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Abstract: Modern cognitive psychologists believe that the decision act of cognitive bias on decision
results is universal. To reduce their negative effect on dual hesitant fuzzy decision-making,
we propose three weighting methods based on distribution characteristics of data. The main ideas are
to assign higher weights to the mid arguments considered to be fair and lower weights to the ones
on the edges regarded as the biased ones. The means and the variances of the dual hesitant fuzzy
elements (DHFEs) are put forward to describe the importance degrees of the arguments. After that,
these results are expanded to deal with the hesitant fuzzy information and some examples are given
to show their feasibilities and validities.

Keywords: dual hesitant fuzzy set; hesitant fuzzy set; distance measure; similarity measure;
weight vector; normal distribution

1. Introduction

In real life, there is a tremendous amount of uncertain information which is hard to describe in
mathematical form directly. For example, a man with a height of 1.75 m is tall or not, an apple
is ripe or not. To depict these epistemic uncertainties, the concept of fuzzy set (FS) [1] was
proposed in 1965, and soon attracted widespread attention. Now, it has been extended to several
expression forms, such as the intuitionistic fuzzy set (IFS) [2], the hesitant fuzzy set (HFS) [3],
and the dual hesitant fuzzy set (DHFS) [4]. The IFS is composed of the membership information,
non-membership information, and hesitancy information to express imprecise human cognitions of
affirmation, negation, and hesitation. However, it is known that if one value is powerless to express
the membership information comprehensively, then the HFS [3] overcomes this shortcoming. It allows
the decision-makers to provide more membership degrees for reflecting their natural consideration as
much as possible when they are hesitant. Furthermore, considering the limitation of the IFS and the
HFS, the dual hesitant fuzzy set (DHFS) [4], which is composed of the sets of membership degrees and
the sets of non-membership degrees, was proposed to model the uncertain information. Among these
sets, the DHFS can be seen as a more comprehensive set, and the other sets, including the FS, IFS and
HFS, can be taken as the special cases of the DHFS in some circumstances [4].

At present, the research related to the DHFSs has achieved great progress in these aspects:
(1) several foundational concepts are introduced. As the most basic units, the addition, multiplication,
exponentiation, and other operations were defined [4,5] first. Then, the most commonly used measures
and indexes were proposed, i.e., the correlation coefficient [6], distance measures [7,8], entropy [9],
and cross-entropy measures [10], etc. (2) Some valuable decision-making methods were developed.
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Liang [11] used the ideas of three-way decisions to solve the dual hesitant fuzzy decision-making
problems. Based on the correctional score function and the dice similarity measure, Ren and Wei [12]
developed a prioritized multi-attribute decision-making method for solving dual hesitant fuzzy
problems. When dealing with group decision-making problems, two methods [13] based on the
Choquet integral and Shapley index are workable. (3) The DHFS was extended. Although the DHFS is
valid enough to depict several kinds of decision-making problems, its expression ability is limited on
certain cases. So, by integrating rough set theory, the dual hesitant fuzzy rough set (DHFRS) [14] was
obtained. To evaluate the constructional engineering software quality, Xu and Wei [15] introduced the
dual hesitant bipolar fuzzy set (DHBFS) and the corresponding aggregation operators were derived.

In the decision-making process, how to acquire the weight information of the attributes is
recognized as a key issue. In general, these situations that most people encounter can be divided into
two categories: (1) the weight information is completely unknown [16–21]. In this case, the weights
are given relying on the criteria which are set in advance. For example, if the criteria are that the
bigger the entropy values of the fuzzy information, the smaller the weights are, then the attributes
with bigger entropy values will be assigned smaller weights [17–19]. In the same way, the criteria also
can be set by the distance to the ideal points [20] and the group consensus [21], etc. (2) The weight
information is partly known. Since some constraints were provided ahead, the typical solution is to
establish mathematical optimization models whose preference information was obtained from the
decision-makers [22–25]. To date, the research on the weighting methods for DHFSs is limited. All the
related methods can be concluded as the solutions relying on the optimization models combining the
grey relational analysis theory [24] and the correlation coefficient [25]. However, these models are not
available for all cases, so several novel and specialized methods are necessary.

Cognitive bias [26] is a flaw in judgment which is caused by various reasons including the
information shortcuts, noisy information, emotional and moral motivations etc. [26,27]. As a common
phenomenon to all human beings, it creates uncertainty which creates more trouble in decision-making.
Now, we consider a real situation which always occurs in such fields as job interviews, or competitive
races: if the decision-makers give their opinions in the form of the DHFSs, and the weight information
is completely unknown, how can one make an impartial decision which is less influenced by the
cognitive bias? It is worth noting that even though the DHFSs can describe the epistemic uncertain
information efficiently, they are weak in modeling the aleatory uncertainty which is always implied in
the decision-makers’ opinions [28]. Therefore, the probability theory which is known as an excellent
theory to describe the aleatory uncertainty, in terms of the statistical uncertainty, should be given
more attention.

Probability, which is the measure of the likelihood that a random phenomenon will occur, has been
widely applied in such areas as medical diagnosis, and machine learning to solve various problems [29].
In fuzzy theory, it can be used to determine the weight vectors and the related methods can be mainly
divided into two categories: (1) fusing the immediate probability [30] into the aggregation process.
The immediate probability which was first introduced by Yager et al. [30], was treated as a part of
the aggregation operator. Soon afterwards, the corresponding extensions were proposed respectively,
such as the immediate probability-fuzzy OWA (IP-FOWA) operator [31], the probabilistic weighted
average (PWA) operator [32] and the probabilistic OWA (POWA) operator [33]; (2) Combining the
character of the probability distributions. In this category, the statistical law which exists in the random
phenomenon is taken into consideration. Xu [34] used the discrete normal distribution [29] to reduce
the negative effect of some biased data on the decision results in real-number situations. Sadiq and
Tesfamariam [35] gave a sufficient analysis on exponential distribution-based weighting methods.
Furthermore, these developed methods are available for several other types of fuzzy information [36].

Motivated by the above-mentioned weighting methods, we aim to import the probability
information to relieve the impact of cognitive bias in dual hesitant fuzzy decision-making problems.
The remainder of this paper is organized as follows: Section 2 recalls some basic concepts and
aggregation operators corresponding to dual hesitant fuzzy elements (DHFEs). In Section 3, we develop
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some weighting approaches based on derivations with dual hesitant fuzzy information, and then
we expand them to give weights to hesitant fuzzy elements (HFEs) [37]. In Section 4, some typical
examples for DHFEs and HFEs are presented. Section 5 ends the paper with some conclusions.

2. Preliminaries

In this section, some basic concepts of the DHFSs (or DHFEs) are briefly reviewed as follows:

(1) The concepts of DHFSs and DHFEs.

Let X be a fixed set, then a DHFS D on X is described as D = {< x, h(x), g(x) > |x ∈ X }, in which
h(x) and g(x) are two sets of some values in [0, 1], denoting the possible membership degrees and
non-membership degrees of the element x ∈ X to the set D respectively, with the conditions: 0 ≤ γ,
η ≤ 1, 0 ≤ γ+ + η+ ≤ 1, where γ ∈ h(x), γ+ ∈ h+(x), γ+ = ∪γ∈h(x)max{γ}, and η+ ∈ g+(x),
η+ = ∪η∈g(x)max{η} for all x ∈ X. For convenience, the pair d(x) = (h(x), g(x)) is called a dual
hesitant fuzzy element (DHFE) denoted by d = (h, g) [4].

(2) The basic aggregation operators.

(i) A dual hesitant fuzzy weighted averaging (DHFWA) operator of the dimension n
is a mapping DHFWA: Ωn → Ω , which has an associated n− dimensional vector
w = (w1, w2, · · · , wn), with wi > 0, i = 1, 2, · · · , n and ∑n

i=1 wi = 1, such that

DHFWAw(d1, d2, · · · , dn) =
n
⊕

i=1
(widi) = ∪γi∈hi ,ηj∈gj

{{
1−

n
∏
i=1

(1− γi)
wi

}
,
{

n
∏
i=1

(ηi)
wi

}}
(1)

where Ω is the set of DHFEs, and d1, d2, · · · , dn are a collection of arguments in Ω [5].
(ii) A dual hesitant fuzzy weighted geometric (DHFWG) operator of the dimension n

is a mapping DHFWG: Ωn → Ω , which has an associated n− dimensional vector
w = (w1, w2, · · · , wn), with wi > 0, i = 1, 2, · · · , n and ∑n

i=1 wi = 1, such that

DHFWGw(d1, d2, · · · , dn) =
n
⊗

i=1
(di)

wi = ∪γi∈hi ,ηj∈gj

{{
n
∏
i=1

(γi)
wi

}
,
{

1−
n
∏
i=1

(1− ηi)
wi

}}
(2)

where Ω is the set of DHFEs, and d1, d2, · · · , dn are a collection of arguments in Ω [5].

(3) The score function and comparison laws of DHFEs [4].

Let di =
(
hdi (x), gdi (x)

)
(i = 1, 2) be any two DHFEs, sdi

= 1
lh(i)

lh(i)
∑

j=1
hdi (xi) −

1
lg(i)

lg(i)

∑
j=1

gdi
(xi)(i = 1, 2) the score function of di(i = 1, 2), and pdi

= 1
lh(i)

lh(i)
∑

j=1
hdi

(xi) +

1
lg(i)

lg(i)

∑
j=1

gdi
(xi) (i = 1, 2) the accuracy function of di(i = 1, 2), where lh(i) and lg(i) are the numbers of

the elements in h and g, respectively, then

(i) if sd1 > sd2 , then d1 is superior to d2, denoted by d1 � d2;
(ii) if sd1 = sd2 , then

(a) if pd1 = pd2 , then d1 is equivalent to d2, denoted by d1 ∼ d2;
(b) if pd1 > pd2 , then d1 is superior than d2, denoted by d1 � d2.
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3. Weighting Methods Based on Dual Hesitant Fuzzy Elements (DHFEs)

3.1. The Distance Measures for DHFEs

Although the distance and similarity measures for DHFSs were proposed [37], it is not suitable to
describe the relationship between two elements completely. So, in this subsection, our research focuses
on the distance and similarity measures for DHFEs.

Definition 1. Let d1 and d2 be two DHFEs. r(d1, d2) is called the distance measure between d1 and d2,
if r(d1, d2) satisfies the following properties:

(1) 0 ≤ r(d1, d2) ≤ 1;
(2) r(d1, d2) = 0 if and only if d1 = d2;
(3) r(d1, d2) = r(d2, d1).

Definition 2. Let d1 and d2 be two DHFEs. s(d1, d2) is said to be the similarity measure between d1 and d2,
if s(d1, d2) satisfies the following properties:

(1) 0 ≤ s(d1, d2) ≤ 1;
(2) s(d1, d2) = 1 if and only if d1 = d2;
(3) s(d1, d2) = s(d2, d1).

It is same as the other types of fuzzy information [38,39] that s(d1, d2) = 1− r(d1, d2). So, when
these conclusions in terms of the distance measures are derived, the corresponding similarity measures
can be got automatically. If we calculate the distance between two DHFEs d1 = {h1(x), g1(x)} and
d2 = {h2(x), g2(x)}, then we let lh1 , lh2 , lg1 and lg2 be the numbers of values in h1(x), h2(x), g1(x) and
g2(x), respectively, and lh = max

{
lh1 , lh2

}
, lg = max

{
lg1 , lg2

}
. After that, we need to present the

extension methods which were used in the HFSs [39] when lh1 6= lh2(or lg1 6= lg2). For example,
h1(x) = {0.2, 0.4, 0.6} , h2(x) = {0.5, 0.6}. It is obvious that lh1 = 3 and lh2 = 2 are not equal.
Under this situation, h2(x) with less membership degree values can be extended to {0.5, 0.5, 0.6}
(relying on the pessimistic principle [39]), or be extended to {0.5, 0.6, 0.6} (relying on the optimistic
principle) [39].Then the distance formulas are available for them. Finally, we use the pessimistic
principal in the following discussion since it is generally assumed that the decision-makers are
pessimistic [39].

On account of the fact that the DHFE can be seen as the special case of the DHFS when there is
only one element in the DHFS, so the distance measures with respect to the DHFEs can be derived
from the distance measures of the DHFSs directly. Thus, below we propose the basic distance formulas
for the DHFEs:

(1) The dual hesitant normalized Hamming distance between two DHFEs d1 and d2:

rdhnh(d1, d2) =
1

2lh

lh

∑
j=1

∣∣∣hσ(j)
1 (x)− hσ(j)

2 (x)
∣∣∣+ 1

2lg

lg

∑
j=1

∣∣∣gσ(j)
1 (x)− gσ(j)

2 (x)
∣∣∣ (3)

(2) The dual hesitant normalized Euclidean distance between two DHFEs d1 and d2:

rdhne(d1, d2) =

 1
2lh

lh

∑
j=1

∣∣∣hσ(j)
1 (x)− hσ(j)

2 (x)
∣∣∣2 + 1

2lg

lg

∑
j=1

∣∣∣gσ(j)
1 (x)− gσ(j)

2 (x)
∣∣∣2
 1

2

(4)

(3) The dual hesitant normalized Hamming–Hausdorff distance between two DHFEs d1 and d2:

rdhnhh(d1, d2) = max
{

max
j

∣∣∣hσ(j)
1 (x)− hσ(j)

2 (x)
∣∣∣, max

k

∣∣∣gσ(k)
1 (x)− gσ(k)

2 (x)
∣∣∣} (5)



Symmetry 2019, 11, 85 5 of 20

where hσ(j)
i (x) and gσ(j)

i (x)(i = 1, 2) are the jth largest values in hi(x) and gi(x), respectively. Moreover,
we will give the definitions of the mean (mid one) and the standard deviation (the divergence degree)
of a collection of the DHFEs di(i = 1, 2, · · · , n) as follows:

Definition 3. Let di = (hi, gi) (i = 1, 2, · · · , n) be a collection of DHFEs, then we call d =
(

h, g
)

the mean of

these DHFEs, where h =
{

h
σ(j)|j = 1, 2, · · · , lh

}
, g =

{
gσ(k)∣∣k = 1, 2, · · · , lg

}
, and

h
σ(j)

=
1
n

n

∑
i=1

hσ(j)
i , gσ(k) =

1
n

n

∑
i=1

gσ(k)
i (6)

where h
σ(j)

(x) is the jth largest values in h(x); while gσ(k)(x) is the kth largest values in g(x). lh is the maximal
number of the values in hi (i = 1, 2, · · · , n); while lg is the maximal number of values in gi(i = 1, 2, · · · , n).

Remark 1. If the numbers of the values in hi (or gi) (i = 1, 2, · · · , n) are not the same, we can extend the
shorter one by the pessimistic principle (or the optimistic principle) [39] as described in Section 2. For example,
assume that d1 = {{0.6, 0.4, 0.3}, {0.2, 0.1}} and d2 = {{0.5, 0.4,}, {0.4, 0.3, 0.2, 0.1}} are two DHFEs.
To get the means of d1 and d2, they should be extended, and the extension form are shown below:

d1
′ = {{0.6, 0.4, 0.3}, {0.2, 0.1, 0.1, 0.1}}, d2

′ = {{0.5, 0.4, 0.4}, {0.4, 0.3, 0.2, 0.1}}

then the means of d1 and d2 can be computed as follows:

d =
{{

0.6+0.5
2 , 0.4+0.4

2 , 0.3+0.4
2

}
,
{

0.2+0.4
2 , 0.1+0.3

2 , 0.1+0.2
2 , 0.1+0.1

2

}}
= {{0.55, 0.4, 0.35}, {0.3, 0.2, 0.15, 0.1}}

Remark 2. Let d1, d2, · · · , dn be a collection of DHFEs, and d1
′, d2

′, · · · , dn
′ be their extension forms,

respectively. Then, sd (which is the score of the mean d of the DHFEs d1, d2, · · · , dn) is also the mean of
the scores of the collection of d1

′, d2
′, · · · , dn

′.

Proof. Let h
σ(j)

= 1
n

n
∑

i=1
hσ(j)

i and gσ(k) = 1
n

n
∑

i=1
gσ(k)

i , then

sd =
lh
∑

j=1

(
h

σ(j)
)
−

lg

∑
k=1

(
gσ(k)

)
=

lh
∑

j=1

(
1
n

n
∑

i=1
hσ(j)

i

)
−

lg

∑
k=1

(
1
n

n
∑

i=1
gσ(k)

i

)
= 1

n

lh
∑

j=1

n
∑

i=1
hσ(j)

i − 1
n

lg

∑
k=1

n
∑

i=1
gσ(k)

i = 1
n

n
∑

i=1

(
lh
∑

j=1
hσ(j)

i −
lg

∑
k=1

gσ(k)
i

)
= 1

n

n
∑

i=1
sd′i

.

�

Based on Remark 2, it is clear that sd is almost the same as the mean of the score of the collection
of d1, d2, · · · , dn. Furthermore, the standard deviation is useful in describing the characteristics of
DHFEs, so we will give the following definition:

Definition 4. Let d1, d2, · · · , dn be a collection of DHFEs, where di = (hi, gi), i = 1, 2, · · · , n, and let
d =

(
h, g
)

be the mean of these DHFEs, then the standard deviation of these DHFEs can be defined as:

σ =

√
1
n

n

∑
i=1

r2
(

di, d
)

(7)
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where r
(

di, d
)

represents the distance between the means d and di.

3.2. Three Weighting Methods Based on DHFEs

In this section, specific analysis and the corresponding solutions for the question that how to
make an impartial decision to reduce the influence of cognitive bias will be presented.

Modern cognitive psychologists believe that decision results are very susceptible to cognitive
bias and their influences are universal in the decision-making process [27]. Here we take the job
interview for example: suppose that there are n decision-makers who come from different fields, i.e.,
the management position, the professional technical post, human resource management, etc. Due to
their different knowledge backgrounds, different starting points, and different physical and mental
conditions, it is inevitable that there will be some cognitive biases in the opinions provided by the
decision-makers. If these n scores (arguments) for one interviewee provided by them are in the number
form, and they are arranged in ascending order on the number axis, then the most common case is that
majority numbers (representing the majority’s opinions) are similar which are always in the center and
only minority numbers (always deviating from other’s opinion) which are too high or too low on the
edges. As a kind of familiar random phenomenon, the statistical law implied in it is always depicted
by the normal distributions which is often applied in the natural and social sciences to represent
real-valued random variables whose distributions are not known. In light of the 3σ principle [29]
derived from the normal distribution, the center data are always recognized as reliable data with less
bias [29].

Hence, a feasible solution to reduce the negative impacts of the cognitive bias is to adjust the
weights allocation with respect to their positions that the weight is the biggest for center arguments and
gradually becomes lower toward the edge. When the decision-makers’ opinions are expressed in the
comprehensive forms of the DHFEs d1, d2, · · · , dn. Firstly, we should find out the mid one (the mean of
DHFEs) d, then we assign the weights to the DHFEs di(i = 1, 2, · · · , n) based on the distances between
di and d (i = 1, 2, · · · , n). The bigger the distance values, the lower weights assign to them. In the
light of these principles, the values of 1− r

(
di, d

)
are proportional to the weights di, i = 1, 2, · · · , n.

So, we can define the weights of di(i = 1, 2, · · · , n) as:

w(1)
i =

1− r
(

di, d
)

n
∑

j=1

(
1− r

(
dj, d

)) , i = 1, 2, · · · , n (8)

which can also be rewritten as:

w(1)
i =

s
(

di, d
)

n
∑

j=1
s
(

dj, d
) , i = 1, 2, · · · , n (9)

Because 1− r
(

di, d
)

is a linear function, the method using Equation (8) or Equation (9) are called
weighting methods based on the linear functions.

Besides the linear functions, the inverse functions are suitable to reveal the relationship between
the distance and the weight that the bigger the distance values r

(
di, d

)
(i = 1, 2, · · · , n) are, the smaller

the values of 1
r(di ,d)

are. Hence, we can assign the weights for the DHFEs di(i = 1, 2, · · · , n) as follows:

w(2)
i =

1
r(di ,d)

n
∑

j=1

1
r(dj ,d)

, i = 1, 2, · · · , n (10)
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which are called weighting methods based on the inverse function.
In addition, the normal distribution can be discretized to depict the data distribution [40]. Let x

be a continuous random variable, and its probability density function [29] can be defined as:

f (x) =
1√
2πσ

e−
(x−µ)2

2σ2 ,−∞ < x < +∞ (11)

where µ and σ(σ > 0) are two constants. Then x is normally distributed with a mean (µ) and a standard
deviation (σ).

In Equation (11), the formula (x− µ)2 can be seen as the square of the distance between
the variable value x and the mean µ. So it is reasonable for us to substitute x − µ into
r
(

di, d
)
(i = 1, 2, · · · , n) for the representation of the importance of the DHFEs di(i = 1, 2, · · · , n).

Therefore, another weighting formula for DHFEs can be derived:

w(3′)
i =

1√
2πσ

e−
r2(di ,d)

2σ2 , i = 2, · · · , n (12)

whose normalized form is:

w(3)
i =

1√
2πσ

e−
r2(di ,d)

2σ2

n
∑

j=1

1√
2πσ

e−
r2(dj ,d)

2σ2

=
e−

r2(di ,d)
2σ2

n
∑

j=1
e−

r2(dj ,d)

2σ2

, i = 2, · · · , n (13)

which can be called the method based on the normal distribution.
To explore some characteristics of the proposed three methods, we assume that the distances

r
(

di, d
)
(i =1, 2, · · · , n) are variable, and then w(j)

i (j = 1, 2, 3) can be seen as multivariate functions.

For convenience, the distance measures r
(

di, d
)
(i = 1, 2, · · · , n) are denoted by ri

′. Afterwards, several
conclusions are derived.

Theorem 1. w(j)
i (j = 1, 2, 3) are monotonously decreasing functions with respect to the values of ri

′.

Proof. Because the three weighting functions are different, our proof will be composed of the following
three parts:

(1) As for

w(1)
i =

1− ri
′

n
∑

j=1

(
1− rj

′) , i = 1, 2, · · · , n

and when the DHFEs are defined, the denominator
n
∑

j=1

(
1− rj

′) can be seen as a constant. Therefore,

from the functions of the numerator 1− ri
′(i = 1,2, · · · , n), it is obvious that the smaller the values of

ri
′, the bigger w(1)

i is. Therefore, w(1)
i is a monotonously decreasing function with respect to the values

of ri
′.
(2) Since

w(2)
i =

1
ri
′

n
∑

j=1

1
rj
′

, i = 1, 2, · · · , n
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The denominator
n
∑

j=1

1
rj
′ is a constant, the functions of the numerator 1

ri
′ (i = 1,2, · · · , n) are

monotonously decreasing functions. Therefore, w(j)
i (i = 1, 2, · · · , n) are monotonously decreasing

functions with respect to the values of ri
′.

(3) As for

w(3)
i =

e−
ri
′2

2σ2

n
∑

j=1
e−

ri
′2

2σ2

, i = 2, · · · , n

It should be paid attention to ri
′2 and 2σ2 = 2

n

n
∑

j=1
rj
′2 which are both the functions of ri

′.

So

∂e−
ri
′2

2σ2

∂ri
′ =(−1)e−

ri
′2

2σ2

nri
′


n
∑

j = 1
j 6= i

rj
′2


(

n
∑

j=1
rj
′2
)2

For

e−
ri
′2

2σ2 > 0, n > 0,
n

∑
j = 1
j 6= i

rj
′2 > 0,

n

∑
j=1

rj
′2 > 0

Therefore,

∂e−
ri
′2

2σ2

∂ri
′ < 0

In another word, e−
ri
′2

2σ2 is monotonously decreasing function with respect to the values of ri
′.

Furthermore, the denominator
n
∑

j=1
e−

ri
′2

2σ2 is a constant, so w(3)
i (i = 1, 2, · · · , n) are the decreasing

function of ri
′.

Because that w(j)
i (j = 1, 2, 3) are multivariate and discrete, and there are some relationships among

ri
′(i = 1, 2, · · · , n). It is hard to present some mathematical analysis merely relying on the function,

so in Section 4, we will give some comparisons by virtue of some specific DHFEs. �

3.3. The Weighting Methods Based on HFEs

Hesitant fuzzy set [3] allows the decision-makers to give their opinions by several HFEs. Let X be
a fixed set, then the HFS A can be represented by a mathematical symbol A = {< x, hA(x) > |x ∈ X },
where the HFE hA(x) is a set of some values in [0, 1], denoting the possible membership degrees of
the element x ∈ X to the set A [37].

In light of its superior properties to describe the hesitant information, the HFS has attracted a lot
of attention and has been extended to more forms for various applications, such as interval hesitant
fuzzy set (IHFS) [41], hesitant triangular fuzzy set (HTFS) [42] and necessary and possible hesitant
fuzzy set (NPHFS) [43]. When the decisions are made according to the HFS information, Xu and
Xia [44] recommended the concepts of entropy and cross-entropy for HFSs to obtain the weights.
Xu and Zhang [45] acquired the weights based on the TOPSIS method [46] with incomplete weight
information. However, these weighting methods are lack of the consideration of bias information.
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According to Zhu et al. [4], when the non-membership degree set g = ∅, the DHFE reduces to
the HFE. Therefore, in this section, we focus on discussing whether these methods for DHFEs will also
be available for HFEs or not.

First, referring to Equations (6) and (7), we should give the explanations of the mid one (mean)
and the degree of deviation of data (the standard deviation) for HFEs.

Definition 5. Let h1, h2, · · · , hn be a collection of HFEs, we define h as the mean of these HFEs,

where h =
{

h
σ(j)|j = 1, 2, · · · , lh

}
, and

h
σ(j)

=
1
n

n

∑
i=1

hσ(j)
i (14)

where h
σ(j)

(x) and hσ(j)
i (x) are the jth largest values in h(x) and hi(x) respectively. lh is the maximal number

of values in hi, i = 1, 2, · · · , n.

Definition 6. Let h1, h2, · · · , hn be a collection of HFEs, and h be the mean of these HFEs, then we define the
standard deviation of these HFEs as:

σ =

√
1
n

n

∑
i=1

r2
(

hi, h
)

(15)

where r
(

hi, h
)

represents the distance between the mean h and hi.

Secondly, to evaluate the importance of the HFEs, the distance and similarity measures for the
HFEs should be presented which are slightly different from the HFSs’ whose essential is the weighted
average of the distance and similarity measures for the HFEs. So, the distance and similarity measures
for the HFEs should belong to the interval [0, 1]. For convenience, we suppose that there are two HFEs:
A = hA(x) and B = hB(x). Naturally, the pessimistic principle and the optimistic principle [39] are
also available in the calculations for the HFEs. Here, we choose the pessimistic principal [39] as before.
Let lhA and lhB be the numbers of values in hA(x) and hB(x) respectively, and lx = max

{
lhA , lhB

}
. Then,

in the following, we get three typical distance measures for HFEs based on Equations (3)–(5):
(1) The hesitant normalized Hamming distance between two HFEs:

rhnh(A, B) =
1
lx

lx

∑
j=1

∣∣∣hσ(j)
A (x)− hσ(j)

B (x)
∣∣∣ (16)

(2) The hesitant normalized Euclidean distance between two HFEs:

rhne(A, B) =

[
1
lx

lx

∑
j=1

∣∣∣hσ(j)
A (x)− hσ(j)

B (x)
∣∣∣2] 1

2

(17)

(3) The hesitant normalized Hamming–Hausdorff distance between two HFEs:

rhnhh(A, B) = max
j

{∣∣∣hσ(j)
A (x)− hσ(j)

B (x)
∣∣∣} (18)

Finally, referring to Equations (8), (10) and (13), the weight values for hesitant arguments can
be derived. Assume that the hesitant arguments h1, h2, · · · , hn are a collection of n preference values.
The weights of hi(i = 1, 2, · · · , n) are defined as:



Symmetry 2019, 11, 85 10 of 20

w(1)
i =

1− r
(

hi, h
)

n
∑

j=1

(
1− r

(
hj, h

)) , i = 1, 2, · · · , n (19)

Equation (19) can also be rewritten as:

w(1)
i =

s
(

hi, h
)

n
∑

j=1
s
(

hj, h
) , i = 1, 2, · · · , n (20)

and Equation (10) can be updated as:

w(2)
i =

1
r(hi ,h)

n
∑

j=1

1
r(hj ,h)

, i = 1, 2, · · · , n (21)

The weights based on the normal distribution are as follows:

w(3)
i =

e−
r2(hi ,h)

2σ2

n
∑

j=1
e−

r2(hj ,h)

2σ2

, i = 1, 2, · · · , n (22)

It should be noted that we use the same symbols w(j)
i for the HFEs and DHFEs because the

methods for HFEs can be regarded as a special case of the methods for DHFEs. Furthermore, it is same
as Theorem 1 that the smaller the values r

(
hi, h

)
are, the bigger w(j)

i (j = 1, 2, 3) are.

4. Illustrative Examples

4.1. Illustrative Examples for DHFEs

In this section, we will make some analyses on the differences and similarities of the three
weighting methods by using specific DHFEs.

Example 1. For a decision-making problem, nine experts di(i = 1, 2, · · · , 9) are invited to evaluate the
performance of the employee A for his/her annual work, and the experts’ opinions are expressed in the form of
DHFEs as follows:

d1 = {{0.5, 0.3}, {0.4, 0.3}}, d2 = {{0.3, 0.2}, {0.7}}, d3 = {{0.5, 0.4}, {0.4}},
d4 = {{0.7, 0.6}, {0.2}}, d5 = {{0.2}, {0.8, 0.7, 0.5}}, d6 = {{0.4, 0.3}, {0.5}},

d7 = {{0.9, 0.5}, {0.1}}, d8 = {{0.6, 0.5, 0.4}, {0.4}}, d9 = {{0.8, 0.7, 0.6}, {0.2}}

Then, we need to deal with the decision information, and there are two steps for the
implementation of the proposed method presented as follows:

Step 1. Calculate the mean d and the standard deviation σ according to the Euclidean distance
Equation(4), respectively: d = {{0.544,0.411,0.389}, {0.411,0.389,0.367}}, and σ = 0.189.

Step 2. Determine the experts’ weights by using Equations (8), (10) and (13) respectively. Thus,
the gained weights for di(i = 1, 2, · · · , 9) are listed in Table 1.
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Table 1. The weights w(j)
i (i = 1, 2, · · · , 9; j = 1, 2, 3) for the DHFEs di(i = 1, 2, · · · , 9).

di w(1)
i (Ranking) w(2)

i (Ranking) w(3)
i (Ranking)

d1 0.123(3) 0.124(3) 0.161(3)
d2 0.097(8) 0.035(8) 0.057(8)
d3 0.130(1) 0.461(1) 0.173(1)
d4 0.108(5) 0.050(5) 0.101(5)
d5 0.096(9) 0.034(9) 0.053(9)
d6 0.118(4) 0.082(4) 0.142(4)
d7 0.099(7) 0.037(7) 0.063(7)
d8 0.127(2) 0.208(2) 0.169(2)
d9 0.103(6) 0.042(6) 0.080(6)

From Table 1, it is clear that the weighting strategies of the three methods are similar. They all
assign the highest weights to d3 which is the nearest to the mean d and assign the lowest weights to d5

which is the furthest one to the mean d. To get a full understanding of these methods, in the following,
some comparisons among them will be shown as follows:

Case 1. Comparisons among the three methods with respect to the distances
r
(

di, d
)
(i = 1, 2, · · · , 9). To provide a clear analysis of them, we put the weights of the DHFEs

di(i = 1, 2, · · · , 9) obtained from these three proposed methods, respectively, into Figure 1.
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(

di, d
)
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From Figure 1, we can find some similarities and differences between the three weighting
methods: (1) For all of the three methods, the weights decrease when the distances increase, that is
to say, the further the distance between di and d is, the lower the weight is; (2) It is obvious that
the degrees of the divergence of these weights w(j)

i (j = 1, 2, 3) derived from different methods are

different. Among them, the degree of the divergence of w(2)
i (i = 1, 2, · · · , 9) is the biggest one and the

degree of the divergence of w(1)
i (i = 1, 2, · · · , 9) is the smallest one, correspondingly, the degree of the

divergence of w(3)
i (i = 1, 2, · · · , 9) derived by Equation(13) is in the middle.

It is also clear from Figure 1 that both the highest weight w(2)
3 = 0.461 and the lowest weight

w(2)
5 = 0.034 are obtained by Equation (10). Meanwhile, for w(1)

i (i = 1, 2, · · · , 9), the highest weight

is w(1)
3 = 0.130 and the lowest weight is w(1)

5 = 0.096. The main reason for this difference is that
1

r(di ,d)
(i = 1, 2, · · · , 9) are inverse proportional functions which are sensitive to small numbers and

r
(

di, d
)
(i = 1, 2, · · · , 9) are small numbers within 0 and 1. On the contrary, 1− r

(
di, d

)
(i = 1, 2, · · · , 9)

are linear functions which are less sensitive to even tiny change. Generally, if you want to emphasize
the DHFEs near to the mean (mid one(s)), the method based on the inverse proportional function
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is available. On the other hand, if you want to emphasize both the whole and some individuals,
the method based on the linear function is better.

In the existing literature, a classical weighting method called normal distribution weighting
method [36] (for convenience, here we call it Xu’s method), which is designed for the OWA operator
primordially, has been widely used for determining the weights. Its main idea that assigns higher
weights to the mid one(s) and assigns lower weights to the biased ones is similar to the above three
methods. Therefore, in the following, we will take some comparisons among them.

Case 2. Comparisons among the three methods and Xu’s method with respect to the ranking
of scores. Since Xu’s method is designed for the OWA operator, then in order to conduct some
comparisons, we first rank the DHFEs di(i = 1, 2, · · · , 9) based on the technique [4] as follows:
d7 � d9 � d4 � d8 � d3 � d1 � d6 � d2 � d5.

Then, according to Xu’s method, the vector of these DHFEs’ weights is w = (0.051, 0.086, 0.124,
0.156, 0.168, 0.156, 0.124, 0.086, 0.051) relying on the ranking of the scores. Thus, we can describe the
relationships among the four weighting methods in Figure 2.
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Based on Figure 2, it is clear that the method based on the normal distribution for DHFEs is similar
to Xu’s method, for example, the weights assigned by the two methods to the mid one d3 are 0.173 and
0.168 respectively. Furthermore, compared with the three weighting methods, when the number of
arguments is known, the weight vector of Xu’s method is certain and its graph is symmetrical, while the
weight vectors of our proposed three methods are uncertain and the weights will change a little with
the values of the attributes. In general, among the four methods, the graph of the inverse proportional
function-based method is the sharpest, and the linear function-based method is the smoothest.

Example 2. The decision strategy for recruitment interview of product manager. The product manager is a
position to discover and guide a product that is valuable, usable, and feasible which is also the main bridge
between business, technology, and user experience, especially in technology companies [47]. It is so crucial
for an enterprise to choose the right person for this position that his decisions will not only help enterprise to
create great wealth but also conciliate the opportunities of scientific development for the enterprise. Normally,
the recruitment interview for the right person are done by several decision-makers from different positions.
Due to their diversities in knowledge backgrounds, cognitive levels, psychological states, etc., their opinions
are susceptible to the cognitive bias, and are always hesitant and vague. In this situation, (1) DHFS is an
effective tool for the description of the hesitant and vague data. For example, Sahin and Liu [48] applied the
DHFSs to solve the investment decision-making problems, Ren and Wei [12] used the DHFSs to describe the
indexes in teacher evaluation system. With the use of the dual hesitant fuzzy information, Liang et al. further
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developed the three-way Decisions [11]. (2) The distribution-based weighting methods mentioned above will be
feasible to reduce the negative effect caused by the biased data. Therefore, in the decision strategy for recruitment
interview of product manager, according to the dual hesitant fuzzy data provided by the experts, we can use the
distribution-based weighting methods to obtain the weight of each expert, then calculate the final scores of the
candidates, and finally get the right person for this position.

Assume that there are five candidates Ai(i = 1, 2, · · · , 5) to be selected, and the decision
committee includes four experts from different departments: (1) p1 is from board of directors; (2) p2 is
from the technology department; (3) p3 is a product manager from the same level; and (4) p4 is from
personal department. The assessments of the five candidates Ai(i = 1, 2, · · · , 5) provided by the four
experts are in the form of DHFEs dij(i = 1, 2, · · · , 5; j = 1, 2, 3, 4) listed in Table 2 (i.e., the decision
matrix D =

(
dij
)

5×4).

Table 2. Dual hesitant fuzzy decision matrix.

p1 p2 p3 p4

A1 {{0.4,0.3}, {0.5}} {{0.5,0.4}, {0.4,0.3}} {{0.3,0.2}, {0.6}} {{0.5,0.4}, {0.5}}
A2 {{0.6}, {0.4}} {{0.5,0.2,0.1}, {0.4}} {{0.2}, {0.8,0.7,0.5}} {{0.5}, {0.5,0.4}}
A3 {{0.8,0.6}, {0.2}} {{0.7}, {0.2,0.1}} {{0.6,0.5,0.4}, {0.4}} {{0.7,0.6,0.5}, {0.3}}
A4 {{0.8}, {0.1}} {{0.3,0.2,0.1}, {0.2}} {{0.6,0.5}, {0.4}} {{0.6}, {0.4,0.3,0.2}}
A5 {{0.6,0.5}, {0.4}} {{0.4,0.3,0.2}, {0.5}} {{0.5,0.4}, {0.2}} {{0.4,0.3,0.2}, {0.5}}

Part 1. Evaluation process to choose the appropriate product manager.

The solving method is presented as follows:
Step 1. Calculating weights. Using the hamming distance in Equation (3), we can get the weights

of the experts pj(j = 1, 2, 3, 4) derived from Equations (8), (10) and (13) respectively as follows:
As shown in Tables 3–5, these weights of the experts pj(j = 1, 2, 3, 4) are determined respectively

according to the assessed values of the five candidates.

Table 3. The weights w(1)
j (j = 1, 2, 3, 4) for the experts pj(j = 1, 2, 3, 4).

p1 p2 p3 p4

A1 0.264 0.241 0.237 0.258
A2 0.247 0.254 0.233 0.266
A3 0.256 0.244 0.236 0.264
A4 0.229 0.234 0.266 0.271
A5 0.257 0.250 0.243 0.250

Table 4. The weights w(2)
j (j = 1, 2, 3, 4) for the experts pj(j = 1, 2, 3, 4).

p1 p2 p3 p4

A1 0.567 0.100 0.090 0.243
A2 0.207 0.251 0.153 0.390
A3 0.244 0.140 0.108 0.507
A4 0.130 0.141 0.324 0.405
A5 0.326 0.241 0.191 0.241
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Table 5. The weights w(3)
j (j = 1, 2, 3, 4) for the experts pj(j = 1, 2, 3, 4).

p1 p2 p3 p4

A1 0.368 0.167 0.136 0.329
A2 0.233 0.276 0.150 0.341
A3 0.308 0.200 0.128 0.363
A4 0.149 0.172 0.330 0.349
A5 0.312 0.250 0.188 0.250

Step 2. Evaluations. We use Equations (1) and (2) to calculate the final scores of the candidates
Ai (i = 1, 2, 3, 4, 5). For convenience, we assume that DHFWA1, DHFWA2 and DHFWA3 represent
the aggregated values obtained by the DHFWA operator using w(1)

j (j = 1, 2, 3, 4), w(2)
j (j = 1, 2, 3, 4)

and w(3)
j (j = 1, 2, 3, 4) respectively, and DHFWG1, DHFWG2 and DHFWG3 are obtained by the

DHFWG operator using w(1)
j (j = 1, 2, 3, 4), w(2)

j (j = 1, 2, 3, 4) and w(3)
j (j = 1, 2, 3, 4) correspondingly.

The results are shown in Table 6:

Table 6. The aggregation results of the arguments Ai(i = 1, 2, · · · , 5) for DHFEs.

A1 A2 A3 A4 A5

DHFWA1 −0.095 −0.041 0.399 0.360 0.035
DHFWA2 −0.110 −0.013 0.387 0.315 0.034
DHFWA3 −0.091 −0.011 0.414 0.319 0.027
DHFWG1 −0.132 −0.149 0.349 0.209 −0.032
DHFWG2 −0.129 −0.105 0.352 0.212 −0.031
DHFWG3 −0.117 −0.106 0.373 0.202 −0.037

According to the ranking results in Table 7, it is clear that the candidate A3 is more suitable
than others for this enterprise no matter using what weighting method and aggregation operator,
meanwhile, the ranking results for the five candidates are similar.

Table 7. Rankings of the aggregation results for DHFEs using w(i)
j (i = 1, 2, 3; j = 1, 2, 3, 4).

DHFWA1 DHFWA2 DHFWA3

Ranking A3 � A4 � A5 � A2 � A1 A3 � A4 � A5 � A2 � A1 A3 � A4 � A5 � A2 � A1

DHFWG1 DHFWG2 DHFWG3

Ranking A3 � A4 � A5 � A1 � A2 A3 � A4 � A5 � A2 � A1 A3 � A4 � A5 � A2 � A1

Part 2. Discussion

In this section, we shall analyze the influence of the weighting methods. To do so, we compare
the entropy-based method [49] with our distribution-based methods.

(1) General analysis

As is shown in Table 7, the ranking results using the DHFWA operator are the same. Since the
same operators are adopted, then the ranking results are greatly influenced by the weight values.
Based on Tables 3–5, no matter which weight formulas are used, the change trends of the weights are
the same. So, we get the same rankings according to the DHFWA operator. However, there is also little
difference among the rankings obtained by the DHFWG operator. The main reason is that the DHFWG
operator is more sensitive to small numbers between 0 and 1.
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(2) Comparative analysis

The traditional entropy method [49] which assigns low weight values to the attributes with
high entropies can also be applied in this decision-making problem. So, we make some comparisons
between the entropy-based methods [49] and the proposed distribution-based methods.

First, we calculate the entropies for DHFEs in Table 2, and the entropy formula [9] is shown below:

E(d(h(x), g(x))) =
1
l

l

∑
i=1

(
1−

∣∣∣hσ(i)(x)− gσ(i)(x)
∣∣∣)(2− hσ(i)(x)− gσ(i)(x)

)
2

(23)

What needs to be explained is that if lh < lg, then we extend h(x) by repeating its maximum
element until it has the same length with g(x). Conversely, if lh > lg, then an extension of g(x) is to
repeat its minimum element until it has the same length with h(x) [9].

Then, we calculate the entropy weights basing on the classical formula shown as:

w(4)
j =

1− E(pj)

4
∑

k=1
(1− E(pk))

, j = 1, 2, 3, 4 (24)

To distinguish these entropy weights from others, we use the symbol w(4)
j (j = 1, 2, 3, 4) for them

which are listed in Table 8:

Table 8. The weights w(4)
j (j = 1, 2, 3, 4) for the experts pj(j = 1, 2, 3, 4).

p1 p2 p3 p4

A1 0.244 0.219 0.298 0.239
A2 0.265 0.209 0.305 0.222
A3 0.280 0.288 0.195 0.237
A4 0.370 0.112 0.245 0.274
A5 0.264 0.250 0.235 0.250

Using the DHFWA operator, the final ranking result in Table 9. is A4 � A3 � A5 � A2 � A1 and
A4 is taken for the best person for the product manager position.

Table 9. The aggregation results using w(4)
j (j = 1, 2, 3, 4).

A1 A2 A3 A4 A5

DHFWA4 −0.114 −0.064 0.422 0.453 0.034

Compared with the rankings in Table 7, there are two different decisions for the right person.
The main reason is that the entropy-based method focuses on reducing the uncertainty in the
decision-making process; however, the distribution-based method aims to relieve the impact of
the bias information.

Generally speaking, from the above examples, it can be concluded that the three weighting
methods highlighting the mid one(s), which coincide with the majority rule in the real life, are valid
for DHFEs. Therefore, in the following, we will explore whether these weighting methods can be
extended to accommodate the HFEs.

4.2. Illustrative Examples for HFEs

To detect the validity of our methods for HFEs, we transform the DHFEs in Examples 1 and 2 into
HFEs, and then take some comparisons.
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Example 3. In this example, we want to find out whether the proposed weighting methods mentioned before are
valid when the opinions of experts are expressed by the HFEs. Therefore, first, we should reduce the DHFEs in
Example 1 to HFEs as follows:

d1 = {0.5, 0.3}, d2 = {0.3, 0.2}, d3 = {0.5, 0.4}, d4 = {0.7, 0.6}, d5 = {0.2},
d6 = {{0.4, 0.3}, d7 = {0.9, 0.5}, d8 = {0.6, 0.5, 0.4}, d9 = {0.8, 0.7, 0.6}

Then, following the procedure in Example 1, we get the following steps:
Step 1. Calculate the mean d and the variance σ of these HFEs:

d = {0.544, 0.411, 0.389}, σ = 0.126

and the Euclidean distance Equation (16) is adopted.
Step 2. With using Equations (19), (21) and (22), the appropriate weights of hi(i = 1, 2, · · · , 9) are

determined, which are listed in Table 7.
Analyzing Table 10, we find that the weighting results for the HFEs are similar to the weighting

results for the DHFEs, while they all assign the highest weight to the expert h3 and assign the lowest
weight to the expert h5. Moreover, both the highest weight w(2)

3 = 0.463 and the lowest weight

w(2)
5 = 0.041 are derived from the method based on the inverse proportional function. However, for the

loss of some information, there is also little difference among the methods for the HFEs and the
methods for the DHFEs. For example, the ranking of the weights for h2 is the sixth in the methods for
HFEs, while it is the eighth in the methods for DHFEs.

Table 10. The weights w(j)
i (i = 1, 2, · · · , 9; j = 1, 2, 3) for the HFEs hi(i = 1, 2, · · · , 9).

hi w(1)
i (Ranking) w(2)

i (Ranking) w(3)
i (Ranking)

h1 0.118(3) 0.121(3) 0.152(3)
h2 0.106(6) 0.048(6) 0.082(6)
h3 0.123(1) 0.463(1) 0.168(1)
h4 0.109(5) 0.056(5) 0.099(5)
h5 0.102(9) 0.041(9) 0.060(9)
h6 0.115(4) 0.089(4) 0.137(4)
h7 0.106(7) 0.047(7) 0.079(7)
h8 0.120(2) 0.172(2) 0.161(2)
h9 0.103(8) 0.041(8) 0.062(8)

Example 4. We attempt to use the new weighting methods to solve the decision-making problem which is
mentioned in Example 2 supposing that the decision-making information is in the form of HFSs. The main
process is to obtain the weights of experts using the distribution-based weighting methods, then aggregate these
data provided by these experts to calculate the final scores for these candidates. First, the experts’ opinions which
are demonstrated with DHFEs should be reduced to HFEs, and then we get the hesitant fuzzy decision matrix as
shown in Table 11.

Table 11. Hesitant fuzzy decision matrix.

G1 G2 G3 G4

A1 {0.4,0.3} {0.5,0.4} {0.3,0.2} {0.5,0.4}
A2 {0.6} {0.5,0.2,0.1} {0.2} {0.5}
A3 {0.8,0.6} {0.7} {0.6,0.5,0.4} {0.7,0.6,0.5}
A4 {0.8} {0.3,0.2,0.1} {0.6,0.5} {0.6}
A5 {0.6,0.5} {0.4,0.3,0.2} {0.5,0.4} {0.4,0.3,0.2}
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Because the HFEs which are lack of the non-membership degree information can be seen as the
special cases of DHFEs, our discussion will focus on the two aspects as: (1) detecting the effectiveness
of the three weighting methods for HFEs, and (2) discussing whether less information will influence
the ranking results or not.

Using Equations (19), (21) and (22) and the HFWA operator and the HFWG operator defined in
Ref. [29], we can calculate the aggregation results and the rankings of arguments Ai(i = 1, 2, · · · , 5).
For convenience, let the HFWAj(j = 1, 2, 3) and the HFWGj(j = 1, 2, 3) be the aggregation values
obtained from the HFWA operator and the HFWG operator, using the Hamming distances for HFEs,
respectively. In the end, the ranking results which are derived from Ref. [29] are got, as listed in Table 12.

Table 12. The aggregation results of the candidates Ai(i = 1, 2, · · · , 5) based on the HFEs.

A1 A2 A3 A4 A5

HFWA1 0.383 0.418 0.641 0.592 0.411
HFWA2 0.380 0.423 0.634 0.567 0.411
HFWA3 0.394 0.417 0.652 0.600 0.398
HFWG1 0.364 0.343 0.617 0.492 0.379
HFWG2 0.367 0.353 0.617 0.546 0.385
HFWG3 0.379 0.346 0.632 0.534 0.371

With the results in Table 13, it is certain that the three weighting methods based on HFEs are valid
in decision-making, and the candidate A3 is deemed to be the best choice which is the same as the
results in Table 7. Secondly, when the HFWA operator is used, the rankings getting from different
weights are coincident. As for the HFWG operator, the ranking results vary with the weight vectors
slightly. Finally, compared with the results in Table 7, although they reach an agreement on the right
person, the rankings of the other arguments are not the same. The primary reason can be ascribed to
the loss of the negation information which always play great role in decision-making.

Table 13. Rankings of the aggregation results for the HFEs using w(i)
j (i = 1, 2, 3; j = 1, 2, 3, 4).

HFWA1 HFWA2 HFWA3

Ranking A3 � A4 � A2 � A5 � A1 A3 � A4 � A2 � A5 � A1 A3 � A4 � A2 � A5 � A1

HFWG1 HFWG2 HFWG3

Ranking A3 � A4 � A5 � A1 � A2 A3 � A4 � A5 � A1 � A2 A3 � A4 � A1 � A5 � A2

5. Concluding Remarks

In decision-making problems, there are always some cognitive biases which will affect the final
decision results. To reduce the influence of this bias data, a better solution is to assign lower weights to
the biased values which are always on the edges, and the typical values which are always in the middle
higher weights. Based on this idea, we present three distribution-based weighting methods for DHFEs.
The prominent characteristic of the developed methods is that they can reduce the influence of biased
data, which obey the majority rule as well in some complex fuzzy situations. Then, the application in
the decision strategy for the recruitment interview of a product manager has testified the practicability
and the validity of the proposed method. The main contributions of this paper are as follows:

(1) The mean and the standard deviation of a collection of DHFEs have been first defined to describe
the mid one(s) and the divergence degrees of a collection of DHFEs.

(2) Some distances for DHFEs have been introduced to depict the relationships between the mean
and DHFEs.

(3) Based on the natures of the linear function, the inverse proportion function, and the normal
distribution function, three weighting methods for DHFEs have been developed, respectively.
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(4) These weighting methods have been extended to accommodate hesitant fuzzy information.

Meanwhile, there are some limitations in this paper as well. The distribution-based methods to
derive the weight values aim to reduce the influence of this biased data. However, there may be a set
of unbiased data to deal with. Therefore, other methods such as the traditional entropy method [49]
will be suitable in this situation as well.

Further attention should be paid to distribution-based methods. First, we can consider using
other probability distribution functions as an alternative. Secondly, we can explore other potential use
scenarios of distribution-based decision-making methods, such as project evaluation, performance
review and so on.

Author Contributions: Writing—original draft preparation, Z.S.; conceptualization, Z.X.; writing—review and
editing, H.Z. and Z.X.; methodology, S.L.

Funding: This research was funded by National Natural Science Foundation of China, grant number 71771155.

Acknowledgments: In this section you can acknowledge any support given which is not covered by the author
contribution or funding sections. This may include administrative and technical support, or donations in kind
(e.g., materials used for experiments).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zadeh, L.A. Fuzzy sets, information and Control. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
3. Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [CrossRef]
4. Zhu, B.; Xu, Z.S.; Xia, M.M. Dual hesitant fuzzy sets. J. Appl. Math. 2012, 2012, 1–13. [CrossRef]
5. Zhu, B.; Xu, Z.S. Some results for dual hesitant fuzzy sets. J. Intell. Fuzzy Syst. 2014, 26, 1657–1668.
6. Tyagi, S.K. Correlation coefficient of dual hesitant fuzzy sets and its applications. Appl. Math. Model. 2015,

39, 7082–7092. [CrossRef]
7. Su, Z.; Xu, Z.S.; Liu, H.F.; Liu, S.S. Distance and similarity measures for dual hesitant fuzzy sets and their

applications in pattern recognition. J. Intell. Fuzzy Syst. 2015, 29, 731–745. [CrossRef]
8. Singh, P. Distance and similarity measures for multiple-attribute decision making with dual hesitant fuzzy

sets. Comput. Appl. Math. 2015, 36, 111–126. [CrossRef]
9. Zhao, N.; Xu, Z.S. Entropy measures for dual hesitant fuzzy information. In Proceedings of the 2015

Fifth International Conference on Communication Systems and Network Technologies, Gwalior, India,
4–6 April 2015; pp. 1152–1156.

10. Ye, J. Cross-entropy of dual hesitant fuzzy sets for multiple attribute decision-making. Int. J. Decis. Support
Syst. Technol. 2016, 8, 20–30. [CrossRef]

11. Liang, D.C.; Xu, Z.S.; Liu, D. Three-way decisions based on decision-theoretic rough sets with dual hesitant
fuzzy information. Inf. Sci. 2017, 396, 127–143. [CrossRef]

12. Ren, Z.L.; Wei, C.P. A multi-attribute decision-making method with prioritization relationship and dual
hesitant fuzzy decision information. Int. J. Mach. Learn. Cybern. 2017, 8, 755–763. [CrossRef]

13. Qu, G.H.; Li, Y.J.; Qu, W.H.; Li, C.H. Some new Shapley dual hesitant fuzzy Choquet aggregation operators
and their applications to multiple attribute group decision making-based TOPSIS. J. Intell. Fuzzy Syst. 2017,
33, 2463–2483. [CrossRef]

14. Zhang, F.W.; Chen, J.H.; Zhu, Y.H.; Li, J.R.; Li, Q.; Zhuang, Z.Y. A dual hesitant fuzzy rough pattern
recognition approach based on deviation theories and its application in urban traffic modes recognition.
Symmetry 2017, 9, 262. [CrossRef]

15. Xu, X.R.; Wei, G.W. Dual hesitant bipolar fuzzy aggregation operators in multiple attribute decision making.
Int. J. Knowl.-Based Intell. Eng. Syst. 2017, 21, 155–164. [CrossRef]

16. Xu, Z.S.; Zhao, N. Information fusion for intuitionistic fuzzy decision making: An overview. Inf. Fusion 2016,
28, 10–23. [CrossRef]

17. Chen, T.Y.; Li, C.H. Determining objective weights with intuitionistic fuzzy entropy measures: A comparative
analysis. Inf. Sci. 2010, 180, 4207–4222. [CrossRef]

http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1002/int.20418
http://dx.doi.org/10.1155/2012/879629
http://dx.doi.org/10.1016/j.apm.2015.02.046
http://dx.doi.org/10.3233/IFS-141474
http://dx.doi.org/10.1007/s40314-015-0219-2
http://dx.doi.org/10.4018/IJDSST.2016070102
http://dx.doi.org/10.1016/j.ins.2017.02.038
http://dx.doi.org/10.1007/s13042-015-0356-3
http://dx.doi.org/10.3233/JIFS-17649
http://dx.doi.org/10.3390/sym9110262
http://dx.doi.org/10.3233/KES-170360
http://dx.doi.org/10.1016/j.inffus.2015.07.001
http://dx.doi.org/10.1016/j.ins.2010.07.009


Symmetry 2019, 11, 85 19 of 20

18. Farhadinia, B. A multiple criteria decision making model with entropy weight in an interval-transformed
hesitant fuzzy environment. Cognit. Comput. 2017, 9, 513–525. [CrossRef]

19. Park, J.H.; Kwark, H.E.; Kwun, Y.C. Entropy and cross-entropy for generalized hesitant fuzzy information
and their use in multiple attribute decision making. Int. J. Intell. Syst. 2017, 32, 266–290. [CrossRef]

20. Xu, Z.S. Models for multiple attribute decision making with intuitionistic fuzzy information. Int. J. Uncertain.
Fuzz. Knowl.-Based Syst. 2007, 15, 285–297. [CrossRef]

21. Xu, Z.S.; Cai, X.Q. Nonlinear optimization models for multiple attribute group decision making with
intuitionistic fuzzy information. Int. J. Intell. Syst. 2010, 25, 489–513. [CrossRef]

22. Wu, J.Z.; Zhang, Q. Multicriteria decision making method based on intuitionistic fuzzy weighted entropy.
Expert Syst. Appl. 2011, 38, 916–922. [CrossRef]

23. Lin, Y.; Wang, Y.M.; Chen, S.Q. Hesitant fuzzy multiattribute matching decision making based on regret
theory with uncertain weights. Int. J. Fuzzy Syst. 2017, 19, 955–966. [CrossRef]

24. Yang, S.H.; Ju, Y.B. A GRA method for investment alternative selection under dual hesitant fuzzy
environment with incomplete weight information. J. Intell. Fuzzy Syst. 2015, 28, 1533–1543.

25. Chen, Y.F.; Peng, X.D.; Guan, G.H.; Jiang, H.D. Approaches to multiple attribute decision making based on
the correlation coefficient with dual hesitant fuzzy information. J. Intell. Fuzzy Syst. 2014, 26, 2547–2556.

26. Kahneman, D.; Slovic, P.; Tversky, A. Judgment under Uncertainty: Heuristics and Biases; Cambridge University
Press: Cambridge, UK, 1982.

27. Haselton, M.G.; Nettle, D.; Andrews, P.W. The Evolution of Cognitive Bias; Wiley: Hoboken, NJ, USA, 2005.
28. Skalna, I.; Pełechpilichowski, T.; Gaweł, B.; Duda, J.; Rębiasz, B.; Opiła, J.; Basiura, B. Advances in Fuzzy
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