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Abstract: The computational applications of fuzzy sets are pervasive in systems with inherent
uncertainties and multivalued logic-based approximations. The existing fuzzy analytic measures
are based on regularity variations and the construction of fuzzy topological spaces. This paper
proposes an analysis of the general fuzzy measures in n-dimensional topological spaces with monoid
embeddings. The embedded monoids are topologically distributed in the measure space. The analytic
properties of compactness and homeomorphic, as well as isomorphic maps between spaces, are
presented. The computational evaluations are carried out with n = 1, considering a set of translation
functions with different symmetry profiles. The results illustrate the dynamics of finite fuzzy measure
in a monoid topological subspace.

Keywords: fuzzy sets; fuzzy measures; monoid topological subspace; compactness; computational
applications

1. Introduction

The fuzzy set theory has numerous applications in a diverse array of complex systems. Decision
making in information systems in the presence of uncertainties or incompleteness can be performed
by employing fuzzy sets [1–3]. The inherent uncertainties and imprecision of information can be
modeled by employing ordered fuzzy numbers, where the fuzzy ordering is formulated by using
trapezoidal structures [4]. In general, the fuzzy decision-making process involves computations on
multi-granular rough fuzzy sets [2]. The variations in granularities are reflected in the efficiency of
information aggregation and filtering. The convergence theory can be applied in analyzing fuzzy
inference techniques with various topological applications. In general, the formation of fuzzy sets
and fuzzy topology are constructed based on relational algebra, on a crisp set with an upper limit and
lower limit [1].

The hybridizations of fussy sets, lattices, and topology have resulted in the formation of various
structures of fuzzy topological spaces with different interpretations. In one approach, the fuzzy set
theory is applied to the topology in order to construct fuzzy topological spaces [5]. This formulation has
created the structures of L-topology based on lattice models. In a different approach, the topological
spaces are constructed based on the L-subset of the power set of any arbitrary set X [6]. Hence,
the topology based on the L-subset is called L-fuzzy topology, which is a distinct structure as
compared to L-topology [7]. An interrelationship exists between the fuzzy sets and the convexity of the
underlying spaces. The L-convex spaces are formulated based on a continuous and complete lattice [8].
The L-convex space supports the embedding of various categories of algebraic structures.

The analysis of compactness of the fuzzy sets and topological spaces is important for formulating
corresponding measures [9]. The degree of compactness and countability in L-fuzzy pretopological
spaces can be analyzed [10]. The formulation of pretopological spaces is based on the combination of
a non-distributive lattice and implication operator algebra. Recently, the graph theoretic view of the
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topology is applied for analyzing the physical lattice-like structures of the honeycomb networks of
physical systems [11]. The invariant parameters in the topologically characterized graph-like structures
are the topological indices and related connectivity polynomials.

The definitions of the fuzzy topological spaces are refined by incorporating two functors in
order to form a category preserving the fuzzy compactness [12]. The concept of the fuzzy ultrametric
is introduced based on the sets of probability measures in a supported space [13]. The measure is
constructed in a fuzzy metric space with a compact support. The measures of noncompact fuzzy
subsets in standard and fuzzy metric spaces are formulated [14]. The regularity of the null-additivity
of fuzzy measures on a metric space can be maintained, preserving the consistency of the respective
measures [15]. The fuzzy measure on any arbitrary topological space is constructed based on the
general Borel sets [16]. The measure preserves the monotone class of the Borel sets and may not be
finite in all cases. From the algebraic point of view, the measure on an Abelian group is constructed,
which is named as the Haar measure [17]. It is considered that Haar measurable groups are locally
compact in nature. The commutative convolution measure algebra is isomorphic to L1(G), with finite
dimensional involution representation [18]. If a space is not separable, then an uncountable number
of pairwise disjoint subsets exist, which are open and measurable on any locally compact Abelian
group [19].

This paper proposes the analysis and computational evaluations of topological fuzzy measures
in distributed monoid spaces. It is considered that the underlying space is n-dimensional and the
distributed embeddings of the monoids are arbitrary in the space. The topological fuzzy measures
are finite and can be applied on the subspaces under appropriate translations. The computation of
measure is performed in a 1D space under the influence of a set of translation functions with various
symmetry profiles. The computational evaluations illustrate that the computed measures exhibit
various covering and saturation effects, based on the incorporated beta control of the measure.

The rest of the paper is organized as follows. Section 2 presents the preliminary concepts. Section 3
presents definitions related to the presented model, and Section 4 presents a set of analytical properties.
Section 5 presents computational evaluations. Finally, Section 6 concludes the paper.

2. Preliminaries

Let X be any arbitrary set equipped with a binary relation (or operation) ∗ : X2 → X .
The structure (X, ∗) is called a group if the following axioms are maintained [20]:

∀x, y, z ∈ X, x ∗ (y ∗ z) = (x ∗ y) ∗ z,
∃e ∈ X : ∀x ∈ X, e ∗ x = x ∗ e = x,
∀x ∈ X, ∃x−1 ∈ X : x ∗ x−1 = x−1 ∗ x = e

(1)

The group (X, ∗) is called Abelian if ∀x, y ∈ X, x ∗ y = y ∗ x. If X represents an underlying space,
then a corresponding topology τ ⊆ P(X) can be constructed on it. The topology τ should maintain
the following axioms (I represents the index set) [21]:

∀Ai ∈ τ, i ∈ I, ∪
i∈I

Ai ∈ τ,

∀Ai, Ak ∈ τ, Ai ∩ Ak ∈ τ,
{φ, X} ⊂ τ

(2)

A space is called a sigma measurable if it can be equipped with a function,
µ : (Ai ⊂ X)→ [0,+∞] . A measure is finite if ∀Ai ⊂ X, µ(Ai) < +∞. A fuzzy set is a set equipped
with a nonbinary discrete measure, given as (X, µF), such that µF : X → [0, 1] . A fuzzy set can have
a support built into it.
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3. Definitions

3.1. Groupoid Space

Let X be any arbitrary point set and A ⊂ X is equipped with an operation in n-dimensional space
as ox : A2n → An , such that ∀a, b ∈ An, ∃c ∈ An, where c = aoxb. The (Xn, ox) is a groupoid space.

3.2. Distributed Monoid Space

Let (Xn, ox) be a groupoid space and M = {Bi ⊂ An : i ∈ I ⊂ Z+}, where Bi ∩ Bk = φ if i 6= k and
∪

i∈I
Bi = An. The M is a distributed monoid (DM) if ∀Bi ∈ M the following properties are satisfied [20]:

∀a, b, c ∈ Bi, (aoxb)oxc = aox(boxc),
∀a ∈ Bi, ∃ei ∈ Bi : aoxei = eioxa = a

(3)

3.3. Topological Distributed Monoid (DM)

Let (Xn, ox) be a groupoid space with a distributed monoid M. The (Xn, M, τ) is a topological
DM space if the following topological properties are satisfied in topology τ on Xn:

τ ⊆ P(Xn), M ⊂ τ,
τ\M 6= φ

(4)

3.4. Topological Translation

Let (Xn, M, τ) be a topological DM space. The g : Xn → R is a real valued translation function in
(Xn, M, τ), such that ∀a ∈ Xn, g(a) ∈ (−∞, 0) ∪ (0,+∞).

3.5. Fuzzy Topological Measure

A fuzzy topological measure in (Xn, M, τ) is defined as µτ : τ → [0, 1] , such that

µτ(φ) = 0, ∃βi ∈ (1,+∞),
∀Di ∈ τ, µτ(Di) =

1
βi

∑
∀a∈Di

|g(a)−1| (5)

The scaling factor βi is a control parameter for the quantization in a fuzzy range for any arbitrary
translation function in the topological DM space.

3.6. Local Isomorphism

If there is a bijection f : M→ M in (Xn, M, τ), such that ∀Bi ∈ M, ∃Bk ∈ M : Bi = f−1(Bk), then
f (.) is a local isomorphism.

3.7. Local Homeomorphism

If there is a bijection h : Mx → My in (Xn, Mx, τx) and (Yn, My, τy), respectively, such that ∀Bi ∈
Mx, ∃Bk ∈ My : Bi = h−1(Bk), then h(.) is a local homeomorphism.

4. Analytical Properties

Theorem 1. In (Xn, M, τ), the topological fuzzy measure in the topological DM subspace is countably additive
as µτ( ∪

i∈I
Bi) = ∑

i∈I
µτ(Bi).

Proof. Let (Xn, M, τ) be a topological DM space. Let ∀Bi ∈ M, ∃βi ∈ (1,+∞), such
that µτ(Bi) = βi

−1 ∑
∀a∈Bi

|g(a)−1|, where 0 < µτ(Bi) < 1. As [i 6= k]⇒ [Bi ∩ Bk = φ] , thus
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µτ(M) = ∑
i∈I

[βi
−1 ∑
∀a∈Bi

|g(a)−1|]. However, in the distributed monoid subspace, ∑
i∈I

µτ(Bi) =

∑
i∈I

[βi
−1 ∑
∀a∈Bi

|g(a)−1|]. Hence, µτ( ∪
i∈I

Bi) = ∑
i∈I

µτ(Bi) in the topological DM space (Xn, M, τ). �

Theorem 2. In the (Xn, M, τ) space ∃D, E ∈ Xn, such that µτ(D ∩ E) = 0 and µτ(D ∪ E) ∈ (0, 1).

Proof. Let (Xn, M, τ) be a topological DM space, such that ∃D, E ⊂ Xn, where {D, E} ⊂ τ. Let
{D, E}
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As Xn 6= φ and 0 < µτ(Xn) ≤ 1, thus µτ(D ∪ E) < 1, where g(.) ∈ R\{−∞, 0,+∞}. Hence,
µτ(D ∪ E) ∈ (0, 1) in the topological DM space (Xn, M, τ). �

Lemma. In the (Xn, M, τ) space, the monotonicity of the topological fuzzy measure is preserved as
µτ(τ) > µτ(M).

Proof. In the (Xn, M, τ) space, τ 6= φ, and it results in the condition that µτ(τ\{φ}) ∈ (0, 1]. However,
τ\M 6= φ and µτ(τ\M) ∈ (0, 1) in the underlying topological DM space. Hence, µτ(τ) > µτ(M),
preserving the monotonicity of the topological fuzzy measure in the (Xn, M, τ) space. �

Theorem 3. In the (Xn, M, τ) space, the topological fuzzy measure of a monoid is bounded as
µτ( ∪

i∈I
Bi) < ∑

i∈I
µτ(Bi).

Proof. Let (Xn, M, τ) be a topological DM space, where M =
{

Bi : ∀Bi ∈ M
}

and Bi = Bi ∪
∂Bi. As M ⊂ τ, thus ∀Bi ∈ M, ∂Bi ⊂ Bc

i ⊂ Xn in the topological DM space. Hence,
[∂Bi 6= φ]⇒ [µτ(Bi ∈ M) > µτ(Bi ∈ M)] in the respective space. �

Theorem 4. If (Xn, M, τ) is a Hausdorff space, then ∃D, E ∈ τ, such that µτ(D) = µτ(E) > 0.

Proof. Let (Xn, M, τ) be a Hausdorff topological DM space and ∃D, E ∈ τ, such that D ∩ E = φ.
However, if |D| = |E| = 1, then {D, E} ⊂ τ\M, where M ⊂ τ. As the topological translation
maintains the property that ∀a ∈ D ⊂ Xn : g(a) ∈ (−∞, 0) ∪ (0,+∞), thus µτ(D ∪ E) > 0 if
D ∪ E 6= φ. However, if |D| = |E| = 1 and a ∈ D, b ∈ E, then µτ((D ∪ E)\{a, b}) = 0. Hence,
∃βD, βE : βD 6= βE and βD, βE ∈ (1,+∞), such that µτ(D) = µτ(E) > 0. �

Theorem 5. In the two Hausdorff topological DM spaces (Xn, Mx, τx) and (Yn, My, τy), the monoid subspaces
are homeomorphic if t : Yn → Xn and (hot)(My) = (hot)−1(My).

Proof. Let (Xn, Mx, τx) and (Yn, My, τy) be two Hausdorff topological DM spaces, and t : Yn → Xn

be any arbitrary function, such that the following property is maintained:

S = ∪
i∈I

(Bi ∈ Mx),

T = ∪
k∈I

(Bk ∈ My),

∀a ∈ T, ∃b ∈ S : a = t−1(b),
[{b, c} ⊂ S ∧ (b 6= c)]⇒ [t−1(b) 6= t−1(c)],
t(T) ⊆ S

(6)

Furthermore, if ∀Bi ∈ Mx, ∃Bk ∈ My : t−1(Bi) = Bk, then t(My) = h−1(My). Hence, (hot)(My) =

(hot)−1(My) in the (Xn, Mx, τx) and (Yn, My, τy) Hausdorff topological DM spaces. �
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Theorem 6. In the two Hausdorff topological DM spaces (Xn, Mx, τx) and (Yn, My, τy) equipped with
t : Yn → Xn , the monoid homeomorphic subspaces are measure equivalent as µτ(t−1(S)) = λµτ(h(S)), where
λ > 0 and, S = ∪

i∈I
(Bi ∈ Mx).

Proof. Let (Xn, Mx, τx) and (Yn, My, τy) be two Hausdorff topological DM spaces and t : Yn → Xn ,
such that (hot)(My) = (hot)−1(My). As S = ∪

i∈I
(Bi ∈ Mx) 6= φ, thus µτ(S) > 0 in the monoid subspace.

This indicates that µτ(h(S)) > 0 as h(S) 6= φ. Let ∃λ > 0, such that µτ(S) = λµτ(h(S)). However,
as (hot)(My) = (hot)−1(My) in the spaces, so t−1(S) = h(S). Hence µτ(t−1(S)) = λµτ(h(S)). �

Theorem 7. (Xn, M, τ) is at least a Haar measurable commutative space if the inverses exists.

Proof. Let (Xn, M, τ) be a topological DM space. As M is a monoid subspace, thus ∀Bi ∈ M, ∃ei ∈ Bi,
such that eioxE = E, where E ⊆ Bi. In the monoid subspace, µτ(eioxBi) = [µτ(Bi) ∈ (0, 1)]. However,
if eioxE = E, then Eoxei = eioxE in M ⊂ P(Xn). Hence, (Xn, M, τ) is at least a Haar measurable
commutative space if ∀Bi ∈ M, ∀a ∈ Bi, ∃a−1 ∈ Bi : aoxa−1 = a−1oxa = ei. �

Theorem 8. If X is compact, then lim
i→+∞

µτ( ∪
i∈I

Bi)→ 1 .

Proof. Let X be a compact set and (Xn, M, τ) be a compact topological DM space. If C is a cover
of Xn, then Xn ⊆ ∪

m∈I
(Dm ∈ C). Let M ⊂ C, such that |Xn\ ∪

i∈I
Bi| ∈ (0,+∞). This indicates that

lim
i→+∞

|Xn\ ∪
i∈I

Bi| → 0 in (Xn, M, τ). However, 0 < µτ(Xn ∈ τ) ≤ 1 in the respective compact space,

where Xn 6= φ. Hence, lim
i→+∞

µτ( ∪
i∈I

Bi)→ 1 in the compact (Xn, M, τ). �

Theorem 9. In the (Xn, M, τ) space µτ(D) > 0, where D =

(
∪

i∈I
Bi

)c
.

Proof. Let (Xn, M, τ) be a topological DM space. If D = ∪
i∈I

(Bi ∈ M) in the space, then Xn\D 6= φ,

because τ\M 6= φ. This indicates that in (Xn, M, τ), the closed space Dc 6= φ, which results in
µτ(Dc) > 0. �

Theorem 10. In the (Xn, Mx, τx) and (Yn, My, τy) locally homeomorphic topological DM spaces,
∑
i∈I

µτ(Bi ∈ Mx) = µτ( ∪
k∈I

h−1(Bk ∈ My)).

Proof. Let (Xn, Mx, τx) and (Yn, My, τy) be two locally homeomorphic topological DM spaces.
Thus, ∀Bk ∈ My, ∃Bi ∈ Mx : Bi = h−1(Bk) and ∪

i∈I
(Bi ∈ Mx) = ∪

k∈I
h−1(Bk ∈ My). This results in

∑
i∈I

µτ(Bi ∈ Mx) = µτ( ∪
k∈I

h−1(Bk ∈ My)). �

Theorem 11. In the (Xn, Mx, τx) and (Yn, My, τy) locally isomorphic as well as homeomorphic topological
DM spaces, µτ( ∪

i∈I
(Bi ∈ Mx)) = µτ( ∪

k∈I
(ho f )−1(Bk ∈ My)).

Proof. Let (Xn, Mx, τx) and (Yn, My, τy) be two locally isomorphic as well as homeomorphic
topological DM spaces. This indicates that ∀Bi ∈ Mx, ∃Bu ∈ Mx : Bi = f−1(Bu) and ∃Bk ∈ My : Bi =

(ho f )−1(Bk). Thus, in the two topological DM spaces ∪
i∈I

(Bi ∈ Mx) = ∪
k∈I

(ho f )−1(Bk ∈ My), which

results in µτ( ∪
i∈I

(Bi ∈ Mx)) = µτ( ∪
k∈I

(ho f )−1(Bk ∈ My)). �

Theorem 12. The topological fuzzy measure is consistent under compression if ∀Di ∈ τ\{φ}, βs >

sup({βi : Di ∈ τ\{φ}}) and, µτ(Di) =
1
βs

∑
∀a∈Di

|g(a)−1|.
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Proof. Let (Xn, M, τ) be a topological DM space equipped with fuzzy measure µτ(.). The translation
function maintains ∀a ∈ Xn, |g(a)−1| ∈ (0,+∞). Let the topological DM space be ∀Di ∈ τ, βs =

sup({βi : Di ∈ τ\{φ}}) + (ε > 0), where µτ(Di) ∈ [0, 1]. As a result, the following condition will be
maintained by compressed measure:

∀Di ∈ τ\{φ},
1
βs

∑
∀a∈Di

|g(a)−1| < 1
βi

∑
∀a∈Di

|g(a)−1| (7)

However, ∀Di ∈ τ\{φ}, µτ(Di) ∈ (0, 1] in (Xn, M, τ).
Hence, 0 < 1

βs
∑
∀a∈Di

|g(a)−1| < 1, maintaining consistency under compression. �

5. Computational Evaluations

The computational evaluations are carried out in a 1D topological DM space with distributed
monoid embedding, such that ∀a ∈ X ⊂ R, a ∈ (−∞,+∞). The computational model of measure
in the distributed monoid considers, M = {(A ⊂ X, ox)}, where A = {a : ∀a ∈ [−1, 1]\{0}}, such
that ∀a, b ∈ A : aoxb⇒ [a.b ∈ A] . The measures are numerically computed by employing translation
functions having various profiles, such as (a) inverse translation (g(a)−1 = a−1), (b) fixed coefficient
translation (g(a)−1 = ka, k ∈ R+), and (c) nonlinear periodic translation (g(a)−1 = cos−1(ka) 6= 0)
in a topological DM space. The numerical datasets are generated by software written in C language
with installed Math-libraries. The samples are collected in datasets covering entirely positive and
negative domains. The resulting profiles of the translation functions of different categories with various
symmetries are presented in Figures 1–3.

The profile of inverse translation, presented in Figure 1, illustrates that the translation has
a higher concentration zone around the origin, and appears to have symmetric distribution. The fixed
coefficient translation profiles presented in Figure 2 consider two coefficient values, and the resulting
profiles illustrate that the variations in translations have approximately symmetric distributions in the
domain. The inverse and fixed coefficient translations do not cover a null (zero) translation point (i.e.,
translations are always in the non-zero positive range). The profile of the nonlinear periodic translation
is presented in Figure 3, which is asymmetric in nature, with a monotonic reduction of translation in
the domain. Moreover, the nonlinear periodic translation covers a null (zero) translation point (i.e.,
preserving translation invariant fixed point). The variations of the aggregate (sum) of translations
covering M = {(A, ox)} in different cases are presented in Figure 4.
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Figure 2. Profiles of modulus of multiplicative translation.
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Figure 4. Variations of aggregate functional translation for different categories.

The aggregated translation is much smaller in case of the fixed coefficient translations as compared
to the other categories of translations. The inverse translation has the highest aggregated value because
of the existence of a singularity at the origin. However, the nonlinear periodic translation exhibits
a moderately higher aggregated translation value.

The fuzzy measures are computed considering two cases, such as (1) deterministic measures
under sup(.) control, and (2) random measure under the control of randomized βi values maintaining
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conditions of fuzzy measures. The dynamics of the resulting fuzzy measures are presented in Figures 5
and 6.
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The sup(.) control considers a fixed beta value as a control parameter, based on a set of translation
values, and it exerts a compressive effect on the distribution of measures. As a result, the domain of
distribution of the fuzzy measure tends to cover [0, 1] entirely, as presented in Figure 5. Moreover,
the covering measure distribution is nonlinear in nature. However, the randomized fuzzy measures are
computed based on randomly generated beta control values, depending on the respective individual
translation profiles. As a result, it generates a nonlinear measure surface with a saturation effect.
The saturation effect depends upon two factors, namely (1) randomized distribution of the βi control
parameter and (2) variations in the localized random measures based on distinctive individual βi
values. The variations of the βi control parameters are presented in Figure 7. As the randomized
control parameter is monotonically increased, the aggregated translation values incorporate saturation
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at a comparatively lower limit boundary (<1). However, both of the fuzzy measures are consistent in
nature within the space.
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6. Conclusions

The analytic understanding of topological fuzzy measures facilitates the construction of specific
measure spaces along with its applications. The analysis and computation of topological fuzzy
measures vary if the underlying spaces embed monoid algebraic structures. In this paper, the concept of
topologically distributed monoid spaces is presented, and a set of novel theorems is constructed in order
to gain analytical insights into fuzzy measures in such spaces. The fuzzy measure of the distributed
monoid spaces can be computed with diverse distribution profiles covering the entire measure range,
using a specific control parameter. The measures are finite in nature and the equivalent topological
fuzzy measures in two locally homeomorphic monoid spaces can be formulated if the underlying space
is Hausdorff. The proposed topological fuzzy measure is consistent under compression. In compact
spaces, the covering topological fuzzy measure of the distributed monoids preserves the limiting unity
measure. Furthermore, the minimal form of the fuzzy Haar measurability can be preserved in the
topological distributed monoid spaces under certain conditions. The minimal Haar measurability
of the proposed topological fuzzy measure considers the identity elements only. As a limiting case,
the proposed measure does not consider the existence of a group structure in the underlying space.
The topological fuzzy measures in the distributed monoid spaces can be computed under various
translations, generating a variety of measure distributions and covers.

Funding: The funding of this work is partly covered by Gyeongsang National University, Jinju, ROK.

Acknowledgments: The author would like to thank the editors and anonymous reviewers for their helpful
comments and suggestions.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Chen, B. β-Convergence theory of nets of fuzzy sets in fuzzy topological spaces. In Proceedings of the
International Conference on Machine Learning and Cybernetics, Hebei, China, 12–15 July 2009.

2. Xue, Z.A.; Han, D.J.; Lv, M.J.; Zhang, M. Novel three-way decisions models with multi-granulation rough
intuitionistic fuzzy sets. Symmetry 2018, 10, 662. [CrossRef]

3. Liu, D.; Chen, X.; Peng, D. Cosine distance measure between neutrosophic hesitant fuzzy linguistic sets and
its application in multiple criteria decision making. Symmetry 2018, 10, 602. [CrossRef]

4. Piasecki, K.; Hanckowiak, A.L. On approximation of any ordered fuzzy number by a trapezoidal ordered
fuzzy number. Symmetry 2018, 10, 526. [CrossRef]

5. Chang, C.L. Fuzzy topological spaces. J. Math. Anal. Appl. 1968, 24, 182–190. [CrossRef]

http://dx.doi.org/10.3390/sym10110662
http://dx.doi.org/10.3390/sym10110602
http://dx.doi.org/10.3390/sym10100526
http://dx.doi.org/10.1016/0022-247X(68)90057-7


Symmetry 2019, 11, 9 10 of 10

6. Höhle, U. Upper semicontinuous fuzzy sets and applications. J. Math. Anal. Appl. 1980, 78, 659–673.
[CrossRef]

7. Fang, J. Sums of L-fuzzy topological spaces. Fuzzy Sets Syst. 2005, 157, 739–754. [CrossRef]
8. Jin, Q.; Li, L. On the embedding of convex spaces in stratified L-convex spaces. Springer Plus 2016, 5, 1610.

[CrossRef] [PubMed]
9. Shi, F.G. A new definition of fuzzy compactness. Fuzzy Sets Syst. 2007, 158, 1486–1495. [CrossRef]
10. Shi, F.G.; Liang, C. Measures of compactness in L-fuzzy pretopological spaces. J. Intell. Fuzzy Syst. 2014, 26,

1557–1561.
11. Hussain, Z.; Munir, M.; Rafique, S.; Kang, S.M. Topological characterizations and index-analysis of new

degree-based descriptors of honeycomb networks. Symmetry 2018, 10, 478. [CrossRef]
12. Lowen, R. Fuzzy topological spaces and fuzzy compactness. J. Math. Anal. Appl. 1976, 56, 621–633. [CrossRef]
13. Savchenko, A.; Zarichnyi, M. Fuzzy ultrametrics on the set of probability measures. Topology 2009, 48, 2009.

[CrossRef]
14. Ban, A.I.; Gal, S.G. Measures of noncompactness for fuzzy sets in fuzzy topological spaces. Fuzzy Sets Syst.

2000, 109, 205–216. [CrossRef]
15. Song, J.; Li, J. Regularity of null-additive fuzzy measure on metric spaces. Int. J. Gen. Syst. 2003, 32, 271–279.

[CrossRef]
16. Wu, J.; Wu, C. Fuzzy regular measures on topological spaces. Fuzzy Sets Syst. 2001, 119, 529–533. [CrossRef]
17. Rudin, W. Measure algebras on abelian groups. Bull. Am. Math. Soc. 1959, 65, 227–247. [CrossRef]
18. Albar, S.F. Noncommutative convolution measure algebras with no proper L-ideals. Bull. Aust. Math. Soc.

1989, 40, 13–23. [CrossRef]
19. Ohrysko, P.; Wojciechowski, M.; Graham, C. Non-separability of the Gelfand space of measure algebras.

Ark. Mat. 2016, 54, 525–535. [CrossRef]
20. Herstein, I.N. Abstract Algebra, 3rd ed.; Wiley: Hoboken, NJ, USA, 1996.
21. Burgess, D.C.J. Analytical Topology, 1st ed.; Van Nostrand Reinhold Inc.: New York, NY, USA, 1966.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0022-247X(80)90173-0
http://dx.doi.org/10.1016/j.fss.2005.10.013
http://dx.doi.org/10.1186/s40064-016-3255-5
http://www.ncbi.nlm.nih.gov/pubmed/27652183
http://dx.doi.org/10.1016/j.fss.2007.02.006
http://dx.doi.org/10.3390/sym10100478
http://dx.doi.org/10.1016/0022-247X(76)90029-9
http://dx.doi.org/10.1016/j.top.2009.11.011
http://dx.doi.org/10.1016/S0165-0114(98)00055-4
http://dx.doi.org/10.1080/0308107031000107775
http://dx.doi.org/10.1016/S0165-0114(99)00080-9
http://dx.doi.org/10.1090/S0002-9904-1959-10322-0
http://dx.doi.org/10.1017/S0004972700003452
http://dx.doi.org/10.1007/s11512-016-0240-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminaries 
	Definitions 
	Groupoid Space 
	Distributed Monoid Space 
	Topological Distributed Monoid (DM) 
	Topological Translation 
	Fuzzy Topological Measure 
	Local Isomorphism 
	Local Homeomorphism 

	Analytical Properties 
	Computational Evaluations 
	Conclusions 
	References

