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Abstract

:

In the present paper, we study a generalization of the initial-boundary problem for the inhomogeneous vibrating string equation. The initial conditions include the higher order derivatives of the unknown function. The problem is studied under homogeneous boundary conditions of the first kind. The uniqueness and existence of a regular solution of the problem are proved. To prove the main result we use the spectral decomposition method.
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1. Introduction


The differential equations are used to model the real world application problems in science and engineering that involve several parameters as well as the change of variables with respect to others. Most of these problems will require the solution of initial and boundary conditions, that is, the solution to the differential equations are forced to satisfy certain conditions and data. However, to model most of the real world problems is very complicated task and in many forms it is also difficult to find the exact solution. Boundary value problems for the Laplace, Poisson and Helmholtz equations with boundary conditions containing the higher order derivatives were studied in works by Bavrin [1], Karachik [2,3,4,5], Sokolovskii [6]. In the papers [7,8,9,10,11,12,13], boundary problems, including higher derivatives on the boundary, were studied for the Poisson, Helmholtz, and biharmonic equations. It should be noted that unlike our work, in the mentioned papers [1,2,3,4,5,6,14], the higher order derivative is given on the entire boundary. For an inhomogeneous heat equation, an initial-boundary problem containing a higher order derivative in the presence of an initial condition was studied in [15]. Now we reconsider the following equation


∂2u∂t2−∂2u∂x2=f(x,t)



(1)




in the domain Ω=(x,y)∣0<x<p,0<t<T where f(x,t) is a given function. Then we try to find a solution of the Equation (1) in the domain Ω which satisfies the following conditions


u(0,t)=0,0≤t≤T,



(2)






u(p,t)=0,0≤t≤T,



(3)






∂ku(x,0)∂tk=φk(x),0≤x≤p,



(4)






∂k+1u(x,0)∂tk+1=ψk(x),0≤x≤p,



(5)




where k≥1 is a fixed integer number. For the case k=0 and f(x,t)=0, the problem (1)–(5) was studied in [16]. Further Tikhonov in [17] studied homogeneous heat equation with the boundary condition ∑k=0nak∂ku(0,t)∂xk=0 and the initial condition u(x,0)=0 in the domain (0<x<∞,t>0). Similarly, Bitsadze in [14] studied the Laplace equation in an n-dimensional domain D under the condition


dmudνm=f(x),x∈∂D








and proved its Fredholm property. There is also more related literature on the boundary conditions problem, see for example [18,19,20,21,22,23,24,25]. In the present paper, we study a generalized initial-boundary problem (2)–(5) for the inhomogeneous vibrating string Equation (1). The initial conditions include the higher order derivatives of the unknown function. The problem is studied under homogeneous boundary conditions of the first kind. We prove the uniqueness and existence of a regular solution of the problem. To solve the problem (1)–(5), we apply the spectral decomposition method.




2. The Uniqueness of Solution


Theorem 1.

The solution of the problem (1)–(5) is unique if it exists.





Proof. 

Let f(x,t)=0 in Ω¯, φk(x)=0, ψk(x)=0 in [0,p]. We show that the homogeneous problem (1)–(5) has only the trivial solution. It is known [26], the functions


Xn(x)=2psin(λnx),λn=nπp,n=1,2,…



(6)




form in L2(0,p) a complete orthonormal system. Following [27], we consider the functions


αn(t)=∫0pu(x,t)Xn(x)dx,0≤t≤T,



(7)




where u(x,t) is the solution of the homogeneous equation corresponding to the Equation (1). Differentiating (7) twice with respect to t, we obtain from the corresponding homogeneous Equation (1)


αn′′(t)+λn2αn(t)=0.



(8)







The solution of (8) has the form


αn(t)=ancos(λnt)+bnsin(λnt).











To find the unknown coefficients an and bn, we use the homogeneous conditions (4) and (5), which lead to the following equations:


αn(k)(t)=0,αn(k+1)(t)=0.



(9)







It is not difficult to verify that


αn(k)(t)=λnkancosπk2+λnt+bnsinπk2+λnt,αn(k+1)(t)=λnk+1ancosπ(k+1)2+λnt+bnsinπ(k+1)2+λnt.











Using (9), we obtain the following system of equations to determine the unknown coefficients an and bn:


ancosπk2+bnsinπk2=0,ancosπ(k+1)2+bnsinπ(k+1)2=0,








whose determinant of coefficients is 1. Hence, that αn(t)=0. By completeness of functions Xn(x), the Equation (7) implies that u(x,t)=0 in Ω¯.  □






3. The Existence of Solution


We search the solution of (1) in the form


u(x,t)=∑n=1∞un(t)Xn(x).



(10)







Expand the functions f(x,t), φk(x), and ψk(x) in Fourier series by functions Xn(x):


f(x,t)=∑n=1∞fn(t)Xn(x),



(11)






φk(x)=∑n=1∞φknXn(x),



(12)






ψk(x)=∑n=1∞ψknXn(x),



(13)




where


fn(t)=∫0pf(x,t)Xn(x)dx,



(14)






φkn=∫0pφk(x)Xn(x)dx,



(15)






ψkn=∫0pψk(x)Xn(x)dx.



(16)







Substituting (10) and (11) into (1), we obtain


un′′(t)+λn2un(t)=fn(t).











It can be shown that the solution of this equation satisfying the conditions


un(k)(0)=φkn,un(k+1)(0)=ψkn,








is


un(t)=φknλnkcosπk2−λnt−ψknλnk+1sinπk2−λnt+∑s=0k+12−1(−1)sλnk+1−2sfn(k−1−2s)(0)sinπk2−λnt−∑s=0k2−1(−1)sλnk−2sfn(k−2−2s)(0)cosπk2−λnt+1λn∫0tfn(τ)sin(λn(t−τ))dτ.



(17)







Hereinafter ∑s=0m(…)=0 for m<0. Substituting (17) into (10), we get


u(x,t)=∑n=1∞Xn(x){φknλnkcosπk2−λnt−ψknλnk+1sinπk2−λnt+∑s=0k+12−1(−1)sλnk+1−2sfn(k−1−2s)(0)sinπk2−λnt−∑s=0k2−1(−1)sλnk−2sfn(k−2−2s)(0)cosπk2−λnt+1λn∫0tfn(τ)sin(λn(t−τ))dτ}.



(18)







Using (18) we find the following derivatives of u(x,t).


∂2u∂t2=∑n=1∞Xn(x){−φknλnk−2cosπk2−λnt+ψknλnk−1sinπk2−λnt−∑s=0k+12−1(−1)sλnk−1−2sfn(k−1−2s)(0)sinπk2−λnt+∑s=0k2−1(−1)sλnk−2−2sfn(k−2−2s)(0)cosπk2−λnt+fn(0)cos(λnt)+1λnfn′(0)sin(λnt)+1λn∫0tfn′′(τ)sin(λn(t−τ))dτ}.



(19)






∂2u∂x2=∑n=1∞Xn(x){−φknλnk−2cosπk2−λnt+ψknλnk−1sinπk2−λnt−∑s=0k+12−1(−1)sλnk−1−2sfn(k−1−2s)(0)sinπk2−λnt+∑s=0k2−1(−1)sλnk−2−2sfn(k−2−2s)(0)cosπk2−λnt−fn(t)+fn(0)cos(λnt)+1λnfn′(0)sin(λnt)+1λn∫0tfn′′(τ)sin(λn(t−τ))dτ}.



(20)






∂ku∂tk=∑n=1∞Xn(x){φkncos(λnt)+1λnψknsin(λnt)+(−1)kλn∫0tfn(k)(τ)sinπk+λn(t−τ)dτ},



(21)






∂k+1u∂tk+1=∑n=1∞Xn(x){−λnφknsin(λnt)+ψkncos(λnt)+(−1)kλnfn(k)(0)sin(λnt)+(−1)k+1λn∫0tfn(k+1)(0)sinπ(k+1)+λn(t−τ)dτ}.



(22)







Next we need to prove the absolute and uniformly convergence of the series (18)–(22). Below we prove several lemmas that are used in the proof of the existence theorem.



Lemma 1.

Let f(x,t)∈C1Ω¯, f(0,t)=f(p,t)=0, ∂f∂x∈Lipα[0,p] uniformly with respect to t and 0<α<1. Then the series (11) converges absolutely and uniformly in Ω¯.





Proof. 

Integrating in parts (14) we find


fn(t)=2pnπ∫0p∂f(x,t)∂xcos(λnx)dx.











Then [28]


|fn(t)|≤cn1+α,c=Kp32+απ2,








where K is the Hölder constant. Since the series ∑n=1∞1n1+α converges, therefore the series (11) converges absolutely and uniformly in Ω¯.  □





Lemma 2.

Let φk(x)∈W21(0,p), φk(0)=φk(p)=0. Then the series (12) converges absolutely and uniformly in [0,p].





Proof. 

Integrating by parts (15) we obtain


φkn=1λnφkn(1),φkn(1)=∫0pφk′(x)2pcos(λnx)dx.











Using the Bessel inequality [29], ∑n=1∞φkn(1)2≤φk′L2(0,p)2 and the inequality ∑n=1∞φkn=pπ∑n=1∞1nφkn(1) and using the Hölder inequality for the sum [29] yields


∑n=1∞1nφkn(1)≤∑n=1∞1n212∑n=1∞φkn(1)212≤π6∥φk′∥L2(0,p).











Here the equality ∑n=1∞1n2=π26 was used. This implies the absolutely and uniformly convergence of the series (12) on [0,p].  □





Lemma 3.

Let ψk(x)∈W21(0,p), ψk(0)=ψk(p)=0. Then the series (13) converges absolutely and uniformly on [0,p].





The proof is similar to the proof of Lemma 3.



Lemma 4.

Let φk(x)∈W21(0,p), φk(0)=φk(p)=0. Then the series


∑n=1∞λnφknXn(x)sin(λnt)



(23)




converges absolutely and uniformly in Ω¯.





Proof. 

Integrating by parts (15) we obtain


φkn=1λn2φkn(2),φkn(2)=∫0pφk′′(x)2psin(λnx)dx.











Using the Parseval equality [29],


∑n=1∞φkn(2)2=φk′′L2(0,p)2,








we obtain


∑n=1∞λnφkn=∑n=1∞1λnφkn(2)≤∑n=1∞1λn212∑n=1∞φkn(2)212=p6φk′′L2(0,p).











Hence, the series (23) converges absolutely and uniformly in Ω¯.  □





Lemma 5.

If ∂k+1f(x,t)∂tk+1∈CΩ¯, then the series


∑n=1∞Xn(x)λn∫0tfn(m)(τ)sinπ(k+m)2+λn(t−m)dτ,m=1,2,…,k+1








converges absolutely and uniformly in Ω¯.





Proof. 

Applying the Hölder inequality for integrals [29], we get


1λn∫0tfn(m)(τ)sinπ(k+m)2+λn(t−m)dτ≤Tλnfn(m)L2(0,T).











Now applying the Hölder inequality for sums and the Bessel inequality, we find


∑n=1∞1λnfn(m)L2(0,T)≤p6∂mf∂tmL2(0,T).








 □





Next, consider the following series


∑n=1∞Xn(x)∑s=0k+12−1(−1)sλnk+1−2sfn(k+1−2s)(0)sinπk2−λnt,



(24)






∑n=1∞Xn(x)∑s=0k2−1(−1)sλnk−2sfn(k−2−2s)(0)cosπk2−λnt,



(25)






∑n=1∞Xn(x)∑s=0k2−1(−1)sλnk−2−2sfn(k−2−2s)(0)cosπk2−λnt,



(26)






∑n=1∞Xn(x)∑s=0k+12−1(−1)sλnk−1−2sfn(k−1−2s)(0)sinπk2−λnt.



(27)







Lemma 6.

If ∂k−1f(x,t)∂tk−1∈CΩ¯, k≥1, then the series (24) converges absolutely and uniformly in Ω¯.





Proof. 

Consider the series


∑n=1∞∑s=0k+12−1fn(k−1−2s)(0)λnk+1−2s.



(28)







For s=0 we have ∑n=1∞fn(k−1)(0)λnk+1. The convergence of this series is obvious. Let s=k+12−1. Then


(1)k−1−2s=1,ifkiseven,0,ifkisodd,(2)k+1−2s=3,ifkiseven,2,ifkisodd.











Therefore, the series (28) converges and so the series in (24) converges absolutely and uniformly in Ω¯.  □





Lemma 7.

If ∂k−2f(x,t)∂tk−2∈CΩ¯, k≥2, then the series (25) converges absolutely and uniformly in Ω¯.





Proof. 

Consider the series


∑n=1∞∑s=0k2−1fn(k−2−2s)(0)λnk−2s.



(29)







If k=2, then s=0, and ∑n=1∞fn(k−2)(0)λnk converges. It is easy to check that if s=0,1,…,k2−1, then k−2−2s≥0. Thus, the series in (29) converges. Therefore, the series (25) converges absolutely and uniformly in Ω¯.  □





Lemma 8.

Let ∂k−2f(x,t)∂tk−2∈CΩ¯, k≥2. If either k is odd or k is even and


∂f(x,t)∂x∈CΩ¯,f(0,t)=f(p,t)=0,



(30)




then the series (26) converges absolutely and uniformly in Ω¯.





Proof. 

The proof is completed by showing that the series


∑n=1∞∑s=0k2−1fn(k−2−2s)(0)λnk−2−2s



(31)




is the convergent. Indeed, if we let k≥2 and s=k2−1, then


k−2−2s=0,ifkiseven,1,ifkisodd.











Therefore, the series (31) converges for odd k. Then the series (26) converges absolutely and uniformly in Ω¯. If k=2, then s=0 and the series (31) takes the form


∑n=1∞|fn(0)|,fn(0)=∫0pf(x,0)Xn(x)dx.



(32)







In general, for any even k, the term of


∑s=0k2−1fnk−2−2s(0)λnk−2−2s








corresponding to s=k2−1 is |fn(0)|. For n=1,2,..., these terms in (31) form the series (32). Show that the series (32) converges. Indeed, integrating the last integral, we obtain by virtue of (30) that


fn(0)=1λnfn(1,0)(0),fn(1,0)=∫0p∂f(x,0)∂x2pcos(λnx)dx.



(33)







By using the Bessel inequality


∑n=1∞fn(1,0)(0)2≤∂f(x,0)∂xL2(0,p)2,








and therefore taking into account (33), we can see that


∑n=1∞fn(0)=∑n=1∞1λnfn(1,0)(0)≤∑n=1∞1λn212∑n=1∞fn(1,0)(0)212≤p6∂f(x,0)∂xL2(0,p).











Thus, the series (26) converges absolutely and uniformly in Ω¯ for any even k.  □





Lemma 9.

Let ∂k−1f(x,t)∂tk−1∈CΩ¯, k≥1. If either k is even or k is odd and conditions (30) are satisfied, then the series (27) converges absolutely and uniformly in Ω¯.





Proof. 

In order to prove this Lemma it is sufficient to prove that the following series


∑n=1∞∑s=0k+12−1fn(k−1−2s)(0)λnk−1−2s








convergent. Indeed, for s=k+12−1, we have


k−1−2s=0,ifkiseven,1,ifkisodd.











The rest of the proof runs as the proof of Lemma 8.  □





Theorem 2.

Let

	(1) 

	
f(x,t)∈C1Ω¯, f(0,t)=f(p,t)=0,



and ∂f∂x∈Lipα[0,p] uniformly with respect to t, 0<α<1;




	(2) 

	
∂kf(x,t)∂tk∈CΩ¯, ∂k+1f(x,t)∂tk+1∈L2Ω;




	(3) 

	
φk(x)∈W22(0,p), φk(0)=φk(p)=0;




	(4) 

	
ψk(x)∈W21(0,p), ψk(0)=ψk(p)=0.









Then the series (18)–(22) converge absolutely and uniformly in Ω¯, the solution (18) satisfies the Equation (1), conditions (2)–(5), and u(x,t)∈Cx,t2,k+1Ω¯.





Proof. 

The fact that the series (18)–(22) converge absolutely and uniformly follows from Lemmas 1–9. Properties of the function Xn(x) imply that (18) satisfies the conditions (2) and (3). Passing to the limit as t→0 in equalities (21) and (22), we can see that (18) satisfies the conditions (4) and (5). Comparing series (19) and (20), we can see that (18) satisfies Equation (1). The fact that the series (20) and (22) converge uniformly and absolutely in Ω¯ imply that u(x,t)∈Cx,t2,k+1Ω¯ and that (18) satisfies the Equation (1).  □






4. Conclusions


We have studied and generalized the initial-boundary problem for the inhomogeneous vibrating string equation. The problems studied in the present paper are the first work for hyperbolic equation which contain higher order derivatives of unknown function in initial conditions. This problem generalizes the classic initial-boundary value problems for hyperbolic equation. We have proved the uniqueness and existence of a regular solution of the problem. To prove the main result we have used the spectral decomposition method. In addition, we have explicitly presented the solution in the form of series. We also state that the extension to the multi variables form is an open question.
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