
2

G f1G(G) + 12H3Ġ f1GG(G), (17)

PGT = −1
2

f1(G)− 1
2

f2(T) +
1
2

G f1G(G)− 4H[2(Ḣ + H2)Ġ + HG̈]

× f1GG(G)− 4H2Ġ2 f1GGG(G). (18)

The associated conservation Equation (8) reduces to

ρ̇ + 3Hρ =
−1

1− f2T(T)
[
1
2

Ṫ f2T(T) + T∂t f2T(T)]. (19)

The Lagrangian (15) shows consistency with standard continuity equation if one takes the right
hand side of Equation (19) to be zero

ρ̇ + 3Hρ = 0 =⇒ ρ = ρ0(τ − t)−3m, (20)

with constraint
f2T(T) + 2T f2TT(T) = 0, (21)

which yields f2(T) as
f2(T) = η1T

1
2 + η2, (22)

where η1 and η2 are integration constants.
To establish reconstruction paradigm through correspondence scheme, we equate

Equations (13) and (17) using constraint on f2(T) given in (22). The resulting differential equation in
f1(G) is given as follows

1
2

f1(G)− 1
2

G f1G(G) + 12H3Ġ f1GG(G) + η1T
1
2 +

1
2

η2 = BH4−2µ. (23)

To solve this differential equation, we consider the power-law solution for the scale factor as

a(t) = a0(τ − t)m, τ > t, m > 0, (24)

where a0 and τ denote present day value of the scale factor and finite future singularity time. This scale
factor is incredibly perceptible to categorize diverse phase of the evolving universe. It indicates
accelerated epoch for m > 1 whereas decelerated era for 0 < m < 1 incorporating dust for m = 2

3 and
radiation dominated phase for m = 1

2 . Using relation (24), the expressions for Hubble parameter, its
derivative, GB invariant, energy density and pressure in terms of cosmic time t are

H =
−m

τ − t
, Ḣ =

−m
(τ − t)2 , G =

24m3(m− 1)
(τ − t)4 ,

ρGT = B(
−m

τ − t
)4−2µ, PGT =

m(2− 3m)

(τ − t)2 . (25)

Since Ḣ < 0, the solution (24) indicates quintessence phase of cosmos. Moreover, the above
relations of energy density and pressure represent that the cosmic evolutionary regime bears finite-time
future singularity of type III as t→ τ, i.e., both energy density and pressure diverge whereas the scale
factor remains finite as t→ τ. Using Equations (24) in (23), we obtain
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G2 f1GG(G) +
(m− 1)G

4
f1G(G)− m− 1

4
f1(G)− m− 1

2
η1d

×
(

G
24m3 (m− 1)

) 3m
8
− m− 1

4
η2 + B(

m− 1
2

)

×
(

−mG
1
4

24m3 (m− 1)
1
4

)4−2µ

= 0, (26)

where d =
√

ρ0 (ρ0 is the integration constant), leading to the solution

f1(G) = c1G + c2G
−1
4 m+ 1

4 +
1

12(m + 3)
[3−µBm6

−µ
2

(
−m

6(m3(m− 1))
1
4

)−2µ

×
(
(

µ

2
)−1 + (

−µ

2
+

m
4
+

3
4
)−1
)

G1− µ
2 + 24dη1(m− 1)6

m
8 3
−m

4

×
(

m3(m− 1)
)−3m

8
(

2−m(
3m
8
− 1)−1 − 76

−m
4 (

5m
8
− 1

4
)−1
)

G
3m
8

− 12(m− 1)η2

(
1− (

m
4
− 1

4
)−1
)
], (27)

where c1 and c2 are integration constants. Consequently, the reconstructed THDE f (G, T) model is
obtained by substituting Equations (22) and (27) in (15)

f (G, T) = c1G + c2G
−1
4 m+ 1

4 +
1

12(m + 3)
[3−µBm6

−µ
2

(
−m

6(m3(m− 1))
1
4

)−2µ

×
(
(

µ

2
)−1 + (

−µ

2
+

m
4
+

3
4
)−1
)

G1− µ
2 + 24dη1(m− 1)6

m
8 3
−m

4

×
(

m3(m− 1)
)−3m

8
(

2−m(
3m
8
− 1)−1 − 76

−m
4 (

5m
8
− 1

4
)−1
)

G
3m
8

− 12(m− 1)η2

(
1− (

m
4
− 1

4
)−1
)
] + η1T

1
2 + η2. (28)

The graphical behavior of the reconstructed THDE f (G, T) model against red-shift parameter
z = (1 − a)a−1 is shown in Figure 1. We have chosen free parameters as c1 = 0.25, c2 = −1.5,
d = −3.125, B = −3.5, µ = 2.5, η1 = −1.5 and η2 = 3.2 for three particular choices of m = 1.7, 1.8, 1.9
throughout the graphical analysis for this model in the context of conservative EMT. It is noted
that our gravity theory restricts the choice of Tsallis parameter as µ = n + 1

2 ; n ∈ N (set of natural
numbers). It is observed that the reconstructed THDE f (G, T) model elapses gradually with red-shift
parameter. Moreover,

lim
z→0

f (G, T) = 0. (29)

which ultimately gives a realistic model.
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Figure 1. Plot of THDE f (G, T) model against z for m1 = 1.7 (red), m2 = 1.8 (green) and m3 = 1.9
(blue) for conserved EMT. The model shows gradual increase with convergence to zero from both sides,
indicates realistic one.

2.2. Non-Conserved EMT Based Reconstruction

Here, we take specific form of Lagrangian as

f (G, T) = F(G) + ηT, (30)

where η is an arbitrary constant. This particular form of generic function does not imply the
non-minimal curvature-matter coupling and can recover the ΛCDM model. Moreover, for η = 0,
our developed a model corresponds to f (G) gravity. The resulting field equations give

3H2 = ρe f f = ρ + ρGT , −(2Ḣ + 3H2) = Pe f f = PGT , (31)

where

ρGT =
3
2

ηT +
1
2

F(G)− 1
2

GFG(G) + 12H3ĠFGG(G), (32)

PGT = −1
2

ηT − 1
2

F(G) +
1
2

GFG(G)− 4H[2(Ḣ + H2)Ġ + HG̈]

× FGG(G)− 4H2Ġ2FGGG(G). (33)

Consequently, the conservation Equation (8) reduces to

ρ̇ + 3Hρ = (
−η

2− 2η
)Ṫ, (34)

which yields

ρ = ρ0 (τ − t)
−6m(−1+η)
−2+η . (35)

Equating Equations (13) and (32), it follows that

3
2

ηT +
1
2

F(G)− 1
2

GFG(G) + 12H3ĠFGG(G) = BH4−2µ. (36)
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Substituting Equations (24) and (35) in (36), we obtain

G2FGG(G) +
(m− 1)G

4
FG(G)− m− 1

4
F(G)−

(
G

24m3 (m− 1)

) 3m(η−1)
2 η−4

× 3(m− 1)
4

ηρ0 + B(
m− 1

2
)

(
−mG

1
4

24m3 (m− 1)
1
4

)4−2µ

= 0, (37)

which yields the solution as

F (G) = c1G + c2G
−1
4 m+ 1

4 +
1

252
(−mBG1− µ

2

(
−m

1
4

12(m− 1)
1
4

)−2 µ

× ((mη2(21m− 17) + η(−45m2 + 53m− 8) + (24m2 − 38m

+ 8))2−µ6
−3µ

2 + 2η2864−
µ
2 ) + 36 (m− 1) 6−

m(η−1)
2 η−4 (2µ−m− 3)

×
(

1
m3 (m− 1)

) 3m(η−1)
2η−4

ηρ0G
3m(η−1)

2 η−4 48
−m(η−1)

η−2 (η − 2)2 µ)

×
(
−m

2
+ µ− 3

2

)−1 (
(m− 1

7
)η − 8

7
m +

2
7

)−1
µ−1

×
((

m− 2
3

)
η −m +

4
3

)−1
.

The corresponding reconstructed THDE f (G, T) model becomes

f (G, T) = c1G + c2G
−1
4 m+ 1

4 +
1

252
(−mBG1− µ

2

(
−m

1
4

12(m− 1)
1
4

)−2 µ

× ((mη2(21m− 17) + η(−45m2 + 53m− 8) + (24m2 − 38m

+ 8))2−µ6
−3µ

2 + 2η2864−
µ
2 ) + 36 (m− 1) 6−

m(η−1)
2 η−4 (2µ−m− 3)

×
(

1
m3 (m− 1)

) 3m(η−1)
2η−4

ηρ0G
3m(η−1)

2 η−4 48
−m(η−1)

η−2 (η − 2)2 µ)

×
(
−m

2
+ µ− 3

2

)−1 (
(m− 1

7
)η − 8

7
m +

2
7

)−1
µ−1

×
((

m− 2
3

)
η −m +

4
3

)−1
+ ηT.

The plot of this model against z is shown in Figure 2. We have taken free parameters as c1 = −1.5,
c2 = −0.5, ρ0 = −0.125, B = −1.5, µ = 2.5 and η = −1.5 for three specific values of m = 1.8, 2.1, 2.4
giving red, green and blue curves throughout the analysis for non-conserved EMT regime. This model
demonstrates gradual decline as z elapses. Also, f (G, T) → 0 as z → 0 which specifies the realistic
phenomenon of the desired model.
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Figure 2. Plot of THDE f (G, T) model against z for m1 = 1.8 (red), m2 = 2.1 (green) and m3 = 2.4
(blue) for non-conserved EMT. In this case, the developed model shows reverse behavior as compared
to conserved one which coincides with it for late-time phase of redshift parameter.

3. Cosmological Analysis

In this section, we analyze cosmic accelerated expansion paradigm using cosmological
diagnostics and phase planes for conserved as well as non-conserved EMT-based reconstructed
THDE f (G, T) models.

3.1. Cosmic Diagnostics Parameters for Conserved EMT

The EoS parameter is defined as

ωGT =
PGT
ρGT

=
PGT
ρthde

. (38)

Using Equations (17), (18) and (28) in (38), this parameter for reconstructed model is given as

ωGT =
−1

3GmB(m + 3)
[η1d

(
24 m4 − 24 m3

)−3m
8 6

m
4 +

µ
2 G

3m
8 3µ(−90m2

+ 126m− 36) + η1d3µ+ m
4 19

m
8 G

3m
8 6

1
2 µ
(

114 m4 − 114 m3
)− 3m

8
(54m2

− 198m + 144) + 3−µBG1− µ
2

(
− m

144 4
√

m3 (m− 1)

)−2 µ

192−µ(3m2

+ 2µm + 6µ) + η1d24
−3m

8

(
G

m3 (m− 1)

) 3m
8

3µ6
µ
2 (36m2 + 72m− 108)

+ 288 η2 (m− 1)3µ6
µ
2 + BG1− µ

2 2−µ

(
−m

48 4
√

m3 (m− 1)

)−2 µ

32−µ

× (5m− 12)]

(
−m 4
√

G
6 4
√

m3 (m− 1)

)2 µ

. (39)

Figure 3 gives the behavior of EoS parameter against z which indicates phantom epoch for current
as well as late-time cosmic evolution. Moreover, large negative EoS parameter leads to phantom-like
fate of the universe which may end up with a big-rip or remains consistent with the same current
accelerating status.
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Figure 3. Plot of EoS parameter against z for m1 = 1.7 (red), m2 = 1.8 (green) and m3 = 1.9 (blue) for
conserved EMT shows phantom regime of the universe.

The corresponding deceleration parameter is

q =
1
2
− 1

2GmB(m + 3)
[η1d

(
24 m4 − 24 m3

) −3m
8 6

m
4 +

µ
2 G

3m
8 3µ(−90m2

+ 126m− 36) + η1d3µ+ m
4 19

m
8 G

3m
8 6

1
2 µ
(

114 m4 − 114 m3
)− 3m

8
(54m2

− 198m + 144) + 3−µBG1− µ
2

(
− m

144 4
√

m3 (m− 1)

)−2 µ

192−µ(3m2

+ 2µm + 6µ) + η1d24
−3m

8

(
G

m3 (m− 1)

) 3m
8

3µ6
µ
2 (36m2 + 72m− 108)

+ 288 η2 (m− 1)3µ6
µ
2 + BG1− µ

2 2−µ

(
−m

48 4
√

m3 (m− 1)

)−2 µ

32−µ

× (5m− 12)]

(
−m 4
√

G
6 4
√

m3 (m− 1)

)2 µ

.

Figure 4 indicates negative value for deceleration parameter throughout evolutionary regime of
the universe. This shows that our non-conserved model ultimately exhibits accelerating phase of the
expanding cosmos.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-20

-15

-10

-5

0

z

q

Figure 4. Plot of deceleration parameter versus z for m1 = 1.7 (red), m2 = 1.8 (green) and m3 = 1.9
(blue) predicts accelerating phase for conserved EMT.
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The squared speed of sound parameter is given as

ν2
s =

ṖGT
ρ̇GT

=
ṖGT
ρ̇thde

. (40)

Its positive sign shows the stability whereas its negative measure confers instability of the
corresponding model. Substituting Equations (17), (18), (20) and (28) in (40), we obtain

ν2
s =

−1
6mG (−2 + µ) B (m + 3)

(η1d3
m
4 +µ19

m
8 G

3m
8 6

µ
2

(
114 m4 − 114 m3

)−3m
8

× (−81m3 + 297m2 − 216m) + η1d3µ6
µ
2 24

−3m
8

(
G

m3 (m− 1)

) 3m
8
(−54m3

− 108m2 + 162m) + η1d
(

24 m4 − 24 m3
)−3m

8 6
m
4 +

µ
2 G

3m
8 3µ(135m3 − 189m2

+ 54m) + G1− µ
2 3−µ

(
− m

144 4
√

m3 (m− 1)

)−2 µ

192−µ(6Bm2(µ− 2)

+ 2Bµ(m− 24)) + G1− µ
2

(
−m

48 4
√

m3 (m− 1)

)−2 µ

32−µ(6−µ3µµ2(4m

+ 12) + 2−µ(−20m + 48)))

(
−m 4
√

G
6 4
√

m3 (m− 1)

)2 µ

.

Figure 5 demonstrates unstable reconstructed THDE f (G, T) model for the entire
cosmic evolution. -1.0 -0.5 0.0 0.5 1.0 1.5

-25

-20

-15

-10

-5

0

z

Υ s2

Figure 5. Plot of ν2
s against z for conserved EMT for m1 = 1.7 (red), m2 = 1.8 (green) and m3 = 1.9

(blue) illustrates instability of the model.

Now, we analyze ωGT − ω′GT phase plane whereas ω′GT gives evolutionary mode of ωGT and
prime indicates derivative with respect to ln a. Caldwell and Linder [45] introduced this cosmological
plane to examine the quintessence DE models and subdivided it into thawing (ωGT < 0, ω′GT > 0)
and freezing (ωGT < 0, ω′GT < 0) regions. It is also observed that the freezing region demonstrates
more accelerating phase as compared to thawing for describing current cosmic expansion paradigm.
The cosmic trajectories of ωGT −ω′GT plane for particular choices of m are shown in Figure 6 which
gives freezing region supporting phantom regime of the universe.
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Figure 6. Trajectories of ωGT −ω′GT against z for conserved EMT for m1 = 1.7 (red), m2 = 1.8 (green)
and m3 = 1.9 (blue) shows freezing region which is more accelerating era of cosmos.

Sahni et al. [46] introduced two dimensionless parameters known as statefinders for eliminating
viable choice of DE models as

r =
...
a

aH3 , s =
r− 1

3(q− 1
2 )

. (41)

This plane is dubbed as r− s plane and describes different cosmic regimes such as it indicates
CDM limit for (r, s) = (1, 0) and ΛCDM regime for (r, s) = (1, 1). Furthermore, phantom and
quintessence DE eras are occupied by (r < 1, s > 0) phase while Chaplygin gas model through (r > 1,
s < 0) region. Figure 7 exhibits the graphical behavior of statefinders diagnostic pair that indicates
phantom and quintessence phases of the universe.-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

-20

-15

-10

-5

0

z

Ω GT
Figure 7. Trajectories of r− s plan against z for m1 = 1.7 (red), m2 = 1.8 (green) and m3 = 1.9 (blue)
shows phantom and quintessence phase of the universe for conserved EMT.

3.2. Cosmic Diagnostics Parameters for Non-Conserved EMT

The corresponding EoS parameter is given as
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ωGT =
−1

3 (m− 1) (3 ηm− 2 η − 3 m + 4) (7 ηm− η − 8 m + 2) (η − 2) BmG

× [3µ

(
−1

6
m 4
√

G
4
√

m3 (m− 1)

)2 µ

(ρ048−
m(η−1)

η−2

(
G

m3 (m− 1)

) 3m(η−1)
2(η−2)

× 6
ηµ−ηm−2 µ+m

2(η−2) (−576η − 432η3 + 72η4 + 864η2 + 3996mη3 − 13392m3

× η2 + 15336m2η2 − 9828m2η3 + 9396m3η3 + 3888mη − 756mη4

− 17172η3m2 + 2052m2η4 + 6192m3η − 2124m3η4 − 7776m2η

+ 4104m4η2 − 3132m4η3 − 1728m4η + 756m4η4 − 6912mη2)

+ ρ06
1
2

ηµ−ηm−2 µ+m
η−2

(
1

m3 (m− 1)

) 3
2

m(η−1)
η−2

G
3
2

m(η−1)
η−2 48−

m(η−1)
η−2 (216η4

+ 864η2 − 864η3 + 7452mη3 − 5832mη2 − 2268mη4 − 4860m4η3

+ 2268m4η4 + 11664m2η2 − 6696m3η2 + 15444m3η3 − 6372m3η4

+ 6156m2η4) + BG1− µ
2

(
−m

1
4

12(m− 1)
1
4

)−2 µ

2−µ6−µ(564m3 − 772m2

− 144m4 + 32− 32η2 + 96η − 184mµ + 203m2η3 + 342m4η − 48ηµ

− 1230m3η − 198m3η3 − 261m4η2 − 744mη + 63m4η3 − 68mη3

+ 288m3µη + 34mµη3 − 190mµη2 + 336mµη + 42m3µη3 − 76m2µη3

− 516m2µη − 174m3µη2 + 248m2µ− 981m2η2 − 96m3µ + 16η2µ

+ 870m3η2 + 1536m2η + 404mη2 + 348m2η2 − 64) + Bη3mG1− µ
2

× 864−
µ
2 6
−3µ

2

(
−m

1
4

72(m− 1)
1
4

)−2 µ

(−14mη3 + 8µη2 − 4µη3 + 28mη2

− 12m2η2 − 16η2 + 8η3 + 4mµη3 − 8mµη2 + 6m2η3) + 54 ρ048−
ηm−η−m

η−2

× 2304−(η−2)−1
6

ηµ−ηm−2 µ+m
2(η−2)

(
1

m3 (m− 1)

) 3m(η−1)
2(η−2)

η2G
3m(η−1)
2(η−2) m3)].

Figure 8 shows phantom paradigm for the entire evolutionary mode of the universe which leads
to big-rip or current accelerating phenomenology.-1.0 -0.5 0.0 0.5 1.0 1.5
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Ω GT
Figure 8. Plot of ωGT parameter against z for m1 = 1.8 (red), m2 = 2.1 (green) and m3 = 2.4 (blue)
shows phantom expansion for entire cosmic evolutionary regime in case of non-conserved EMT.
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The associated deceleration parameter turns out to be

q =
1
2
− (BmG)−1

(m− 1) (3 ηm− 2 η − 3 m + 4) (7 ηm− η − 8 m + 2) (η − 2)

× [3µ

(
−1

6
m 4
√

G
4
√

m3 (m− 1)

)2 µ

(ρ048−
m(η−1)

η−2

(
G

m3 (m− 1)

) 3m(η−1)
2(η−2)

× 6
ηµ−ηm−2 µ+m

2(η−2) (−576η − 432η3 + 72η4 + 864η2 + 3996mη3 − 13392m3

× η2 + 15336m2η2 − 9828m2η3 + 9396m3η3 + 3888mη − 756mη4

− 17172η3m2 + 2052m2η4 + 6192m3η − 2124m3η4 − 7776m2η

+ 4104m4η2 − 3132m4η3 − 1728m4η + 756m4η4 − 6912mη2)

+ ρ06
1
2

ηµ−ηm−2 µ+m
η−2

(
1

m3 (m− 1)

) 3
2

m(η−1)
η−2

G
3
2

m(η−1)
η−2 48−

m(η−1)
η−2 (216η4

+ 864η2 − 864η3 + 7452mη3 − 5832mη2 − 2268mη4 − 4860m4η3

+ 2268m4η4 + 11664m2η2 − 6696m3η2 + 15444m3η3 − 6372m3η4

+ 6156m2η4) + BG1− µ
2

(
−m

1
4

12(m− 1)
1
4

)−2 µ

2−µ6−µ(564m3 − 772m2

− 144m4 + 32− 32η2 + 96η − 184mµ + 203m2η3 + 342m4η − 48ηµ

− 1230m3η − 198m3η3 − 261m4η2 − 744mη + 63m4η3 − 68mη3

+ 288m3µη + 34mµη3 − 190mµη2 + 336mµη + 42m3µη3 − 76m2µη3

− 516m2µη − 174m3µη2 + 248m2µ− 981m2η2 − 96m3µ + 16η2µ

+ 870m3η2 + 1536m2η + 404mη2 + 348m2η2 − 64) + Bη3mG1− µ
2

× 864−
µ
2 6
−3µ

2

(
−m

1
4

72(m− 1)
1
4

)−2 µ

(−14mη3 + 8µη2 − 4µη3 + 28mη2

− 12m2η2 − 16η2 + 8η3 + 4mµη3 − 8mµη2 + 6m2η3) + 54 ρ048−
ηm−η−m

η−2

× 2304−(η−2)−1
6

ηµ−ηm−2 µ+m
2(η−2)

(
1

m3 (m− 1)

) 3m(η−1)
2(η−2)

η2G
3m(η−1)
2(η−2) m3)].

Figure 9 indicates that q < 0 leading to accelerating phase of cosmic expansion. The squared speed
of sound parameter in Figure 10 demonstrates that THDE f (G, T) model remains stable throughout
cosmic evolutionary regime. The evolutionary curves of ωGT −ω′GT phase plane in Figure 11 gives
thawing region which favors the phantom conjecture for the universe. Figure 12 presents the graphical
analysis of r− s phase plane indicating Chaplygin gas model regime. Through reconstruction scenario
using correspondence approach, we have developed viable f (G, T) models in the vicinity of THDE
which are capable to effectively describe current as well as late-time cosmic expansion. Moreover, in
principle, there is no need to fix a priori a flat universe, since both open and closed cosmos seem to
develop entire evolutionary cosmic phases with compatibility for observational data, for at least small
redshift domain.
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Figure 9. Plot of deceleration parameter against z for m1 = 1.8 (red), m2 = 2.1 (green) and m3 = 2.4
(blue) indicates accelerating cosmic era for non-conserved matter distributions.
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Figure 10. Squared speed of sound parameter against z for m1 = 1.8 (red), m2 = 2.1 (green) and
m3 = 2.4 (blue) shows stability of the model for current cosmic evolution while becomes unphysical
for late-time cosmic regime in case of non-conserved EMT.
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Figure 11. Trajectories of ωGT −ω′GT for m1 = 1.8 (red), m2 = 2.1 (green) and m3 = 2.4 (blue) indicates
more accelerating (freezing) phase as compared with thawing for non-conserved EMT.
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Figure 12. Trajectories of r− s phase plane for m1 = 1.8 (red), m2 = 2.1 (green) and m3 = 2.4 (blue)
performs Chaplygin gas model regime for non-conserved EMT.

4. Concluding Remarks

In this paper, we have analyzed some features of THDE model in the context of f (G, T) theory
of gravity. For this purpose, we have established reconstruction paradigm through correspondence
scenario for flat FRW universe using power-law scale factor. We have examined cosmic diagnostic
parameters and phase planes for our derived model. The results are summarized as follows.

• The reconstructed THDE f (G, T) model (Figure 1) exhibits increasing trend for conserved EMT
while inverse behavior for non-conserved EMT (Figure 2).

• The EoS parameter (Figures 3 and 8) demonstrates aggressive phantom regime of the universe
which might predict phantom universe to preclude the chance of BH formation. Hence, THDE
f (G, T) model supports DE phenomenon of cosmic expansion.

• The deceleration parameter represents accelerated phase for both conserved as well as
non-conserved EMT (Figures 4 and 9).

• The squared speed of sound parameter gives unstable model for the entire cosmological
evolutionary paradigm (Figure 5) while stability corresponds to non-conserved case (Figure 10).

• The trajectories of ωGT − ω′GT plane (Figures 6 and 11) indicate freezing (thawing) region for
conserved (non-conserved) EMT-based reconstruction.

• The curvatures of r − s plane illustrate phantom and quintessence epoch for conserved case
whereas Chaplygin gas model for the non-conserved EMT scenario (Figures 7 and 12).

We conclude that our reconstructed THDE f (G, T) models demonstrate consistency with
accelerated expanding phenomenon of the universe for appropriate choice of free parameters. It is
observed that both conserved as well as non-conserved EMT-based reconstructed models incline
towards the phantom-like universe (caused by aggressive phantom features which seize the BH
formation) to manifest its ultimate fate as big-rip or might be current accelerating phase. The EoS
parameter exhibits consistent mode with the current observational data [47] given as

ω = −1.028± 0.032 (Planck TT, TE, EE + LowE + lensing

+SNe + BAO).

This value have been achieved at 68% confidence level through implementation of various
observational techniques. We also observe that the cosmic diagnostic state-finder parameters for our
derived models are compatible with the most recent limits and constraint over the kinematics of the
universe [48,49]. Furthermore, the second non-conserved model is stable as well as well-behaved
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model as the squared speed of sound parameter is quite zero for past, present and some phase of
future regime. It only shows some unphysical situation for very very late-time cosmic expansion. It
is worth mentioning here that our results are consistent with those of reconstructed THDE model in
general relativity [28] as well as THDE BD model [39].
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